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Abstract. We consider the two-user Multiple Access Channel (2-AC). For the

only two non-trivial binary input 2-AC's we discuss the capacity regions.
Then, we give some examples of M-ary input 2-AC's. For two specific classes
we develope an encoding strategy such that both users can operate at the

total cooperation rate.

Introduction.

We consider the communication situation where 2 senders transmit simul-
taneously to a single receiver via a discrete memoryless deterministic

multiple-access channel. Both senders are synchronized and have complete

‘knowledge of the channel output Y via a noiseless feedback link. The

channels accept M-ary input signals Xk’ k=1,2, and emit a single output Y

in accordance with a prescribed conditional probability distribution

P(ylx],xz), see Fig.l, where M=2.
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Fig.l. Two-Access Channel (2-AC) with input/output representation.
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Cover and Leung [1] found an achievable rate region for the discrete memory-

less MAC with feedback, using superposition coding. Subsequently, Willems

[2], showed that for MAC's for which at least one input is a function of

the output Y and the other input (MAC's in class D), the region found by
Cover and Leung is the feedback capacity region. The feedback capacity of

MAC's in class D is given by

Cd # LR B )% O<R, SH(X, 1)
= O<R SI(XZ,Y]XI,U) = H(XZMJ)
R +R, sI(Xl,Xz,Y) = H(Y) for
P(u, Xl,xz,Y) P(U)P(X]lu)P(leu)P(ylxl,xz)
and [U| < min {Ix [. lx [+1, |y|+2}},

where |U], ]Xl[, and ]le are the alphabet cardinalities of the random

variables U, Xl and X2, respectively.

Binary input 2-AC

The different types of binary input 2-AC's follow from specification of
the set {a,b,c,d}. The number of different elements in the set is denoted
by the cardinality |Y|. For instance, for the set {a,a,b,é} the cardinality
W= 3. This easy to verify that this is the only interesting case with
binary inputs. Furthermore, one can show that all possible ternary output
channels can be converted into one of the two channels of Fig.2, where we

use the symbols 0,1 and 2 instead of the letters a,b and c.
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Fig. 2. Two binary input/ternary output 2-AC's.
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Athe that channel 2a is the well known binary adder channel. In chann§1

2b, user X, —switches the connection between X1 and Y on and off. By selec-

2
“ting specific switch moments, X, transmits information. The capacity region

for channel 2b. is given below.

Ry, = {R,R)); R sZ Poo.h(B;)<a
R.<Z P.h(a.) <h(a)
u 5 bl

2
R1+sta+h(a)}, o
where |U| = 5, h(.) is the binary entropy function and ai=P(X2=]|U=i),

Bi = P(XI=OIU=i), Pi=P(U=i). The capacity region is given in Fig.3,
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Fig. 3. Capacity region for channel 2b.

For IU[ = |, we achieve the same region. Hence, one does not need the
feedback information here.

The capacity region for channel 2a is not completely known in numerical
form. From the non-feedback region the rate pairs (RI’RZ) = (1,0.5) and
(0.5,1) are known to be achievable. Furthermore Willems [3] proved optima-

’ lity of the point R]=R2=O.79ll with |U| = 2. Thus far no other asymmetric
optimal rate pairs are known. From computations we suspect that |U| = 2 is

sufficient to generate the whole capacity region.

An encoding strategy.

We now consider M-ary input 2-AC's. In [4], we define two specific
channel models. The output of the first channel indicates which subset

of input symbols occured, i.e.

26




Y = {XI,XZ}, Xis{O,l,..., M-1}.

The second channel gives as an output the algebraic sum of the input let-

tersiiiie.

Y = xi+x2, X.e{0,1,..., ¥-1},

In Fig.4, we give the input/output relations for both channels when M=3.
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Fig. 4. Input/output relation for the ternary erasure
MAC and the ternary adder MAC.

M(M+1)
2
that for M=2 both channels reduce to the well known binary erasure MAC.

The output cardinalities IY[ = and (2M-1), respectively. Note

For both channels, we proved [4], that in symmetrical operation the
Cover-Leung capacity equals total cooperation. In particular, we give
probability distributions p(u,x],xz,y) such that H(Xle)> a0y, k=2,
and H(Y) = log]Y].

Gaarder and Wolf [5] showed that the capacity region for the erasure
MAC is enlarged by using feedback. They developed a two stage coding stra-
tegy. During the first stage the channel accepts N independent input digits
&rom both users. Ambiguous receptions are known to both users, due to the
presence of the feedback links. After a block of N transmission both enco-
ders transmit at the cooperative channel capacity of loleI = log Eﬁ%:ll
bits/transmission, in order to resolve the receiver's uncertainty.

We use the concept of superposition coding.<§;-describe an encoding

strategy such that both users transmit at the total cooperation rate. The
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key role in the encoding is played by the random variable 185
Let both users represent a selected message ak, k=1,2 as location of a
point on the unit interval (0,1), see also Schalkwijk [6]. The interval
(0,1) is divided into M subintervals 0<isM-1. The length of a specific
subinterval equals the probability P(Xk=i\U=j), for a specific value of U.
If ek lies in interval %, then encoder k gives % as output. Both users
are supposed to have the same u for each transmission. After a transmission
each encoder normalizes its specific subinterval to length 1. The average
amount of information, Rk’ provided by the outcome Xk’ about the location
of 6, is equal to H(Xk|U). Suppose that each transmission both users
select together the same value of U with P(U=j)=1/M. Then, the probabili-
ties P(xk|u) specify a channel Péylu). This channel is used to transmit
common information from both users to the receiver Y. Now, encoding of
the messages el and 62 is done in blocks of length N, with a two stage
superposition strategy. _
In the initial fraction (1-a) of the first block of N transmissions
both users use U=0 for their respective message encoding. .The total average
amount of uncertainty due to ambiguous receptions is equal to
(l-a)NH(XlXZ\Y,U=O) = (l-a)NH(Xk|Y,U=0), k=1 or 2. This uncertainty is
known to both users and is considered to be common information. In the
last fraction a, the users may transmit part of the common information in
total cooperation, say Rt bits per transmission, by selecting one of the
possible outputs of Y. The remaining uncertainty is transmitted in the
initial fraction (1-a) of the next block via the imaginary channel from U
to Y. This is possible with a vanishing small error probability for large
N if S
(l—a)NH(KleU) < (1-a)NI(U;Y)+aNR
= (1-a)N(H(Y)-H(Y[U))+alR
= (1-a)N(R B, |U)-H(X2lU)+H(Xk\YU))+aNRt
= (NRt-Z(l—a)NH(Xk\U)+(1—a)NH(Xk\YU)

For the M-ary erasure and adder MAC, we give input distributions [4], such
that
n(x, |U) > 1),
= iR .

Hence, the above condition is satisfied if o 1is chosen such that
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(l—a)H(XklU) = ;Rt.

From the above we conclude that both families of channels can be used at

the total cooperation rate in symmetrical operation.

Conclusions

We discuss the capacity region for two non trivial binary input
two—access channels. Then we describe an encoding strategy for M-ary in-
put Multiple-Access Channels such that both transmitters can operate at

the total cooperation rate.
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