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where zzzn1 is �1, and S2 is the corresponding set for zzzn2 , it must be
that S1 6= S2. Therefore, according to Definition 1 and the one-to-one
property of the subset map  l;i , the subset of indices i � il where
�(zzzn1 ) is �1 and the corresponding subset of indices for �(zzzn2 ) must
differ. This completes the proof that � is one to one.

It remains to prove Property 3 of �, that if n

i=1 aizi > n � 2j
then ẑzzn = �(zzzn) satisfies n

i=1 aiẑi � n�2j. To see this, define the
subsets of indices

S(1) = fi1; . . . ; ilg and S
(2) = fi : il + 1 � i � ng

and

S =S(1) [  l;i (S
(1)) [ S(2)

:

The cardinality of S is

jSj =n� il + 2l

=n� (n� 2j + 2l) + 2l

=2j (27)

so that jScj = n � 2j, where (27) uses (26). If

n

i=1

aizi =
i2S

aizi +
i2S

aizi

>n� 2j

then

i2S

aizi >n� 2j �
i2S

aizi

�n� 2j � jScj

=0: (28)

From the definition of � (Definition 1), however, ẑzzn = �(zzzn) satisfies

ẑi = �zi; for i 2 S and ẑi = zi; for i 2 Sc
:

Therefore, (28) implies that
i2S

aiẑi < 0, and hence,

n

i=1

aiẑi =
i2S

aiẑi +
i2S

aiẑi

<

i2S

aiẑi

� jScj

=n� 2j:

This completes the proof of Lemma 1. .
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An Achievable Region for the Gaussian Wiretap Channel
With Side Information
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Abstract—In this correspondence, we extend the Gaussian wiretap
channel model introduced by Leung–Yan–Cheong and Hellman to the
Gaussian wiretap channel with side information by introducing additive
white Gaussian interference in the main channel, which is available to the
encoder in advance. This model is also an extension of the dirty-paper
channel introduced by Costa since its main channel is the dirty-paper
channel. A perfect-secrecy-achieving coding strategy for the model is
proposed. It is used to derive achievable rates with asymptotic perfect
secrecy and an achievable rate-equivocation region. The achievable rates
with asymptotic perfect-secrecy are then compared to upper and lower
bounds. The comparison indicates that the proposed coding strategy is
optimal in some cases.

Index Terms—Dirty-paper channel, Gaussian wiretap channel, Gaussian
wiretap channel with side information, perfect secrecy.

I. INTRODUCTION

The wiretap channel, introduced in [1], provides a framework for
the study of secret message transmission between a sender and a legiti-
mate recipient over a main discrete memoryless channel (DMC) being
wiretapped by an adversary via a wiretap DMC. The level of message
secrecy is measured by using the concept of equivocation. It is of in-
terest to design a communication system that allows reliable message
transmission at high rates and high secrecy. A special case and a dif-
ferent variant of the wiretap channel model were investigated in [2] and
[3] as the wiretap II channel and the Gaussian wiretap channel (GWC),
respectively. It has been shown that positive information rates can be
achieved with asymptotic perfect secrecy when the adversary’s obser-
vation is a noisy version of the recipient’s observation [1]–[3].
Motivated by a covert communication situation, we extend the GWC

model by introducing an additive white Gaussian interference to the
main channel as a covert communication channel. The interference is
assumed to be completely known to the sender before the message
transmission. The extended model is called Gaussian wiretap channel
with side information (GWCSI). It can also be viewed as an exten-
sion of the dirty-paper channel (DPC) introduced in [4] since the main
channel of the GWCSI is the DPC.
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Fig. 1. The Gaussian wiretap channel with side information to the encoder.

We describe the GWCSI model in Section II. In Section III, the
code-partitioning technique is considered for the GWCSI. A coding
strategy, based on the code-partitioning technique, and a leakage func-
tion are proposed in Section IV for the GWCSI to achieve perfect se-
crecy. An achievable region for the GWCSI is derived based on the
proposed coding strategy and the time-sharing lemma in Section V. In
Section VI, the achievable rates with asymptotic perfect secrecy are
compared to upper and lower bounds. Finally, concluding remarks are
given in Section VII.

II. MODEL DESCRIPTION

In the GWCSI model, there are three parties involved: a sender, a
legitimate recipient and an adversary (wiretapper). The sender is in-
terested in sending a message to the recipient via a dirty-paper channel
(main channel) that is wiretapped by the adversary via an additive white
Gaussian noise (AWGN) channel (wiretap channel). The sender would
like to encode the message by using the side information about the in-
terference available to him in advance so that the message can be reli-
ably transmitted at a high rate with desired level of secrecy. The level of
secrecy is measured using the concept of equivocation. The adversary
is assumed to know the coding strategy and the associated codebook.

Let SK represent a length-K finite-alphabet message andXN be a
length-N codeword generated from SK by an encoding process with
an average power constraint P

1

N

N

i=1

x2i � P:

Let V N � N (0; Q) represent the normally distributed interfer-
ence in the main channel known to the sender in advance. Let Y N =
XN + V N + �N1 , and ZN = Y N + �N2 be the outputs of the main
channel and the wiretap channel, where �N1 and �N2 are sequences
of independent random variables identically distributed according to
N (0;N1) andN (0;N2), respectively. The parametersQ,N1 andN2

are assumed to be greater than zero. The recipient decodes the output
of the main channel Y N for a message estimate ŜK at rateH(SK)=N
with probability of error

Pe = PrfSK 6= ŜKg

and normalized equivocation

H(SK jZN )

H(SK)
:

We say that the rate-equivocation pair (R; d) is achievable if, for
any � > 0 and sufficiently large N , there exists an encoder-decoder
pair such that

H(SK)

N
�R� � (1)

H(SK jZN )

H(SK)
� d� � (2)

Pe � �: (3)

Fig. 2. The Gaussian wiretap channel (GWC).

Fig. 3. The dirty-paper channel (DPC).

The perfect secrecy occurs when the message is independent of the
adversary’s observation ZN ; therefore, it is achieved when d = 1.
Fig. 2 indicates that the GWCSI without the interference is the GWC.
Fig. 3 shows that the main channel of the GWCSI is the DPC.

III. CODE-PARTITIONING TECHNIQUE

The code-partitioning techniquewas used in the proof of the capacity
region of the wiretap channel in [1] and in the proof of the capacity of
channel with random parameters in [5]. It also allows communication
at asymptotic perfect secrecy for the GWC and mitigates the effect of
the interference in the DPC as shown in [3] and [4], respectively. In
this section, we apply the code-partition technique to the GWCSI by
partitioning a random code designed for an additive white Gaussian
noise (AWGN) channel into bins so that high rates can be achieved
with asymptotic perfect secrecy.
The main idea behind the coding technique is to partition the code

designed for reliable communication via the main channel into bins so
that each bin contains a code designed for reliable communication via
the combined (main and wiretap) channel. The adversary’s observa-
tion can then be decoded as possibly coming from any bin. Since each
bin is associated with a message, high message equivocation can be
achieved. In addition, the use of side information about the interfer-
ence to mitigate its effect can be integrated in the coding strategy to
improve transmission rate.
The coding technique makes use of the auxiliary random variable

U = X + �V , where � is a parameter to be specified. It consists of
codebook generating, encoding and decoding processes. The codebook
generating process is based on the code-partitioning technique while
the encoding and decoding processes rely on the asymptotic equipar-
tition properties (AEPs); hence, the wiretapper may use a typical de-
coder in an attempt to achieve the capacity of the combined channel.
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The number of auxiliary codewords and the number of bins in the code-
book are restricted by the power constraint via parameters Rmain and
R, respectively. The sender’s and the adversary’s typicality parameter
� > 0 is to be specified appropriately.

To describe the coding procedure (similar to that for the DPC), we
define the following random variables:

U �N (0; P 0 + �2Q); Y � N (0; P 0 +Q+N1);

Z �N (0; P 0 +Q+N1 +N2); U = X + �V;

V �N (0;Q); X � N (0; P 0)

Uc represents the auxiliary codewords

where P is the average power constraint and P 0 = P (1+4� ln(2))�1

(see Appendix A, Lemma A.1). The random variables have the fol-
lowing relations:

Y N = XN + V N + �N1 ; ZN = XN + V N + �N1 + �N2 :

In addition, the definition of joint typicality [6] is used in the descrip-
tion of the proposed coding procedure as follows.

1) Generating the codebook. Generate 2NR sequences uN

according to the distribution p(uN) = N

i=1 p(ui), and
p(ui) � N (0; P 0 + �2Q) for all i 2 f1; 2; . . . ; Ng. Place
the sequences uN randomly into 2NR bins. Index each bin by
j 2 f1; 2; . . . ; 2NRg. The codebook is given to the sender and
the recipient.

2) Encoding. To send a message j through an interference vN , the
sender looks for a sequence uc in bin j such that vN and uc are
jointly typical, i.e., (uc; vN ) 2 TNU;V (�), and transmit xN =
uc � �vN . If there is more than one sequence uc that is jointly
typical with vN , randomly select one.

3) Decoding. To decode for the message, the recipient finds a se-
quence uc in the codebook that is jointly typical with the re-
ceived sequence yN , i.e., (uc; yN ) 2 TNU;Y (�). Declare the
index to the bin, in which the sequence is found as the message
estimate.

4) Wiretapper’s decoding. The wiretapper receives a sequence zN

and finds a sequence uc in the codebook that is jointly typical
with the received sequence, i.e., (uc; zN) 2 TNU;Z(�). Declare
the index to the bin, in which the sequence is found as the wire-
tapper’s message estimate.

5) Probability of error. An error occurs when a message j is to be
transmitted and one or more of the following events occurs:

• EV (j): in the encoding process, there is no sequence uc in
bin j that is jointly typical with the interference sequence;

• EX(j)jEV (j)C : in the encoding process, xN = uc��v
N

does not satisfy the power constraint provided that there is
at least a sequence uc jointly typical with the interference
vN ;

• EY 1(j)jEX(j)CEV (j)C: in the decoding process, there
is no sequence uc that is jointly typical with the received
sequence provided that there is no error in the encoding
process;

• EY 2(j)jEX(j)CEV (j)C: in the decoding process, a se-
quence uc in bin i 6= j is jointly typical with the received
sequence provided that there is no error in the encoding
process.

The average power constraint on the transmitted vector in the
GWCSI imposes a limit on the transmission rate. The limited power
available to the encoder will be used for two purposes: to confuse the
adversary so that perfect secrecy can be achieved, and to mitigate the
effect of the interference in the main channel so that the message can
be transmitted at high rates. The power is regulated to attain the two
purposes by selecting one of the two modes of the coding strategy
given in the next section.

IV. CODING STRATEGY FOR THE GWCSI WITH

ASYMPTOTIC PERFECT SECRECY

In this section, we propose a coding strategy achieving high rates
with asymptotic perfect secrecy for the GWCSI. There are two modes
of operation designed for different levels of power constraint on XN .
The selection of the modes is based on the characteristics of a leakage
function introduced for the GWCSI.

A. Modes of Operation

The coding strategy is refined into two modes of operation. The two
modes employ the same encoding and decoding processes with the
error events described in Section III. The only differences are the sizes
and the structures of the codebooks resulting in different rates of com-
munication between the sender and the recipient. To describe the two
modes of operation, we define the following random variables:

~U �N (0; P + �2Q); ~X � N (0; P )

~Y �N (0; P +Q+N1); ~Z � N (0; P +Q+N1 +N2):

The random variables have the following relations:
~Y N = ~XN + V N + �N1 ; ~ZN = ~XN + V N + �N1 + �N2

where ~X , V , �1 and �2 are independent among themselves. The two
modes are specified as follows.
Mode I: Given � > 0, let �UV and �UZ be positive constants, asso-

ciated with the codebook generating process, to be specified appropri-
ately. The codebook in this mode has 2N[R �� ] sequences uc
and 2N [R��] bins, where Rmain = I( ~U ; ~Y ), �main = � � �UV and
R = I( ~U ; ~Y ) � I( ~U ; V ). Moreover, each bin is further divided into
subbins so that each subbin contains 2N [I( ~U;~Z)�� ] sequences uc.
Mode II: Given � > 0, let �UZ be a positive constant, associ-

ated with the codebook generating process, to be specified appropri-
ately. The codebook in this mode has 2N [R �� ] sequences uc
and 2N [R��] bins, where Rmain = I( ~U ; ~Y ), �main = � + �UZ and
R = I( ~U ; ~Y ) � I( ~U ; ~Z).
Depending on the number of bins in the codebook, the rate of com-

munication between the sender and the recipient is log(2N [R��])=N =
R� �. InMode I, rate R = I( ~U ; ~Y )� I( ~U ; V )� � can be optimized
over � since

I( ~U ; ~Y )� I( ~U ;V )� �

=
1

2
log

(P + �2Q)(P +Q+N1)

(P + �2Q)(P +Q+N1)� (P + �Q)2

�
1

2
log

P + �2Q

P
� �

=
1

2
log

P (P +Q+N1)

(P + �2Q)(P +Q+N1)� (P + �Q)2
� �:

The maximum rate for Mode I is CM � � at � = �1 where

CM =
1

2
log

P +N1

N1
(4)

�1 =
P

P +N1
: (5)

Similarly, rateR� � = I( ~U ; ~Y )� I( ~U ; ~Z)� � inMode II can also be
optimized over �. The maximum rate forMode II isR2� � at � = �2

where

R2 =
1

2
log

(P +Q+N1)(N1 +N2)

N1(P +Q+N1 +N2)

�2 =1: (6)

In Mode I, the number of codewords in a bin is 2N [I(~U;V )+� ],
which is shown in the case of DPC to be sufficient for conveying par-
tial information about the interference. InMode II, the number of code-
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Fig. 4. The codebook for the coding strategy in Mode I for GWCSI.

Fig. 5. The codebook for the coding strategy in Mode II for GWCSI.

words in a bin is 2N[I( ~U;~Z)�� ], which is shown in the GWC to be
sufficient for confusing the adversary. In order to select an appropriate
mode of operation, we define the leakage function for the GWCSI in
the next section.

B. Leakage Function

In the GWC, there is no interference in the main channel, and the
rate-equivocation pair (I( ~U ; ~Y ) � I( ~U ; ~Z); 1) can be achieved [3].
The average rate I( ~U ; ~Z) is used to confuse the adversary. In the DPC,
there is no adversary wiretapping the main channel. The sender can
communicate with the recipient at rate I( ~U ; ~Y ) � I( ~U ;V ) [4]. The
average rate I( ~U ;V ) is used to convey the partial information about
the interference to mitigate its effect.

Because selecting an appropriate auxiliary codeword in a bin to
convey the partial information about the interference has a beneficial
side effect of confusing the adversary, the leakage function for the
GWCSI is defined as �I(�) = I( ~U ; ~Z) � I( ~U ;V ). Consequently,
when the power needed to confuse the wiretapper is more than what
is used to convey the partial information about the interference to
mitigate its effect, the leakage function is positive. On the other hand,
the leakage function is negative when the power used to mitigate the
effect of the interference is higher than what is needed to confuse the
wiretapper.

The leakage function is of the form

�I(�)

= I( ~U ; ~Z)� I( ~U ; V )

=
1

2
log

(P + �2Q)(P +Q+N1 +N2)

(P + �2Q)(P +Q+N1 +N2)� (P + �Q)2

�
1

2
log

P + �2Q

P

=
1

2
log

P (P +Q+N1 +N2)

(P + �2Q)(P +Q+N1 +N2)� (P + �Q)2
:

Hence

�I(0) =
1

2
log

P +Q+N1 +N2

Q+N1 +N2
> 0;

�I(�0) = 0

Fig. 6. Type I leakage function: 0 < � � � .

where

�0 =
P

P +N1 +N2
1 +

P +Q+N1 +N2

Q
: (7)

It reaches its maximum value at

� = �w =
P

P +N1 +N2
< �0:

Hence, the leakage function has a positive value at � = 0 and increases
to its maximum value at � = �w . It then decreases to 0 at � = �0 and
becomes negative as � increases. Note that when � = �w , the capacity
of the combined main-wiretap channel is reached and is equal toCMW
while the secret message rate in the main channel is below the capacity
of the main channel CM , which is achieved when � = �1 [4], where

CMW =
1

2
log

P +N1 +N2

N1 +N2
:

There are three types of the leakage function characterized by the pa-
rameter �0 as illustrated in Figs. 6–8. Type I leakage function has
0 < �0 � �1. Type II leakage function has �1 < �0 � �2 = 1.
Type III leakage function has �0 > �2 = 1. The characteristics of the
leakage function depend the system parameters P , Q,N1, and N2.

C. Mode Selection

The mode of operation is selected based on the value of the leakage
function. When �I(�) � 0, the average rate used to convey partial
information about the interference is greater than or equal to that used
to confuse the adversary.Mode I can be employed so that the process of
selecting an auxiliary codeword according to the interference achieves
perfect secrecy automatically.
However, when�I(�) > 0, the average rate used to confuse the ad-

versary is greater than that used to mitigate the interference. Therefore,
to achieve perfect secrecy, the bin in the codebook has to contain more
auxiliary codewords than what is needed to convey the partial informa-
tion about the interference, and Mode II can be used for this situation.
If the leakage function is of Type I, �I(�1) � 0, Mode I can be

used with �1 at the optimal rate CM � � for a given � > 0. On the
other hand, if the leakage function is of Type III, Mode II can be used
with �2 = 1 at the optimal rate R2 � � for a given � > 0. Now, if
the leakage function is of Type II, neither Mode I nor Mode II can be
used at their optimal rates since �I(�1) > 0 and �I(1) � 0. In this
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Fig. 7. Type II leakage function: � < � � � = 1.

Fig. 8. Type III leakage function: � > � = 1.

situation, we select Mode I with � = �0 so that the leakage function
is zero, and the rate is R1 � � for a given � > 0, where

R1 =
1

2
log

P (P +Q+N1)

(P + �2
0Q)(P +Q+N1)� (P + �0Q)2

: (8)

The conditions on the leakage function can be translated into the
conditions on the power constraint. The condition of using Mode I at
the optimum rate is �I(�1) � 0, which is satisfied when

0 � P � P1 = �N1 �
Q

2
+

Q2 + 4QN2

2
: (9)

Similarly, the condition for using Mode II at the optimum rate is
�I(1) > 0, which is satisfied when

P > P2 = �
Q

2
+

Q2 + 4Q(N1 +N2)

2
: (10)

Note that when P1 < 0, Mode I with �1 cannot be used, but P2 is
always greater than zero since N1 and N2 are assumed to be greater
than zero. Furthermore, at P = P1, �0 = �1 and CM = R1 since
�I(�1) = 0 at P1. At P = P2, �0 = 1 and R1 = R2 since
�I(1) = 0 at P = P2. Consequently, the mode selection method-
ology results in a continuous rate curve when plotted as a function of
the power constraint P .

Based on the coding strategy and the mode selection methodology,
an achievable rate-equivocation region for the GWCSI is derived in the
next section.

V. AN ACHIEVABLE REGION FOR THE GWCSI

An achievable region for the GWCSI is obtained in three steps. In
the first step,we prove achievable rates with asymptotic perfect secrecy
using the proposed coding strategy. In the second step, we prove a rate-
equivocation pair using thse coding strategy for the DPC. In the final
step, we use the time-sharing lemma [3] to join the points in the first
and second steps to obtain the whole achievable region.

A. Achievable Rates With Asymptotic Perfect Secrecy

Theorem 1: For the Gaussian wiretap channel with side informa-
tion with parameters P , Q,N1 and N2, Modes I and II can be used to
achieve the following rate-equivocation pairs:

(CM ; 1) for P1 > 0 and 0 < P � P1;
(R1; 1) for maxf0; P1g < P � P2;
(R2; 1) for P > P2;

where CM , R1, R2, and are given by (4), (8) and (6), respectively.
Proof: Given � > 0 and the system parametersP ,Q,N1 andN2,

calculate P1 and P2 according to (9) and (10), respectively. The proof
will be carried out in three cases corresponding to the three intervals of
P . Each case consists of three parts for proving the rate, the probability
of error and the equivocation. If P1 < 0, Case I does not need to be
considered.
Case I: 0 < P � P1

Rate. Using Mode I of the coding strategy with � = �1 specified in
(5), condition (1) is satisfied with rate CM � �.
Probability of Error. Using the AEPs [6], it can be shown that the

probability that at least one of the error events occurs can be bounded
by � for sufficiently small �, �UV and sufficiently large N . Hence, the
condition (3) is satisfied.
Equivocation. In proving that the perfect secrecy can be achieved,

we define random variableW to represent the subbin index w so that
w 2 f1; 2; . . . ; 2N[I( ~U;V )�I(~U;~Z)+� +� ]g, and proceed in three
steps as follows (see Appendix B):

1) show that

H(SK jZN ) � N [I(U ;Y )� I(U ;Z)� I( ~U ;V )

+I( ~U ; ~Z)� �UV � �UZ ]�H(UcjS
K ;W; ZN );

2) show that

I(U ;Y )� I(U ;Z)� I( ~U ;V ) + I( ~U ; ~Z)� �UV

��UZ � (R� �)(1� �=2)

for sufficiently small �, �UV and �UZ ;
3) show thatH(UcjS

K ;W; ZN )=(R� �)N � �=2 for sufficiently
small � and sufficiently large N .
Combining the three steps:

H(SKjZN ) �N [I(U ;Y )� I(U ;Z)� I( ~U ;V ) + I( ~U ; ~Z)

� �UV � �UZ ]�H(UcjS
K ;W; ZN )

�N(R� �)(1� �=2)�H(UcjS
K ;W; ZN )

�N(R� �)(1� �=2)�N(R� �)�=2

H(SK jZN )

H(SK)
� (1� �=2)� �=2 = 1� �:

Hence, for � > 0, pick sufficiently small � > 0, �UV > 0, �UZ > 0
and sufficiently large N , and the rate-equivocation pair (CM ; 1) can
be achieved by using Mode I with �1.
Case II: maxf0; P1g < P � P2
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In this case, Mode I of the coding strategy is used with � = �0,
and the rate R1 � � can be reached. The probability of error and the
equivocation in this case can also be bounded in similar ways as inCase
I for sufficiently small �, �UV , �UZ and sufficiently large N since the
proofs in Case I do not depend on the value of �.

Hence, for � > 0, pick sufficiently small � > 0, �UV > 0, �UZ > 0
and sufficiently largeN , and the rate-equivocation pair (R1; 1) can be
achieved by using Mode I with �0.

Case III: P > P2

Rate. Using Mode II of the coding strategy with � = �2 = 1 for
� > 0, condition (1) is satisfied, with rate R2 � �.

Probability of Error. Using the AEPs [6], it can be shown that the
probability that at least one of the error events occurs can be bounded
by � for sufficiently small �, �UZ and sufficiently largeN . Hence, con-
dition (3) is satisfied.

Equivocation. Using Mode II, we proceed with the proof of equivo-
cation in three steps as follows (see Appendix C):

1) show that H(SK jZN ) � N [I(U ;Y ) � I(U ;Z)] �
H(UcjS

K ; ZN );
2) show that I(U ;Y )�I(U ;Z) � (R��)(1��=2) for sufficiently
small �;
3) show that H(UcjS

K ; ZN )=(R � �)N � �=2 for sufficiently
small � and sufficiently large N .
Combining the above three steps as follows:

H(SKjZN ) �N [I(U ;Y )� I(U ;Z)]�H(UcjS
K ; ZN )

�N(R� �)(1� �=2)�H(UcjS
K ; ZN )

�N(R� �)(1� �=2)�N(R� �)�=2

H(SKjZN )

H(SK)
� (1� �)� �=2 = 1� �:

Hence, for � > 0, pick sufficiently small � > 0, �UV > 0 and suffi-
ciently largeN , and the rate-equivocation pair (R2; 1) can be achieved
by usingMode II with �2.

B. High Rates With Low Equivocation

From the previous section, the rates arbitrarily close to the capacity
of the main channel can be achieved with asymptotic perfect secrecy in
Case I. InCases II and III, however, the secrecy of themessage has to be
sacrificed if rates close to the capacity of the main channel are desired.
In this section, we prove that the rate-equivocation pair (CM ; dC) is
achievable by using Mode I with �1, where

dC

= 1�
I( ~U ; ~Z)

CM
(11)

= 1�
1

2CM

log
(P + �2

1Q)(P +Q+N1 +N2)

(P + �2
1Q)(P +Q+N1+N2)�(P+�1Q)2

:

(12)

Theorem 2: For the Gaussian wiretap channel with side information
with parameters P , Q, N1 and N2, Mode I with �1 can be used to
achieve the rate-equivocation pair (CM ; dC).

Proof: When Mode I with �1 is used, the rate is CM � � for
� > 0. Furthermore, the probability of error can also be bounded by �
provided sufficiently small �, �UV , �UZ and sufficiently large N .

Now, the equivocation can be calculated as follows:

H(SKjZN ) =H(SK; ZN )�H(ZN)

=H(SK; Uc; Z
N )�H(UcjS

K ; ZN )�H(ZN)

=H(SKjUc; Z
N ) +H(UcjZ

N )

�H(UcjS
K ; ZN )

(1)

� H(UcjZ
N )�H(UcjS

K ; ZN )
(2)

� H(UcjZ
N )�N [I( ~U ;V ) + �UV ]

(3)

� H(UcjZ
N )�H(UcjY

N)�N [I( ~U ;V )

+ �UV ]

= [H(Uc; Z
N )�H(ZN)]� [H(Uc; Y

N)

�H(Y N )]�N [I( ~U ;V ) + �UV ]

= [H(Uc) +H(ZN jUc) �H(ZN)]

� [H(Uc) +H(Y N jUc) �H(Y N )]

�N [I( ~U ;V ) + �UV ]
(4)
= [H(ZN jUc) �H(ZN jUN)�H(UN )

+H(UN jZN )]� [H(Y N jUc) �H(Y N jUN )

�H(UN ) +H(UN jY N)]�N [I( ~U ; V )

+ �UV ]
(5)
= H(UN jZN )�H(UN jY N )�N [I( ~U ;V )

+ �UV ]

= I(UN ;Y N )� I(UN ;ZN )�N [I( ~U ;V )

+ �UV ]

=N [I(U ;Y )� I( ~U ;V )� I(U ;Z)� �UV ]:

(1) follows from the fact that H(SK jUc; Z
N ) � 0; (2) follows from

the fact that there are 2N[I( ~U;V )+� ] auxiliary codewords in a bin; (3)
follows from the fact that H(UcjY

N) � 0; (4) follows from the fact
thatH(ZN) = H(UN )+H(ZN jUN )�H(UN jZN ) andH(Y N) =
H(UN)+H(Y N jUN )�H(UN jY N ); (5) follows from the fact that
H(Y N jUc) = H(Y N jUN ) and H(ZN jUc) = H(ZN jUN).
Now, we know that

I(U ;Y )� I( ~U ;V )� I(U ;Z) + I( ~U ; ~Z)� �UV

= I( ~U ; ~Y )� I( ~U ;V )� �UV = CM � �UV

when � = 0 since � = �1. By imposing the condition �UV < �CM ,
CM��UV > CM(1��). Therefore, for � = 0, I(U ;Y )�I( ~U ;V )�
I(U ;Z)+I( ~U ; ~Z)��UV > CM(1��). Since I(U ;Y )�I( ~U ;V )�
I(U ;Z) + I( ~U ; ~Z)� �UV is continuous, and CM(1� �) is constant
with respect to �, for sufficiently small � > 0

I(U ;Y )�I( ~U ;V )�I(U ;Z) + I( ~U ; ~Z)� �UV >CM(1� �)

I(U ;Y )� I( ~U ;V )� I(U ;Z)� �UV >CM(1� �)

� I( ~U ; ~Z):

Hence

H(SK jZN ) >N [CM(1� �)� I( ~U ; ~Z)]

=NCM 1�
I( ~U ; ~Z)

CM
� �

>N(CM � �) 1�
I( ~U ; ~Z)

CM
� �

H(SKjZN )

N(CM � �)
> 1�

I( ~U ; ~Z)

CM
� �

> dC � �:

The theorem follows by setting appropriate constants � > 0, �UV >
0, �UZ > 0 and N .

C. Time-Sharing Lemma

The time-sharing lemma was used in [3] to prove the achievable re-
gion for the GWC.We will also use it in our derivation of an achievable
region for the GWCSI.
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Fig. 9. Performance Comparison: P > 0.

Lemma 1: [3] Let R1d1 = R2d2 = c, a constant. Assume R1 >
R2 and hence d1 < d2. If the points (R1; d1) and (R2; d2) are achiev-
able, then by time-sharing any point (R; d) with R2 � R � R1,
d1 � d � d2, and Rd = c is achievable.

Theorem 3: For the Gaussian wiretap channel with side informa-
tion, a rate-equivocation pair (R; d) is achievable if

R �CM

d � 1

Rd �

CM 0 < P � P1
minfCMdC ; R1g P1 < P � P2.
minfCMdC ; R2g P > P2

:

Proof: For 0 < P � P1, Mode I with �1 can be used to achieve
the pair (CM ; 1). Using codes that perform worse than that in Mode I
with �1 achieves the pairs dominated by (CM ; 1).

For P1 < P � P2, if R1 � CMdC , time-share the code in Mode
I with �0 with the code achieving the pair (CM ; R1=CM). Otherwise,
time-share the codes achieving the pairs (CMdC ; 1) and (CM ; dC).

For P > P2, if R2 � CMdC , time-share the code in Mode II with
�2 with the code achieving the pair (CM ; R2=CM). Otherwise, time-
share the codes achieving the pairs (CMdC ; 1) and (CM ; dC).

VI. BOUNDS ON THE RATES WITH ASYMPTOTIC PERFECT SECRECY

In this section, we look at the optimality of the rates with asymptotic
perfect secrecy by considering upper and lower bounds. We then com-
pare the performance of the proposed coding strategy with the bounds.

A. Upper and Lower Bounds

A lower bound can be obtained by considering the interference as an
additional noise in the main channel unknown to the sender. Accord-

ingly, this is the case of the GWC with main channel noise variance
Q+N1 as opposed toN1. The rate with asymptotic perfect secrecy of
transmission is (plotted as curve (5) for Q = 1 in Figs. 9 and 10)

I( ~X; ~Y )� I( ~X; ~Z)=
1

2
log

(P +Q+N1)(Q+N1 +N2)

(Q+N1)(P +Q+N1 +N2)
:

The first upper bound on the rate of transmission is the capacity of
the main channel CM , which is plotted as curve (1) in Figs. 9 and 10.
The second upper bound can be derived by considering the interference
as part of the codeword generated by the encoder implying that the
encoder has a power limit of P + Q without interference in the main
channel. Under this consideration, the channel becomes the GWCwith
power constraint P +Q. The capacity of this channel dominates all the
achievable rates associated with the GWCSI since the encoder in this
case has an additional power Q for transmission at its disposal. The
second upper bound, therefore, is

I( ~X; ~Y )� I( ~X; ~Z) =
1

2
log

(P +Q+N1)(N1 +N2)

(N1)(P +Q+N1 +N2)
:

This upper bound is plotted as curve (2) for Q = 1 in Figs. 9 and 10.

B. Performance Comparison

For performance comparison, we plot the rates with perfect secrecy
achieved by the proposed coding strategy for the GWCSI with Q = 1
as curve (3) in Figs. 9 and 10. We can see that the rates coincide with
the upper bound (1) for 0 < P � P1 and upper bound (2) for P � P2.
They however are below the upper bounds formaxf0; P1g < P < P2,
and the optimality of the coding scheme in this region is still unknown.
As a reference, we plot the capacity of the GWC with the same P ,

N1 andN2 as in the case of GWCSI as curve (4) in Figs. 9 and 10. We
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Fig. 10. Performance Comparison: P � 0.

can see that the achievable rates for the GWCSI (curves (3)) dominate
the rates for the GWC (curve (4)) in this particular case.

VII. CONCLUSION

We introduce the GWCSI model as an extension of the GWC and
the DPC. A Coding strategy consisting of two operating modes is pro-
posed for the GWCSI. A leakage function for the GWCSI is introduced
and used as a criteria for mode selection. Mode I with �1 and Mode
II with �2 are shown to be optimal for the GWCSI. In Mode I with
�1, the capacity of the main channel can be achieved with perfect se-
crecy. InMode II with �2, the power of the interferenceQ, in addition
to the transmission power P , is used to confuse the wiretapper even
though the interference cannot be controlled by the encoder. The rates
in this mode therefore reach the upper bound, given by the GWC with
transmission power P +Q, with perfect secrecy. The optimality of the
proposed coding strategy for the region maxf0; P1g < P < P2 is
still unknown. An achievable region is derived based on the proposed
coding strategy and the time-sharing lemma.

APPENDIX A
THE CONDITION ON THE AVERAGE POWER CONSTRAINT

We apply the following Lemma to the condition on the average
power constraint by letting P 0 = P (1 + 4� ln(2))�1.

Lemma A.1: Let XN and V N be two independent sequences
of i.i.d. random variables X � N (0; �2X) and V � N (0; �2V ),
respectively. Let UN = XN + �V N for a constant real number �. If
(uN ; vN) 2 TNU;V (�), for any � > 0, and �2X � P (1 + 4� ln(2))�1,
then [ N

i=1
x2i ]=N � P .

Proof: Since XN and V N are two independent sequences of
i.i.d. Gaussian random variables, UN is a sequence of i.i.d. Gaussian

random variables drawn according toN (0; �2X+�2�2V ). Furthermore,
(uN ; vN) 2 TNU;V (�) implies that

� > �
1

N
log p(uN ; vN )�H(U; V )

= �
1

N
log p(uN ; vN )�H(V )�H(U jV )

= �
1

N
log p(uN ; vN )�H(V )�H(X)

2� > �
1

N
log p(uN ; vN ) +

1

N
log p(vN)�H(X)

= �
1

N
log p(uN jvN )�H(X)

= �
1

N
log p(xN)�H(X)

= �
1

N

N

i=1

log p(xi)�
1

2
log(2�e�2x)

=
1

ln(2)

1

N

N

i=1

x2i
2�2x

+
1

2
ln(2��2x) �

1

2
ln(2�e�2x)

=
1

ln(2)

1

N

N

i=1

x2i
2�2x

�
1

2

=
1

ln(2)

hxN ; xN i

2N�2x
�

1

2
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4� ln(2) >
hxN ; xN i

N�2x
� 1

hxN ; xN i

N
<�2X [1 + 4� ln(2)]

�
P

1 + 4� ln(2)
[1 + 4� ln(2)]

1

N

N

i=1

x2i �P:

APPENDIX B
PROOF OF THE EQUIVOCATION IN CASE I

We proceed to the three steps as follows:

H(SK jZN )
(1)
= H(SK ;W jUc; Z

N ) +H(UcjZ
N )

�H(UcjS
K ;W; ZN )�H(W jSK ; ZN )

(2)

� H(UcjZ
N )�H(UcjS

K ;W; ZN )

�H(W jSK ; ZN )
(3)

� H(UcjZ
N )�H(UcjY

N )

�H(W jSK ; ZN )�H(UcjS
K ;W; ZN )

= [H(Uc; Z
N )�H(ZN)]� [H(Uc; Y

N)

�H(Y N )]�H(W jSK ; ZN )

�H(UcjS
K ;W; ZN )

= [H(Uc) +H(ZN jUc) �H(ZN)]

� [H(Uc) +H(Y N jUc) �H(Y N)]

�H(W jSK ; ZN )�H(UcjS
K ;W; ZN )

(4)
= [H(ZN jUc) �H(ZN jUN )

�H(UN ) +H(UN jZN )]

� [H(Y N jUc)�H(Y N jUN )

�H(UN ) +H(UN jY N )]

�H(W jSK ; ZN )�H(UcjS
K ;W; ZN )

(5)
= H(UN jZN )�H(UN jY N )

�H(W jSK ; ZN )�H(UcjS
K ;W; ZN )

= I(UN ;Y N )� I(UN ;ZN )

�H(W jSK ; ZN )�H(UcjS
K ;W; ZN )

(6)

� I(UN ;Y N )� I(UN ;ZN )

�N [I( ~U ;V )� I( ~U ; ~Z) + �UV + �UZ ]

�H(UcjS
K ;W; ZN )

(7)
= N [I(U ;Y )� I(U ;Z)� I( ~U ;V ) + I( ~U ; ~Z)

� �UV � �UZ ]�H(UcjS
K ;W; ZN ):

(1) follows from H(AjB) = H(A;B) � H(B) and H(A;B) =
H(A;B;C)�H(CjA;B); (2) follows from H(SK;W jUc; Z

N ) �
0; (3) follows from H(UcjY

N) � 0; (4) follows from the fact that
H(ZN) = H(UN ) + H(ZN jUN ) � H(UN jZN ) and H(Y N) =
H(UN )+H(Y N jUN )�H(UN jY N); (5) follows from the fact that
H(Y N jUc) = H(Y N jUN ) and H(ZN jUc) = H(ZN jUN ). (6) fol-
lows from the number of subbins in a bin. (7) follows from the i.i.d.
properties of UN , Y N and ZN .

In Step 2), we note that R � � = I( ~U ; ~Y ) � I( ~U ;V ) � � and
therefore (R � �)(1 � �=2) is parabolic in �, with the minimum at
� = 1 + [I( ~U ; ~Y ) � I( ~U ; V )]=2. Furthermore, (R � �)(1� �=2) =
I( ~U ; ~Y ) � I( ~U ;V ) when � = 0 or 2 + I( ~U ; ~Y ) � I( ~U ; V ). Hence,
(R� �)(1� �=2) < I( ~U ; ~Y )� I( ~U ;V ) when � 2 (0; 2+ I( ~U ; ~Y )�

I( ~U ;V )). The condition �UV +�UZ < [I( ~U ; ~Y )�I( ~U ;V )]�R(1�
�=2) can then be imposed on �UV and �UZ in the interval. It implies
that

(R� �)(1� �=2) + �UV + �UZ � I( ~U ; ~Z) + I( ~U ;V )

< I( ~U ; ~Y )� I( ~U ; ~Z): (13)

On the other hand, for � > 0

I(U ;Y )� I(U ;Z) < I( ~U ; ~Y )� I( ~U ; ~Z): (14)

Since I(U ;Y ) � I(U ;Z) is continuous in � with the value of
I( ~U ; ~Y ) � I( ~U ; ~Z) at � = 0, and (R � �)(1 � �=2) + �UV +
�UZ � I( ~U ; ~Z) + I( ~U ;V ) is continuous and constant in � with the
value less than I( ~U ; ~Y )� I( ~U ; ~Z). If the two curves do not intersect,
then there is no constraint on �. However, if the two curves intersect,
then 0 < � < ��, where �� is the smallest value such that the two
curves intersect. Then the condition on � becomes 0 < � < �0, where
�0 = minf��;1g. Thus

I(U ;Y )� I(U ;Z)� I( ~U ;V ) + I( ~U ; ~Z)� �UV � �UZ

� (R� �)(1� �=2)

when

� 2 (0; 2 + I( ~U ; ~Y )� I( ~U ;V ));

�UV + �UZ < [I( ~U ; ~Y )� I( ~U ;V )]�R(1� �=2);

� < �0:

Note that for � � 2+I( ~U ; ~Y )�I( ~U ;V ), I( ~U ; ~Y )�I( ~U ;V )�� < 0,
1� � < 0, � > 1, and there is nothing to prove.
In Step 3), the wiretapper’s decoding process is considered. The term

H(UcjS
K ;W; ZN ) is the entropy of the auxiliary codeword given the

wiretapper’s observation, the bin and the subbin in which the auxiliary
codeword is. It can be bounded by using Fano’s inequality as follows:

H(UcjS
K ;W; ZN ) � h(PSB) + PSBNI( ~U ; ~Z);

where h(�) is the binary entropy function, and PSB is the probability
of error in decoding ZN for Uc given SK and W (subbin decoding),
and therefore

H(UcjS
K ;W; ZN )

H(SK)
�
h(PSB) + PSBNI( ~U ; ~Z)

(R� �)N
: (15)

The conditional entropy can be bounded by via bounding the wire-
tapper’s probability of error in the subbin decoding. PSB can be made
arbitrarily small given sufficiently small � and sufficiently largeN via
the AEPs since there are 2N[I( ~U;~Z)�� ] sequences in a subbin which
is exponentially smaller than 2NI(

~U;~Z).

APPENDIX C
PROOF OF THE EQUIVOCATION IN CASE III

We proceed to the three steps as follows:

H(SKjZN )
(1)
= H(Uc; Z

N ) +H(SKjUc; Z
N )

�H(UcjS
K ; ZN )�H(ZN)

(2)

� H(UcjZ
N )�H(UcjS

K ; ZN )
(3)

� H(UcjZ
N )�H(UcjY

N )�H(UcjS
K ; ZN )

(4)
= H(UN jZN )�H(UN jY N )

�H(UcjS
K ; ZN )

= I(UN ;Y N )� I(UN ;ZN )�H(UcjS
K ; ZN )

(5)
= N [I(U ;Y )� I(U ;Z)]�H(UcjS

K ; ZN ):

(1) follows from H(AjB) = H(A;B) � H(B) and H(A;B) =
H(A;B;C) � H(CjA;B); (2) follows from H(SKjUc; Z

N ) � 0;
(3) follows from H(UcjY

N) � 0; (4) follows from the fact that
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H(Y N jUc) = H(Y N jUN ) and H(ZN jUc) = H(ZN jUN); (5)
follows from the i.i.d. properties of UN , Y N and ZN .

In Step 2), we note that R � � = I( ~U ; ~Y ) � I( ~U ; ~Z) � � and
therefore (R � �)(1 � �=2) is parabolic in �, with the minimum at
� = 1 + [I( ~U ; ~Y ) � I( ~U ; ~Z)]=2. Furthermore, (R � �)(1� �=2) =
I( ~U ; ~Y ) � I( ~U ; ~Z) when � = 0 or 2 + I( ~U ; ~Y ) � I( ~U ; ~Z). Hence,
(R� �)(1� �=2) < I( ~U ; ~Y )� I( ~U ; ~Z) when � 2 (0; 2+ I( ~U ; ~Y )�
I( ~U ; ~Z)).

On the other hand, for � > 0

I(U ; Y )� I(U ;Z) < I( ~U ; ~Y )� I( ~U ; ~Z): (16)

Since I(U ; Y ) � I(U ;Z) is continuous in � with the value of
I( ~U ; ~Y )� I( ~U ; ~Z) at � = 0, and (R� �)(1� �=2) is continuous and
constant in � with the value less than I( ~U ; ~Y ) � I( ~U ; ~Z). If the two
curves do not intersect, then there is no constraint on �. However, if the
two curves intersect, then 0 < � < ��, where �� is the smallest value
such that the two curves intersect. Then the condition on � becomes
0 < � < �0, where �0 = minf��;1g. Thus

I(U ; Y )� I(U ;Z) � (R� �)(1� �=2)

when

� 2 (0; 2 + I( ~U ; ~Y )� I( ~U ; ~Z))

� < �0:

Note that for � � 2+I( ~U ; ~Y )�I( ~U ; ~Z), I( ~U ; ~Y )�I( ~U ; ~Z)�� < 0,
1 � � < 0, � > 1, and there is nothing to prove.

In step 3, the wiretapper’s decoding process is considered. The term
H(UcjS

K ; ZN ) is the entropy of the auxiliary codeword given the
wiretapper’s observation and the bin in which the auxiliary codeword
is. It can be bounded by using Fano’s inequality as follows:

H(UcjS
K ; ZN ) � h(PB) + PBNI( ~U ; ~Z);

where h(�) is the binary entropy function, and PB is the probability of
error in decoding ZN for Uc given SK , and therefore

H(UcjS
K ; ZN )

H(SK)
�

h(PB) + PBNI( ~U ; ~Z)

(R� �)N
: (17)

The conditional entropy can be bounded by via bounding the wire-
tapper’s probability of error in the bin decoding. PB can be made arbi-
trarily small given sufficiently small � and sufficiently large N via the
AEPs since there are 2N[I( ~U;~Z)�� ] sequences in a subbin which is
exponentially smaller than 2NI(

~U;~Z).
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Feedback Rate-Capacity Loss Tradeoff for Limited
Feedback MIMO Systems
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Abstract—Multiple-input–multiple-output (MIMO) communication sys-
tems can provide large capacity gains over traditional single-input–single-
output (SISO) systems and are expected to be a core technology of next
generation wireless systems. Often, these capacity gains are achievable
only with some form of adaptive transmission. In this paper, we study the
capacity loss (defined as the rate loss in bits/s/Hz) of the MIMO wireless
system when the covariance matrix of the transmitted signal vector is
designed using a low rate feedback channel. For the MIMO channel,
we find a bound on the ergodic capacity loss when random codebooks,
generated from the uniform distribution on the complex unit sphere,
are used to convey the second order statistics of the transmitted signal
from the receiver to the transmitter. In this case, we find a closed-form
expression for the ergodic capacity loss as a function of the number of
bits fed back at each channel realization. These results show that the
capacity loss decreases at least as 2 where is the
number of feedback bits, is the number of transmit antennas, and

= min where is the number of receive antennas. In
the high SNR regime, we present a new bound on the capacity loss that is
tighter than the previously derived bound and show that the capacity loss
decreases exponentially as a function of the number of feedback bits.

Index Terms—Adaptive modulation, capacity loss, limited feedback,
multiple-input–multiple-output (MIMO) systems, Rayleigh channels.

I. INTRODUCTION

Because of their capacity and quality benefits, multiple-input–mul-
tiple-output (MIMO) wireless systems are expected to be a core tech-
nology in next evolution third-generation (3G) and fourth-generation
(4G) wireless systems. In addition, the performance of MIMO systems
can be significantly improved by adapting the transmitted signal to the
current channel conditions (see, for example, the discussion in [1]).
When the channel cannot be estimated at the transmitter, such as is the
case in frequency division duplexing, systems can employ a feedback
link to convey quantized channel state information (CSI) and obtain
capacity performance close to the scenario when the transmitter per-
fectly knows the channel. The feedback rate, however, must be chosen
judiciously because the feedback channel may only support a small
data rate and the feedback bits are allocated as overhead on the reverse
data path. To satisfy these rate constraints, low-rate (or limited) feed-
back has been studied in various scenarios and special cases [2]–[18].
These techniques include feedback adaptation techniques specific to
transmit beamforming [6]–[8], precoded orthogonal space-time block
coding [9], [11], [12], [16], and precoded spatial multiplexing [14].
Initial performance analysis of some of these techniques was given in
[8], [9], and [13]. The basic idea is that a limited number of feedback
bits representing some sort of CSI are transmitted from the receiver to
the transmitter. The transmitter uses this small number of bits to adapt

Manuscript received March 17, 2005; revised October 11, 2005. This
work was supported in part by the SBC Foundation and the National Science
Foundation under Grant CCF0513916. The material in this correspondence was
presented in part at the IEEE Vehicular Technology Conference, Dallas, TX,
September 25–28, 2005 and the IEEE Global Telecommunications Conference,
St. Louis, MO, November 28–December 2, 2005.

The authors are with the Center for Wireless Systems and Applica-
tions, School of Electrical and Computer Engineering, Purdue Univer-
sity, West Lafayette, IN 47907 USA (email: adabbagh@ecn.purdue.edu;
djlove@ecn.purdue.edu).

Communicated by R. R. Müller, Associate Editor for Communications.
Digital Object Identifier 10.1109/TIT.2006.872864

0018-9448/$20.00 © 2006 IEEE


