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Abstract- We present a systematic procedure for mapping 
data sequences into codewords of a prefix-synchronized code (PS- 
code), as well as for performing the inverse mapping. A PS-code, 
proposed by Gilbert in 1960, belongs to a subclass of comma-free 
codes and is useful to recover word synchronization when errors 
have occurred in the stream of codewords. A PS-code is defined 
as a set of codewords with the property that each codeword has 
a known sequence as a prefix, followed by a coded data sequence 
in which this prefix is not allowed to occur. The largest PS-code 
among all PS-codes of the same code length is called a maximal 
prefix-synchronized code (MPS-code). We develop an encoding 
and decoding algorithm for Gilbert’s MPS-code with a prefix 
of the form 11 . . . l o  and extend the algorithm to the class PS- 
codes of which the prefix is self-uncorrelated. The computational 
complexity of the entire mapping process is proportional to the 
length of the codewords. 

Zndex Terms- Synchronization, frame synchronization, com- 
ma-free codes, prefix-synchronized codes, runlength-limited 
codes, Fibonacci codes, Fibonacci sequences. 

I. INTRODUCTION 
BLOCK code C; of length n over an alphabet A, of 
size Q is called a comma-free code, if and only if for 

any pair of codewords ala2 . . . a, and b1bz . . . b, in C z ,  the 
n, symbol overlaps 

~ 2 ~ 3 . .  . anbl ,  (33~4.. . anblb2,.  . . , a,blbZ. . . b,-l 

are not in C: [l]. In a communication system, a comma- 
free code can be used to enable the receiver to determine the 
location of the codewords in the incoming stream of symbols. 
Word synchronization can be recovered after having received 
at most 2n - 2 error-free symbols. 

The cardinality of a comma-free code C:, denoted by C?), 
is bounded by 

where p is the Mobius function [ 11. A good approximation for 
this upper bound is given by C g )  5 P / n ,  and therefore the 
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redundancy, being equal to n - log, Cp’, is at least log, n. 
For any odd n, comma-free codes having maximal size can 
be constructed [2], [3]. 

A major disadvantage of general comma-free codes is the 
need for an exhaustive search in the code set to decide 
whether or not a given string of n symbols is a codeword. 
To overcome this difficulty, a subclass of comma-free codes, 
called prejix-synchronized codes (PS-codes), was introduced 
by Gilbert [4]. These codes have the property that every 
codeword starts with a prefix P = p l p z . . . p k  of length k ,  
followed by a constrained sequence c1c2 . . . cm of length m. 
Moreover, for any codeword p l  . . . PkCl . . . em, prefix P does 
not appear as a block of k consecutive symbols anywhere in 
p2 . ‘ . p k  c1 . . . cmpl . . . p k - 1 .  Therefore, word synchronization 
can be easily established at the decoder side by scanning the 
incoming stream of symbols for the occurrence of prefix P. 

Given an alphabet A,, a code length n, and a prefix P of 
length k < n, there is a unique maximal prefix-synchronized 
code (MPS-code), denoted by G g L ,  with these parameters. 
Usually, Ggi is written as Gg’ if the value of 01 can 
be obtained from the context. Parameter k will be used to 
represent the length of the prefix. If we stress the prefix length 
k and the constrained sequence length m = n - k ,  then the 
notation Gg+m)  is used. 

We present an encoding and decoding algorithm for a class 
of MPS-codes with self-uncorrelated prefixes. A sequence X 
is said to be self-uncorrelated if X has the property that no 
prefix of X matches any suffix of X .  A sequence of the form 
PC = 1. . ‘10 is an example of self-uncorrelated sequences. 
It should be noted that a large number of sequences are self- 
uncorrelated. For example, for k equal to 7, 10, and 15, there 
exist 40, 284, and 8848 self-uncorrelated binary sequences, 
respectively. Moreover, it is known that given an alphabet size 
a with 2 5 Q 5 4, self-uncorrelated prefixes, including PG, 
maximize the cardinality of G$’ for any given code length 
n [>I. 

In the next section, we will give an overview of earlier 
work on PS-codes. Then, in Section 111, we present the 
recursive structure of the constrained part of GF:”’ from 
which a constructive mapping procedure of a data sequence 
to the constrained part of a codeword can be obtained. The 
encoding and decoding algorithms for Gg:m’ are presented 
in Section IV, as well as a proof of the correctness of 
both algorithms. The time complexity of the proposed coding 
scheme is proportional to the code length. 
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In Section V, we address the coding algorithm for the class 
of PS-codes with self-uncorrelated prefixes. It is known that 
if P is self-uncorrelated, then Gg) has the same size as Gk) 
[5]. However, neither any encoding nor decoding algorithm 
for such a Gg) have been found in the literature. We give 
a two-step algorithm for encoding and decoding Gg) for 
any self-uncorrelated P. The total time complexity is also 
proportional to the code length. 

11. PREVIOUS RESULTS 
Gilbert [4] has shown that the redundancy of a binary PS- 

code Gg) is upper-bounded by log,n+1.52, if P is of the form 
11 . . .10  of length Llog, (nlog, e ) ] .  This specific prefix is 
referred to as Gilbert's prefix, and the corresponding PS-code 
will be simply denoted by @"I. 

Gilbert conjectured that for a given code length n, G(n)  
is optimal in the sense that it is the largest PS-code among 
all binary PS-codes of length n. For alphabet size a 5 4, the 
conjecture is proved by Guibas and Odlyzko [5] for sufficiently 
large n. Surprisingly, it is also proved that for a 2 5 infinitely 
many values of n exist for which Gilbert's prefix is not optimal 
[5]. Although it would be interesting to find out which prefix 
gives an optimal PS-code for a general finite alphabet, we will 
not consider this open problem in the current paper. 

From an engineering point of view, the main practical 
difficulty of using PS-codes still remains. The encoding and 
decoding procedures generally become more complex as the 
length of the codewords increases. In fact, finding a construc- 
tive coding method for G ( n )  without use of a lookup table has 
remained as an open problem. 

A nearly-optimal construction method has been developed 
by Mandelbaum [6]. He presents an encoding and decoding 
procedure for a PS-code based on Fibonacci codes, as proposed 
by Kautz [7]. This method is constructive in the sense that no 
lookup table is required. Mandelbaum shows that a binary 
PS-code, denoted by Mt;'") can be constructed by applying 
Kautz's coding method. The redundancy of M F J m )  is shown 
to be approximately equal to (log,n) + 2, if n E 2k. His 
method was extended to runlength-limited codes [SI-[ 101. 
However, being a PS-code, MFJm)  is not optimal among 
all PS-codes of length k + m and prefix Pc of length 5 .  In 
fact, Ggzm) is always larger than MPJ" for any n which is 
shown in Section I11 where the exact difference of size between 
MFZ" and GF;" is determined. 

Capocelli [ 111 proposes another coding scheme for GF;" 
as a part of unbounded integer coding by showing an example 
of the scheme for k = 3. In fact, for a given k ,  the infinite 
union 

00 

U Gp;") 
m=O 

is a code set which can be used to encode arbitrary positive 
integers. In his method, G$?zm' is partitioned into two subsets: 
one set of codewords starting with 0 and the other set of 
codewords starting with 1. The integer to be encoded is 
compared with the size of the first subset to obtain the first 

bit of the corresponding codeword. Continuing these steps 
recursively, the codeword will be determined bit by bit. The 
size of the latter set is easily shown to be equal to the second- 
order Fibonacci number. Therefore, the size of the former 
set can be also represented using these Fibonacci numbers, 
although the obtained formula will be complicated. A more 
formal description of Capocelli's algorithm for any k is found 
in [12]. ' 

Unlike Capocelli's algorithm, we partition @Tm) into 5 
subsets, which gives us a much more convenient formula 
for enumerating the number of codewords. Moreover, deriva- 
tion of the encoding and decoding algorithms has become 
straightforward. 

111. MAXIMAL PREFIX-SYNCHRONIZED CODES 

In this section we investigate a recursive structure of Gg;""' 
from which a coding scheme for 9, (k+m) is directly deduced. 
The exact analysis on the difference between M ,  
Gp:" is also deduced using the recursive structure. Before 
developing the theory, we introduce a useful definition of the 
correlation between two sequences [ 5 ] ,  [13] using a slightly 
different notation. 

DeJnition 1: For two sequences X and Y of length 1x1 
and IY 1, respectively, the correlation of X over Y ,  denoted 
by X o Y ,  is a binary sequence B = blb , . . .b lx l  of the 
same length as X .  Let s = max ( IX I - IY 1 ,O) .  Each element 
b, with 1 5 i 5 1x1 is defined by 

(k+m) and 

b, = { Y(Z-2.. . q Y l + % - l , l l l . .  qq), 1 L i 5 s 
Y(~,...~1X~,Y1...ll~XI--2+l)r s < i 51x1 

where y( Z1,22) is 1 if two sequences 21 and 22 are identical, 
and 0 otherwise. 

For example, if X = 1021 and Y = 10102, then X o 
Y = 0001 and Y o X = 00100. Note that in general 
X o Y # Y o X .  The correlation X o X is called 
the autocorrelation of X .  We will denote a sequence of 
s consecutive symbols b E A, by b". Then, for a self- 
uncorrelated sequence X ,  X o X = 10.  . . O  holds. 

Let the concatenation of two sequences X and I( be denoted 
by X Y .  In terms of correlation, we can represent the necessary 
and sufficient condition that a sequence PY of length n = 
k + m is a codeword of Gg'" by 

PYP 0 P = 10"+"-11(*)'e-1 (1) 

where the character * is used to denote an arbitrary symbol of 
A,, and (*)' represents a sequence of A:. 

For a prefix P of length k 2 1, let FL" denote the set 
of sequences of length m such that no P appears in any 
position as a string of k consecutive symbols. Therefore, .F;" 
is defined by 

m < k  
FLm' = AF\{P}, m = k  

m > k .  { X  E AZlX 0 P = Om-k+l(*)k-l}, 

(2) 
{ 

The following lemma can be easily derived from the defini- 
tion of .FLm), and is useful to obtain the structure of Gg+m). 
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Lemma 1: Let P E A:. For every Q E .As, with 1 5 s 5 
min( k - 1, m) ,3k" contains at least one sequence with prefix 
Q ,  and at least one sequence with suffix Q. 

Proof: If m < k ,  FL" = AT, and the correctness of the 
lemma immediately follows. If m 2 k ,  let P = p1p2 " . p k ,  

and let p2 E Aa\{p2}. It is obvious that for every Q E A; the 
sequences Q(&)m-s and (pl)m-sQ are elements of FLm) if 
1 5 s 5 min(IC - 1, m), and therefore the lemma holds. 0 

For a sequence P and a set of sequences S ,  let us denote 
the set of concatenations of P and all the sequences in S by 
PS,  that is, PS = {PWIW E S } .  The null string, denoted 
by 4,  is introduced to represent a string of length 0, for which 
4X = X4 = X holds. In this context, PF;' = { P }  and 
FF) = { 4 }  with cardinality 1. For any m < 0, PF;" is 
empty. 

Theorem 1: For any PS-code gg+m) with prefix P E A; 

(3)  ( k + m )  g p$", %J 
Equality always holds if P is self-uncorrelated. Moreover, if 
(3) holds with equality for any m 2 k - 1, then P o P = 

Proof: For m 5 I C ,  (3) holds according to (2). Since any 
10k-1 .  

sequence PY E GF+") satisfies 

Y o P = holds. Thus Y E Fkm). 
If P is self-uncorrelated, 

P Y P  0 P = 10m+k-110"-1 

holds. Since Y is any sequence in 3hm), P3;" is a PS-code 
and it is the largest one among all PS-codes of length 5 + m 
and with prefix P of length k .  That is, PFk" = GF'"). 

Now we assume that 

Then 

P W P  0 P = 10m+"'1 ( * 1 IC -l 

for any W E FL". Hence, for 1 5 i 5 k - 1, no subblocks 
L2 = p l ~ - ~ + l  . . . p k w 1 . . " ~ k - ~  of P W P  equal P. Thus the 
first i symbols of P must be different from the last i symbols 
of P ,  which shows P o P = 0 

The key equation to construct the encodingldecoding algo- 
rithms for Gg2m) is presented in the following theorem. 

Theorem 2: For Q! 2 2 and m 2 1 

k-1 

i = 2  

where PG is of the form l k - l O .  

Pro08 According to the definition, lm E FLz). Any 
other sequence w E F ~ T )  starts at one of 

{1"-1012 5 2 < k }  U (As,\{l}). 

If w = IZ-~OV,  then v E FLZ-~)  since 

12-10v 0 PG = 

implies that 
m-z-l%+l(*)"-'. V o P G = O  

Similarly, it is shown that if W E FA:) is represented as aV 
with a E A,\{l}, then V E F$:--'). 

Conversely, the first i components of ~ " l ~ v  o Pc are all 
0 for any V E since l"'0 o 1"' = Oa where i < k .  
Moreover, the last m - i components of 1"'OV o P equal 
O m - a - k + l  (*)"-' for V E F(m-2) P G  from (2). Therefore, we 
obtain that 

1%-~OV E F ~ Z ) ,  for v E $:p2). 

In the same way, we can show that 

a~ E FLz), for v E F$?-'). 0 

Remark 1: Let be the negation of PG, that is, & = 
0"ll. Then we obtain 

k - 1  

afd 

Let 
Then we obtain 

be the reverse order of PG, that is, = 01"'. 

k-1 

For a prefix PG = lkP10, we denote the cardinality of 
Gg;" by Gk,,. Note that Gk,, is written as 

G k , "  = I P G F L ~ ) ~  = 1FLZ)l. 

Theorem 3: For a given k 2 1, a sequence G ~ , o ,  Gk,l, 

GQ, . . . satisfies the following recursion: 

m < k  

i=2 

Proof: If m < k ,  G L , ~  equBls am according to (2). Since 
the sets on the right-hand side of the formula in Theorem 2 
are distinct, we obtain 

k - 1  

2=2 aEA, 
a#1 

k-1 

Equation ( 5 )  follows by replacing IFLz-')l with Gk,m-i. 0 
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Remark2: Mandelbaum's code MP:" is a binary PS- 
code defined by M$!:m) = lk-lOF~~)l.  It is also subdivided 
into k - 1 subsets as follows: 

Since the derivation of (6) is similar to Theorem 2, we omit 
it. Moreover, let Mk,m be the cardinality of MF:"). Then, 
we obtain that 

By comparing (5 )  in case of Q = 2 with (7), we immediately 
know that Gk,, > Mk,m. 

The exact difference in size between MF:m) and BF:") 
is analyzed using the generating functions for Gk,m and Mk,m, 

which are defined as follows: 
a2 

(8) 

(9) 

Then, using the recursions of (5 )  and (7), Gk(x) and M ~ ( z )  
can be written as 

m G k ( z )  = G k , m Z  
m=O 

Mk(2) = Mk,mZ . 
m=O 

03 

m 

Since Mk(z )  = (1 - zkP1)Gk(z), we obtain 

Mk,m Gk,m - Gk,m-k+l ,  V L  2 0 (12) 

where G k , &  = 0, i < 0. A variation of (12) is given by 

Gk,m = Gk,m-l + Mk,m-1> m 2 1. (13) 

To obtain (13), we modify (5 )  as follows: 

G k , m  = Gk,m-1 + . . . + G k , m - k + l  + 1 
- - Gk,m-1 + (Gk,m-l - G k , m - k )  

- Gk,m-l  + Mk,m-l  
- 

where we use (12) to obtain the last equality. 
Next, we will deduce approximated expressionr for Gk,, 

and Mk,m, which indicate the asymptotic behavior of the code 
size. Since their derivations are similar to those in [4], [7], we 
only give the results and the intermediate steps are omitted. Let 
r k  be the real root but 1 of the equation x = l / ( 2  - xkP1). 
Then, for large m, we obtain 

As an example, approximations of G+,, and M4,, are shown 
in Table I. Since the first term of the right-hand side of (14) 

TABLE I 
APPROXIMATION OF Gk,m AND Mk,,  ( I C  = 4) 
- 
m 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

- 

- 

G4,m (14) M4,m (15) 
2 1.9927 2 2.0291 
4 4.0848 4 3.8480 
8 7.9328 7 7.0775 

15 15.010 13 13.018 
28 28.028 24 23.943 
52 51.971 44 44.038 
96 96.009 81 80.999 

177 177.01 149 148.98 
326 326.00 274 274.02 
600 600.01 504 504.00 

is a fractional number for any integer k > 2 and the second 
term increases as m goes to infinity, we state that 

Thus the difference in redundancy between MF;" and 
gg;"") is approximately given by log, r k / ( l -  r k ) .  Note that 
this difference is determined only by the prefix length k and 
does not depend on the constrained sequence length m.  For 
example, for 5 equal to 4, 6, and 8, the difference. is equal to 
0.253, 0.050, and 0.011, respectively. 

Iv. CODING ALGORITHMS FOR MPS-CODES OF PREFIX pc 
In this section, we present the encoding and decoding 

algorithm for a class of PS-codes Gp:m) of prefix PG = 
1"'O for arbitrary IC 2 1 and m 2 1. Note that this class 
contains the class of binary Gilbert's PS-codes B("). The 
algorithms will be extended for any self-uncorrelated prefix in 
Section IV. For the sake of simplicity, we will only discuss the 
binary alphabet case in this paper. The extension to nonbinary 
alphabet, however, can be easily obtained using the same 
arguments that have been developed here. 

A. Encoding Algorithm 

Theorem 2 shows that Fiz)  can be subdivided into k + 
a - 2 distinct subsets. By recursively applying this theorem 
to each subset except the singleton set (consisting of only 
one element), we know that -?'Lz) can be represented as a 
collection of Gk,m singleton sets. We assume that input data 
is represented as a stream of binary block sequences, each of 
which corresponds to a number x with 0 5 x < Glc,m. For 
a given m and 9, with 0 5 9 < 2", let Pm(y) be an m-bit 
binary sequence Pm(y) = blba . . . b, such that 

m 

i=l 

Conversely, for each binary sequence W of length m, let 
pi1 (W)  be a number y such that pm (y) = W. 

The main task of the encoding algorithm is to find a sin- 
gleton set corresponding to an input x with 0 :< x < G ~ , ~ .  
The encoding algorithm consists of two parts: EncodePSC 
( k ,  m,  x) and CodePSC(k, m, x). EncodePSC(k, m, x) calls 
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CodePSC(k, m, z) to get sequence Rk,,(z) corresponding to a 
number z, 0 I z < Gk,"  and then returns the concatenation 
of Pc and Rk,m(z). The task of CodePSC(k,m,z)  is to 
construct Rk,, (z) with recursive calls 

x = EncodePSC(k, m, z) 

Return X = Pc CodePSC(k, m, z). 

(End of EncodePSC) 

Y = CodePSC(k, m, z) 

begin 
1 

3 

if (m 2 k )  then begin 
2 t := l ; y : = x ;  

while (y 2 Gk,m-t) do begin 
4 

5 

y := y - Gk,"-t; 
t := t + 1; 

end; 
if (t  = k )  then return (Y = 1") 
else return (Y = ltP10 CodePSC(k, m - t ,  y)) 

6 

7 

8 end else return (Y = pm(z) )  
end 

(End of CodePSC) 

Example: Let us consider the encoding procedure of Gg:) 
with prefix Pc = 1110 where m = 6 and k = 4. 

EncodePSC(4,6, x) converts a number z from 0 to 51 into a 
codeword in Gi:;;. For instance, tracing the encoding proce- 
dure for z = 17, we obtain the codeword 111OR4,6(17) = 
1110010010. Similarly, we obtain R4,6(3) = 000011 and 

As shown in this example, the value of Rk,"(z) is recur- 
R q ~ ( 4 2 )  = 101111. 

sively determined during the encoding process. Let 

2 = 1  

Let us denote the set of integers {0,1, . . . , Gk,, - 1} by Zk," 

for m 2 1. Then, we divide Zk,m into k distinct sets Z k , " [ i ]  
with 1 I i I k ,  which are defined by 

Theorem 4: Rk,, is a one-to-one mapping from Z k , +  onto 

Pro08 If m < k ,  then Rk,"(z) is the m-bit binary rep- 
resentation of z with 0 < < Gk,,, = Z m ,  and F(") = Ay. 
Therefore, the theorem holds. For m 2 k ,  we use induction. 
We assume that Rk,"-l is a one-to-one mapping from Zk,m-l 

onto F'hZ-'). Then, we prove that Q k , ,  is a one-to-one 
mapping from ~ k , ~  onto 

First, we will show ilk," maps Zk," into Fkz).  Suppose 
that 2 E Zk,,[k], that is, z = Gk,, - 1. Then, the while-loop 
at step 3 in CodePSC(k, m, z) is repeated k - 1 times since 

FA;'. 

p. 

Gk,m - 1 = Gk,m-l f Gk,m-Z + ' '  ' + G k , m - k + l .  

At the kth repetition of step 3, y = 0, t = k ,  and Gk,"-k > 0 
for m 2 k .  Therefore, the sequence lm is returned (step 6). 
It implies that R;tk,m maps G k , ,  - 1 into 1". Next, suppose 
that z E Z k , " [ i ]  i < k .  Then 

2-1 Z 

j=1 j = 1  

The while-loop at step 3 is repeated i - 1 times until the ith 
repetition, when 

9 - 1  

3=1 

and t = i. In step 6, since i < k holds, CodePSC(k, m - i ,  y) 
is called in step 7. Hence, if z E Z r ~ , ~ [ i ] ( i  < k ) ,  we can write 

Q k , m  (z) = 12-' O a k , " - %  (Y) (19) 

where 
2 - 1  

3=1 

From the assumption of induction, R k , m - , ( Z )  E FLZ-') holds 
for z E Zk,"[m-z] and 1 5 z 5 m. Since 0 5 y < G k , m - 2 ,  y 
must be in Zk,"-%. Therefore, R k , , _ , ( y )  E F&-'). Equation 
(19) shows that Pc does not appear in 12-10Rk,m-Z(y) if 
1 <  i < k - 1 .  Thus 

Q k , m ( z )  E F$z). (20) 

Since (20) holds for any z E Z r ~ , ~ [ i ]  and 1 < i < k ,  we have 

Now, we will show that Q k , m ( z )  is one-to-one. If z E 
Zk,"[2] and y E Zk,"[j]  ( i  # j ) ,  the sequences corresponding 
to those numbers have distinct prefixes. Therefore, Rk,,(z) # 
Ok,m(y). In case that z and y belong to the same Zk,,[z], the 
corresponding sequences can be represented as 

ok,m(Zk,m) c ~ h z ' .  

R,,,(LC) = 1Z-10Q;2k,m-2(z') 

Q k , m ( y )  = 1'- 'Ofik ,m-t(Y ' )  

respectively, where 
i-1 

j=1  

and 
i - 1  

3=1 

From the assumption of induction, R k , m - 2 ( z ' )  # Q k , m - r ( y ' ) .  

0 
The time complexity of the encoding algorithm is evaluated 

as the number of comparisons of possibly large numbers y and 
Gk,m-t at step 3 and the number of recursive calls at step 7. 
The sum of the numbers of comparisons and recursive calls is 
upper-bounded by m. Hence, the time complexity is 0 (m). At 
most m values of G k , %  (1 < i 5 m) must be stored in memory 
to invoke EncodePSC(k, m, z). Since Gk,2 can be represented 
by at most m bits, the total amount of memory is O(m2).  

Hence, flk,,(z) # Q k , m ( y )  holds. 
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B. Decoding Algorithm 

Suppose that the decoder receives a series of codewords 
in Gg2m) = PGFLE'. After finding prefix Pc followed by 
an m-bit block W = (w1, wz, . . . , w,) from the received 
sequence, the decoder converts W E Fkz' into a number 
x where 0 5 x < Gk,m. The following decoding algorithm 
returns a unique number for any W E FLz): 

x = DecodePSC(k, m, W )  
begin 
1 if (m 2 IC) then begin 
z 
3 return 

if there exists 1 5 i < k such that W = 1"'OV then 

2 - 1  

(x = 
Gk,m--3 + DecodePSC(k, m - 2, v) )  

3=1 
4 else return (x = Gk,m - 1) 
5 end else return (x = &'(W)) 
end 

(End of DecodePSC) 

Let Ek,m(W) denote the returned value of DecodePSC(k, 
m, W ) .  Then, =k,m maps Fkz' to the set of integers. 

Theorem 5: Ek,, is the inverse mapping of Rk,,. 
Proof: If m < k, then 

Ek,m(W) = DecodePSC(k, m,  W )  

is a number x such that W equals the m-bit binary rep- 
resentation of x. Given x, EncodePSC(k, m,  x) returns the 
m-bit binary representation of x (0 5 x < Z m ) .  Hence, 
Ek,m(flk,m(x)) = x. Now, suppose that I 

holds for m 2 k and x E Zk,m-1. We will show that the 
assumption also holds when m - 1 is replaced by m.  First 
we consider the case x = Gk,m - 1. As shown in the proof 
of Theorem 4, flk,m(Gk,m - 1) = 1" holds. Moreover, 
DecodePSC(k, m, 1") returns Gk,, - 1. Hence, 

sk,m(flk,m(Gk,m - 1)) = Gk,m - 1 

holds. Assume that x E Zk,m[i] for 1 5 i < k .  Then, there 
exists a value T such that 

2-1 

From the assumption of induction, Ek,m-2(V) = r .  Therefore 
2 - 1  - - 

=k,m(flk,m(x)) = Gk,m-j f ~ l c , m - 2 ( ~ k , m - ~ ( T ) )  
3=1 

9 - 1  

j=1 

=2. 

The proof is complete. 0 
Although DecodePSC needs the same amount of memory 

for storing the values of Gk,% as EncodePSC does, the decoder 
is much faster than the encoder since no comparisons of two 
large integers are required in the decoding process. 

V. CONSTRUCTION OF MPS CODES WITH 
ARBITRARY SELF-UNCORRELATED PREFIXES 

In practical situations, one might want to use another prefix 
than PG = 1'"-'0. Although we can easily obtain the encoding 
and decoding algorithms for the negation of PG or the reversed 
PG, it seems to be hard to obtain a recursive relation on the 
partitions even for any self-uncorrelated prefix other than PG . 
We will present the encoding and decoding algorithms for 
G$+m) with a self-uncorrelated prefix Q. As in the previous 
section, we will only consider the binary alphabet case for the 
sake of simplicity. The algorithm can be easily extended to 
nonbinary alphabets. 

We will describe a mapping @Q to transform each sequence 
in F$z) into another F&" where Q is any prefix but PG. If 
Q is self-uncorrelated, that is, Q o Q = lok-', then it is 
shown that @Q(.$:)) = Fhm). As a byproduct of this result, 
we obtain another proof of the statement that GF"' with a 
self-uncorrelated prefix Q has the same size as g$:") [ 5 ] .  

The main idea of the mapping is to uniquely transform a 
sequence X = nk,,(X) obtained from EncodePSC(k, m, x), 
to another sequence in F&" where Q has the same length 
as PG. Scanning X from the left to the right, check pattern 
X for the occurrence of Q. If we find Q as a subsequence 
of X ,  this subsequence is replaced by PG. Let us denote 
the sequence obtained after the transformation by 'rQ-pG ( X )  . 
After the conversion, no Q is supposed to appear in anywhere 
in T Q - ~ ~  ( X ) ,  which means that the obtained sequence would 
be in Unfortunately, T Q + ~ ~ ( X )  E Fg' does not 
always hold, since the replacement of Q with PG may cause 
Q to occur at a position which has been scanned before. For 
example, for Pc = 1110 and Q = 1011, let us convert 
the sequence W = 0101011001 E FgG0'. When we scan 
this sequence, Q is found at the fourth position, and W is 
converted to 0101110001. However, another Q now appears 
at the second position. Hence, replacing Q by PG might result 
in scanning the sequence again and again. Fortunately, if we 
replace PC by E. then no Q appears at the position of W 
scanned before. In fact, W is converted to 0100001001 which 
belongs to F$". In general, there exists a one-path scanning 
from left to right to uniquely transform F$z) to FLm) or Fe) 
to Fh". In the rest of this section, we will show this method 

PG 
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for correctly transforming FLY' into Fhm). The following 
lemma shows a sufficient condition for the existence of a 
"one-pass" transformation. 

Lemma 2: Let S and T be distinct sequences of length 
I C .  Let X be a sequence in Ti". If T o S = O'", then 
rT4s(x) E ~ 4 ~ ) .  

Proofi Let us assume that T is found for the first time 
at the ith position of X .  It means that X can be written as 
X = VTW where V is a string of length i - 1 such that 
VT o T = Oz-ll(*)k-l and W is the remaining part of X .  
By replacing T with S at the ith position, X is converted to 
VSW. 

To prove the Lemma, it is sufficient to show that V S  o T = 
Oz((*)"l. If another T is found at the j th  ( j  > i) position, the 
prefix V' of length j - 1 followed by T satisfies V'T o T = 
03-l l(*)I,-I and the situation is equivalent. 

Suppose that the hth symbol of V S  o T is one, where 
1 5 h < i - 1. Then, T can be written as T = T1T2 
where TI is equal to a suffix of V and T2 to a prefix of 
S. However, this contradicts T o S = 0'". Therefore, we have 

0 
Lemma 3: For Q E Ai, if the last symbol of Q is zero and 

Q # PG, then Q o PG = 0'". If it is one and Q # z, then 

Pro08 If q k  = 0, qk  is different from any symbol of PG 

V S  o T = 0'(*)'"-'. 

Q 0 pc = 0'". 

but the last one. Hence, 

Q o PG=O'", i f Q # P G .  

If 4'" = 1, it is different from any symbol of pc but the last 
one. Hence, 

Q o E = O k  i f & # % .  0 

Lemma 3 guarantees that if PG or is chosen appropri- 
ately depending on the "target" prefix Q, then the sufficient 
condition of Lemma 2 holds. 

Using Lemmas 2 and 3, let us construct a mapping 

as follows: 

We note that @ g ) ( X )  E F&" holds for X E Fiz) .  

ping from $:) to 
Theorem 6: For any Q E Ai, @Lm) is a one-to-one map- 

for m > 1. 
Proof: We will show that 

@L"(x) # ~ L ' ( Y )  i f x  # Y 

for any pair X ,  Y E Fkz).  This statement will be proved using 
induction on m. First, let us consider the case that q k  = 0. 
If m < k ,  then the statement holds since @ g ) ( X )  = X for 
X E AT and X belongs to both 3kz) and FAm) since 
F(m)  = $hm' = A? from (2). Next, assume m = k .  Then, 
if X = Q, then @$'(Q) = Pc. If X E FE\{Q}, then 

PG 

@$ ' (X)  = X .  Since Q E Fg and PG E Fg), @$I is 
one-to-one. Assuming that the statement holds for m = t ,  we 
will now prove that the statement holds for m = t + 1. Let 
X = 2 1 2 2  . . . ~ t + l  and Y = y1y2.. . yt+l be in F(t+l). We 
assume X # Y. Let W' denote the subsequence of W obtained 
by removing the first symbol. That is, X' = (z2,. . . , Q + ~ )  

According to the values of the first k symbols of X and Y ,  

PG 

and Y' = (g2 , . - . ,g t+ l ) .  

we have four cases to consider: 

i) xk # Q and yk # Q, 
ii) XI, = Q and Y k  = Q ,  

iii) X I ,  = Q and Y k  # Q, 
iv) X I ,  # Q and Y k  = Q ,  

where Xk = 2 1 5 2 " ' x k  and Y k  = y1yz...yk. For case i), 
we obtain 

If 2 1  # y1, the statement is obviously true. Otherwise, X'  # 
Y' must hold from the assumption. Then, by the inductive 
hypothesis, we have @$'(X ' )  # @$)(Y'). Next, we consider 
case ii). By choosing appropriate sequences R and S, ( R  # S) 
of length t + 1 - I C ,  X and Y can be written as X = QR and 
Y = QS, respectively. Then, we have 

@$+l) (X)  = l@g)(l'"-2oR) (24) 

@g+I)(Y) = 1@$)(1'"-20s). (25) 

By the hypothesis of induction, we obtain @$+')(X) # 
@$+')(Y) since R # S. Because of the symmetry of both 
cases iii) and iv), it is sufficient to consider case iii). In case 
iii), X and Y can be written as X = QT and Y = YkU. 
Then, we obtain 

@Q (t+l)(X) = 1@$)(1'"-20T) ( 2 6  

( Y )  = yl@$) (YLU). (27) 

If y1 # 1, then the statement is true. Otherwise, YL # 1"'0, 
since Y is assumed to be in Fk:). Hence, YLU # 1"'OT. 
By the inductive hypothesis, we have 

@(t )  ( 1'"--2 OT) # @$'(YLU). 

Now we consider the case that q k  = 1. Using the same 
argument as for q k  = 0, we take the negation of Q, and show 

is a one-to-one mapping from F$z) to F'). Note that 
rG-pG Q 

and the correspondence between X and x is one-to-one. Thus 

= 

is one-to-one if 4'" = 1. This completes the proof. 0 
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Using Theorem 6, we can construct the coding algorithms 
of a PS-code et+”) for a self-uncorrelated prefix Q by com- 
bining the algorithms for Pc and one of the transformations 
r Q - p ~  and The PS-code e!+”) constructed in this 
way is a subset of G$+m’ because of the existence of a one- 
to-one mapping from .?$.’ to F&”. In what follows, we will 
show that C$+”) equals G$+”). 

Now let us assume that q k  = 0, and consider a conversion 
TQ+pG from F&”’ to F L ~ ’  as follows: by scanning w E 

FLm) from right to left, look for pattern PG in W. If PG is 
found as a subsequence of W ,  then it will be replaced by Q. 
We continue the above operation until we reach the left-end 
of W. The obtained sequence is denoted by T Q - P ~  (W).  This 
conversion does not produce PG at any position in W which 
has been already scanned. Therefore, the obtained sequence 
after the conversion belongs to FLE’. That is, T Q , ~ ~  is a 
mapping from F&” into .?$:’. If q k  = 1, replace PG by 
PG. Then we similarly obtain a conversion rQtG which 
transforms F&” to Fe). Now we define a mapping Q g ) ( X )  
as follows: 

- 

PG 

From the definition, Q g ’ ( X )  is a mapping from F&” to 
FLz). Let us note that 

T Q t G ( X )  = T+PG (XI. (28) 

Theorem 7: If Q is self-uncorrelated, then Qg) is a one- 
to-one mapping from FA” to FL;’. 

Proof: Using the same arguments as in Theorem 6, we 
show that @g) is one-to-one for m 5 k .  Next, assuming that 
the statement holds for m = t ,  we will now prove that it also 
holds for m = t+ 1 with the condition q k  = 0. Let two distinct 
sequences X = (z1,z2, . . . , xt+l) and Y = ( y l ,  y2,  . . . , yt+l)  
be in F$+’). Using the same notation as in Theorem 6, X and 
Y can be written as zlX’  and ylY’, respectively. Let us write 

(29) 

(30) 

where MX and M y  are sequences of length k - 1, and Rx 
and Ry are sequences of length t + 1 - k .  Before the last step 
of the conversion 7Q+pG, sequences x and I/ must have been 
converted into z l M x R x  and y1MyRY, respectively. Then, 
Rx # Ry or Rx = Ry may occur. In the former case, it 
always holds that Q$+l ) (X)  # Q F 1 ) ( Y )  since neither Rx 
nor Ry changes when converting the last part of X and Y. 
Hence, the only case where Q;+’)(X) = Q$+l)(Y) holds is 
the latter case. 

Assume that Rx = Ry.  If z1Mx = y lMy,  then 
$’(X’) = Q$’(Y’) follows. From the inductive hypothesis, 
X’ = Y’ holds. Hence, X = Y holds since 21 = y1. This 
contradicts X # Y. Thus x l M x  # y lMy always holds when 

qp x/ 
Q(t)  y’ 

Q (  )=MxRx  

Q (  ) I M Y R y  

Rx = Ry.  

Now, we assume that x l M x  # ylMy.  Without loss of 
generality, it is sufficient to consider the following four cases: 

i) x1Mx = PG and y1My = Q. 
ii) x l M x  =PG and y l M y # Q .  
iii) x l M x  # PG and y lMy  = Q. 
iv) z i M x  # PG, XiMx # Q ,  YiMy # PG, and 

YiMy # Q. 
In cases iii) and iv), neither x l M x  nor y1My change at 
the last step of conversion T Q , ~ ~ .  From the assumption, 
z1Mx # ylMy holds. Hence, we have 

In case ii), z l M x  is converted into Q, while y1My keeps the 
same values. Hence, 

@$+l)(X) # Q$+1) (Y> 

also follows. 
The only remaining case to be considered is case i). We 

aim to show that case i) never holds if Y E I=$+’’. Let 
us break Y’ into two parts, YM = ( y 2 ,  . . . , yk) and YR = 
( y k + l , . . . , y t + l )  . Since Y E F$+’),tJlYM is not equal to 
Q while ylMy = Q ,  which implies that a PG exists with 
overlapping YM and YR. That is, a suffix of I r ~  equals a 
prefix of PG and a suffix of PG equals a prefix of YR. Let 
Y& be the sequence obtained after converting the suffix of 
YM into the corresponding prefix of Q. And let YA be the 
sequence obtained after converting the prefix of YR into the 
corresponding suffix of Q. If Y&YA contains no PG, then it 
equals M y R y .  Hence, a suffix of M y  equals a prefix of Q. 
Even if PG is found again before the scan reaches the left end 
of YAY;, a suffix of M y  equals a prefix of Q after all. This 
contradicts the assumption that Q o Q = 10”’. 

If q k  =; 1 and Q is replaced by g, we can use the same 
arguments as for q k  = 0 to show that ra-pG is a one-to-one 
mapping from .E?) to F&:’. 

= 0, from the arguments developed above, we have 
that ra-pG is a one-to-one mapping from Fp) to F&z). 
Using (28) and 

Q 
Since 

Q 

Q$) is proved to be a one-to-one mapping from .FAm) to 

Corollary I :  Let PG be 1“’O and let Q be a sequence of 
Fg). 0 

length k .  If Q o Q = lo”’, then 

I.F&~)I = IF$~)I, for m 2 1 

Proo) According to Theorem 6, there exists a one- 
to-one mapping from .FE’ to Fr). Thus, the inequality 
1FL~)I 5 IF&”I always holds. If Q o Q = IO‘-’, there 

0 
exists a one-to-one mapping from .Fg’ ( to .$:’ according to 
Theorem 7. Hence, F&%’ has the same size as Fiz’. 
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VI. CONCLUSION 

Encoding and decoding algorithms for a class of MPS-codes 
have been presented. The key idea used in the algorithms is to 
partition recursively the set Fkz) of the constrained sequences 
of length m in which pattern PG = 1“’O does not appear, 
from which it is straightforward to obtain the algorithms. 

Moreover, a method to transform Fkz) into Fk” with a 
self-uncorrelated prefix P has been obtained. Based on this 
method, the algorithms have been extended to construct MPS 
codes with arbitrary self-uncorrelated prefixes. The obtained 
algorithms provide us a variety of options of selecting a prefix 
since the majority of prefixes used in practical applications of 
frame synchronization [ 141 are known to be self-uncorrelated. 

The time complexity of the algorithms is proportional to the 
code length n since we can adopt one of the linear-time string 
matching algorithms [ 151 for the transformation. 
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