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Abstract— We present a systematic procedure for mapping
data sequences into codewords of a prefix-synchronized code (PS-
code), as well as for performing the inverse mapping. A PS-code,
proposed by Gilbert in 1960, belongs to a subclass of comma-free
codes and is useful to recover word synchronization when errors
have occurred in the stream of codewords. A PS-code is defined
as a set of codewords with the property that each codeweord has
a known sequence as a prefix, followed by a coded data sequence
in which this prefix is not allowed to occur. The largest PS-code
among all PS-codes of the same code length is called a maximal
prefix-synchronized code (MPS-code). We develop an encoding
-and decoding algorithm for Gilbert’s MPS-code with a prefix
of the form 11---10 and extend the algorithm to the class PS-
codes of which the prefix is self-uncorrelated. The computational
complexity of the entire mapping process is proportional to the
fength of the codewords.

Index Terms— Synchronization, frame synchronization, com-
ma-free - codes, prefix-synchronized codes, runlength-limited
codes, Fibonacci codes, Fibonacci sequences.

1. INTRODUCTION

ABLOCK code C of length n over an alphabet A, of
size « is called a comma-free code, if and only if for
any pair of codewords ajas -+ a, and bibs--- b, in C7, the
n symbol overlaps

a2a3 - apb1, 0304 7+ Gpb1ba, -+, anbiby by

are not in C} [1]. In a communication system, a comma-

free code can be used to enable the receiver to determine the
location of the codewords in the incoming stream of symbols.
Word synchronization can be recovered after having received
at most 2n — 2 error-free symbols.

The cardinality of a comma-free code C7, denoted by C’((xn),
is bounded by

l 1
(P) « = n/d
CyY < - E w(d)a

dln

where 1 is the Mobius function [1]. A good approximation for
this upper bound is given by C’&M < o™ /n, and therefore the
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redundancy, being equal to n — log,, C’é"), is at least log,, n.
For any odd n, comma-free codes having maximal size can
be constructed [2], [3].

A major disadvantage of general comma-free codes is the
need for an exhaustive search in the code set to decide
whether or not a given string of n symbols is a codeword.
To overcome this difficulty, a subclass of comma-free codes,
called prefix-synchronized codes (PS-codes), was introduced
by Gilbert [4]. These codes have the property that every
codeword starts with a prefix P = pips---pr of length -k,
followed by a constrained sequence cics - - - ¢y, Of length m.
Moreover, for any codeword py - - - pxC1 - - Cm, prefix P does
not appear as a block of & consecutive symbols anywhere in
P2 PrC1-- - CmpP1 - Pr—_1. Lherefore, word synchronization
can be easily established at the decoder side by scanning the
incoming stream of symbols for the occurrence of prefix P.

Given an alphabet A,, a code length n, and a prefix P of
length k < n, there is a unique maximal prefix-synchronized
code (MPS-code), denoted by ngc)y, with these parameters.

Usually, g}(fi is written as g}l‘) if the value of « can
be obtained from the context. Parameter k& will be used to
represent the length of the prefix. If we stress the prefix length
k and the constrained sequence length m = n — k, then the
notation G&F™ is used. :

We present an encoding and decoding algorithm for a class
of MPS-codes with self-uncorrelated prefixes. A sequence X
is said to be self-uncorrelated if X has the property that no
prefix of X matches any suffix of X. A sequence of the form
Ps = 1-..10 is an example of self-uncorrelated sequences.
It should be noted that a large number of sequences are self-
uncorrelated. For example, for k equal to 7, 10, and 15, there
exist 40, 284, and 8848 self-uncorrelated binary sequences,
respectively. Moreover, it is known that given an alphabet size
a with 2 < o < 4, self-uncorrelated prefixes, including P,
maximize the cardinality of QZ()") for any given code length
n [5].

In the next section, we will give an overview of earlier
work on PS-codes. Then, in Section III, we present the
recursive structure of the constrained part of g}fjm) from
which a constructive mapping procedure of a data sequence
to the constrained part of a codeword can be obtained. The
encoding and decoding algorithms for g](f:m) are presented
in Section IV, as well as a. proof of the correctness of
both algorithms. The time complexity of the proposed coding
scheme is proportional to the code length.

0018-9448/96$05.00 © 1996 IEEE
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In Section V, we address the coding algorithm for the class
of PS-codes with self-uncorrelated prefixes. It is known that
if P is self-uncorrelated, then gl(;l) has the same size as g};;j
[5]. However, neither any encoding nor decoding algorithm
for such a 91(3") have been found in the literature. We give

a two-step algorithm for encoding and decoding QI(D") for
any self-uncorrelated P. The total time complexity is also
proportional to the code length.

II. PREVIOUS RESULTS

Gilbert [4] has shown that the redundancy of a binary PS-
code g}") is upper-bounded by log,n+-1.52, if P is of the form
11---10 of length |log, (nlog,e)]. This specific prefix is
referred to as Gilbert’s prefix, and the corresponding PS-code
will be simply denoted by G(*).

Gilbert conjectured that for a given code length n, G(®
is optimal in the sense that it is the largest PS-code among
all binary PS-codes of length n. For alphabet size o < 4, the
conjecture is proved by Guibas and Odlyzko [5] for sufficiently
large n. Surprisingly, it is also proved that for o > 5 infinitely
many values of n exist for which Gilbert’s prefix is not optimal
[5]. Although it would be interesting to find out which prefix
gives an optimal PS-code for a general finite alphabet, we will
not consider this open problem in the current paper.

From an engineering point of view, the main practical
difficulty of using PS-codes still remains. The encoding and
decoding procedures generally become more complex as the
length of the codewords increases. In fact, finding a construc-
tive coding method for G(™ without use of a lookup table has
remained as an open problem.

A nearly-optimal construction method has been developed
by Mandelbaum [6]. He presents an encoding and decoding
procedure for a PS-code based on Fibonacci codes, as proposed
by Kautz {7]. This method is constructive in the sense that no
lookup table is required. Mandelbaum shows that a binary
PS-code, denoted by M(k+m) can be constructed by applying
Kautz’s coding method. The redundancy of M(k+m) is shown
to be approximately equal to (log,n) + 2, if n = 2F. His
method was extended to runlength—limited codes [8]-[10].
However, being a PS-code, Mgf;m) is not optimal among
all PS-codes of length & + m and prefix Pg of length k. In
fact, gg“;m) is always larger than Mgf:m) for any n which is
shown in Section III where the exact difference of size between
.M k+m and G, k+m) is determined.

(k+m)

Capocelh [11] proposes another coding scheme for Gp_
as a part of unbounded integer coding by showing an example
of the scheme for k¥ = 3. In fact, for a given k, the infinite
union '

U g(k-l—m)

_is a code set which can be used to encode arbitrary positive
integers. In his method, G5 (3+m) is partitioned into two subsets:

one set of codewords startmg with 0 and the other set of -

codewords starting with 1. The integer to be encoded is
compared with the size of the first subset to obtain the first

2159

bit of the corresponding codeword. Continuing these steps
recursively, the codeword will be determined bit by bit. The
size of the latter set is easily shown to be equal to the second-
order Fibonacci number. Therefore, the size of the former

" set can be also represented using these Fibonacci numbers,

although the obtained formula will be complicated. A more
formal description of Capocelli’s algorithm for any & is found
in [12].

Unlike Capocelli’s algorithm, we partition Ql(,kG ™) into k
subsets, which gives us a much more convenient formula
for enumerating the number of codewords. Moreover, deriva-
tion of the encoding and decoding algorithms has become
straightforward.

HI. MAXIMAL PREFIX-SYNCHRONIZED CODES
In this section we investigate a recursive structure of Qgﬁjm)

+m)

from which a coding scheme for g,(fc is directly deduced.

The exact analysis on the difference between /\/lf,f;m) and

g(’“+ is also deduced using the recursive structure. Before
developmg the theory, we introduce a useful definition of the
correlation between two sequences [5], [13] using a slightly
different notation.

Definition 1: For two sequences X and Y of length | X|
, respectively, the correlation of X over Y, denoted
by X o Y, is a binary sequence B = biby---b x| of the
same length as X. Let s = max (| X| — |Y|,0). Each element
b, with 1 < ¢ < |X| is defined by

by — {7(% LY 4i-1,Y1 "?AY[),

‘ V(@i - T x Y1 Y X =ik 1 )
where v(Z1, Z2) is 1 if two sequences Z; and Z, are identical,
and 0 otherwise.

For example, if X = 1021 and ¥ = 10102, then X o
Y = 0001 and ¥ o X = 00100. Note that in general
X oY #Y o X. The correlation X o X is called
the autocorrelation of X. We will denote a sequence of
s consecutive symbols b € A4, by b°. Then, for a self-
uncorrelated sequence X, X o X = 10---0 holds.

Let the concatenation of two sequences X and Y be denoted
by XY. In terms of correlation, we can represent the necessary
and sufficient condition that a sequence PY of length n =
k +m is a codeword of G&™ by

PYP o P =10%m"11(x)k! 1)

1<7<s
s <i<|X]

where the character  is used to denote an arbitrary symbol of
A, and (*)* represents a sequence of A3

For a prefix P of length £ > 1, let fl(am) denote the set
of sequences of length m such that no P appears in any
position as a string of k consecutive symbols. Therefore, ]-"I(Jm)
is defined by

A%, m < k
FLW =3 AP}, m =k
(X € A7X o P=0m"*1G)=1 0 m> k.

2

The following lemma can be easily derived from the defini-
tion of .7-'1(3 ), and is useful to obtain the structure of Gp (ktm),
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Lemma 1: Let P € AE. For every Q € A2 with 1 < s <
min(k—1,m), F, 1(;”) contains at least one sequence with prefix
@, and at least one sequence with suffix ().

Proof: fm < k,F I(Dm) = AT, and the correctness of the
lemma immediately follows. If m > k, let P = pips - - pk,
and let p; € A, \{p;}. It is obvious that for every Q € AS, the
sequences Q(P)™* and (p;)™~°Q are elements of Jf](gm) if
1 < s < min(k — 1,m), and therefore the lemma holds. O

For a sequence P and a set of sequences S, let us denote
the set of concatenations of P and all the sequences in S by
PS8, that is, PS = {PW|W € S}. The null string, denoted
by ¢, is introduced to represent a string of length 0, for which
$X = X¢ = X holds. In this context, PFL) = {P} and
.7—'1(30) = {¢} with cardinality 1. For any m < O,P}"l(gm) is
empty.

Theorem 1: For any PS-code g;’“*’”') with prefix P € A®

ger™ c PFEY. ©)

Equality always holds if P is self-uncorrelated. Moreover, if
(3) holds with equality for any m > k — 1, then P o P =
10k—1

Proof: For m < k, (3) holds according to (2). Smce any
sequence PY € g (-+m) satisfies

PYPoP =10*"1""1(x)*"1 for m >k
Y o P = 0m=k+1(x)k=1 holds. Thus Y € FU™.
If P is self-uncorrelated,

PYPo P =10mtk-110F1

holds. Since Y is any sequence in F }(Dm) ,PF I(Dm) is a PS-code

and it is the largest one among all PS-codes of length £ + m

and with prefix P of length k. That is, PFy (m) = Q(k+m).
Now we assume that

g(k+m)’

PFI™ = for m >k — 1.

Then
PWPoP = 10mT*=11(x)k~1

for any W € J”:I(Dm).‘Hence, for 1 <4 < k — 1, no subblocks

L; = py—iy1---prwi---wi_; of PWP equal P. Thus the

first ¢ symbols of P must be different from the last ¢ symbols

of P, which shows P o P = 1041, O
The key equatlon to construct the encoding/decoding algo-

rithms for Gp (k+m is presented in the following theorem.
Theorem 2: For a>2and m > 1

k—1
Fo={myu | {lor o (| {eFs )
=2 a€ A,
a#1

“

where Pg is of the form 1*-10.
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Proof: According to the definition, 1™ € Fgr). Any

other sequence W € J—'gg) starts at one of

{1°72012 < i < kU (AN {1D).
If W = 1:-1V, then V € ]-"I(JZ"Z‘) since
170V o Pg = 0™ T (x)kt
impﬁes that
V o Pg = mmimk+l (4)k-1
Similarly, it is shown that if W € Fp m) i represented as aV

with a € A,\{1}, then V € Fi~ 1>.

Conversely, the first ¢ components of 1710V o Pg are all
0 forany V € A™™% since 1710 0 1¥~1 = 0! where i < k.
Moreover, the last m — ¢ components of 110V o P equal
om=i=k+l(x)k—1 for V € ]—"l(g_z) from (2). Therefore, we
obtain that

e sy, for veryT
In the same way, we can show that
aVE}"}(,TZ), for Veférg"l). O

Remark 1: Let Pg be the negation of Pg, that is, Py =
0F=11. Then we obtain

FE = {0 U U {0=MFEY o ) {aF 1)}
a€A,
a¥0

Let 132; be the reverse order of P, that is, 15; = 01%-1,
Then we obtain

k—1
F& = (1myu U2 {FZ oo g {FZa}.
a;éla

For a prefix Pg = 1¥710, we denote the cardinality of
g““”m) by Gm. Note that Gy, is written as

Grm = |PaFgy)| = P51

Theorem 3: For a given k > 1, a sequence Gk7o,Gk,_1,

G2, - - - satisfies the following recursion:
o™, m<k
G = = 5
B =Y (= 1)Ghym— 1+2kaz+1 m > k. )
1=2

Proof: fm < k, G} m equals o™ according to (2). Since
the sets on the right-hand side of the formula in Theorem 2
are distinct, we obtain

k-1
m i— m-—1i m—1
FEl =1+ WoE 1+ Y laFg Y
§=2 CLE;lla

k—1
= (- DIFE |+ 3 1FTTI 41
i=2

Equation (5) follows by replacing |F 1(;2—1')| with Gy m—i. O
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Remark 2: Mandelbaum’s code M(k+m) is a binary PS-

code defined by MUt™ = 1%~ loyf(;”)l Tt is also subdivided
into k£ — 1 subsets as follows:
k-1

M = ) {rtorgs?} ©)

=1
Since the derivation of (6) is similar to Theorem 2, we omit
it. Moreover, let M, ,, be the cardinality of Mgifj’”). Then,
we obtain that
m<k-—2

My, m>k—1. 7

— 2m7
U M1+ Mkt

By comparing (5) in case of o = 2 with (7), we immediately
know that Gy m > My m.

The exact difference in size between Mgfjm)
is analyzed using the generating functions for Gy, ,,, and M k,ms
which are defined as follows:

nd g(k+m)

Z) = Z kamzm (8)
m=0

= > Mpmz™ ©)
m=0

Then, using the recursions of (5) and (7), Gx(z) and My(z)
can be written as

Gr(2) = T—ziﬂ (10)
Mi(2) = %;z% (11
Since My(z) = (1 — 2F71)Gy(z), we obtain
Mim = Gim — Grin—k+1, m >0 (12)
where G, ; = 0,7 < 0. A variation of (12) is given by
Gim = Giym—1+ Mg m—1, m > 1, (13)

To obtain (13), we modify (5) as follows:

Gem =Grm-1+ -+ Grmkt1 + 1
=Grm—1 + (Gr,m—-1 — Grym—k)
=Gim-1+ Mpm_1

where we use (12) to obtain the last equality.

Next, we will deduce approximated expressions for Gp .,
and My, .,,, which indicate the asymptotic behavior of the code
size. Since their derivations are similar to those in [4], [7], we
only give the results and the intermediate steps are omitted. Let
7% be the real root but 1 of the equation z = 1/(2 — z*~1).
Then, for large m, we obtain

1 Tk —(m+1)
_ ™
k—1 2krp—Fk—1

1=re  —(mt1)
My~ h
BT ok — k=1 "

Grm = — (14)

(15)

As an example, approximations of Gia,m and My ., are shown
in Table I. Since the first term of the right-hand side of (14)
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TABLE 1
APPROXIMATION OF G,y AND My, 1, (k = 4)
m|{Gym  (14) Mymn  (15)
1 2 1.9927 2 2.0291
2 4 4.0848 4 3.8480
3 8 7.9328 7 7.0775
4 15 15.010 13 13.018
5 28 28.028 24 23.943
6 52 51.971 44 44.038
7 96 96.009 81 80.999
8 | 177 177.01 149 148.98
9 | 326 32600 274 274.02
10| 600 600.01 504 504.00

is a fractional number for any integer £ > 2 and the second
term increases as m goes to infinity, we state that

1—ryg

1%

My m Gim, for m>1. (16)

Tk

Thus the difference in redundancy between Mgf:m) and
g;’jjm) is approximately given by log, 7%/(1 — k). Note that
this difference is determined only by the prefix length k& and
does not depend on the constrained sequence length m. For
example, for k£ equal to 4, 6, and &, the difference is equal to
0.253, 0.050, and 0.011, respectively.

IV. CODING ALGORITHMS FOR MPS-CODES OF PREFIX Py

In this section, we present the encoding and decoding
algorithm for a class of PS-codes g}(,’jj’”) of prefix Pg =
15710 for arbitrary £ > 1 and m > 1. Note that this class
contains the class of binary Gilbert's PS-codes G(™). The
algorithms will be extended for any self-uncorrelated prefix in
Section IV. For the sake of simplicity, we will only discuss the
binary alphabet case in this paper. The extension to nonbinary
alphabet, however, can be easily obtained using the same
arguments that have been developed here.

A. Encoding Algorithm

Theorem 2 shows that F, 1(372) can be subdivided into & +
o — 2 distinct subsets. By recursively applying this theorem
to each subset except the s1ng1et0n set (consisting of only
one element), we know that f can be represented as a
collection of Gy, singleton sets. “We assume that input data
is represented as a stream of binary block sequences, each of
which cotresponds to a number z with 0 < x < Gy . For
a given m and y, with 0 < y < 2m let B, (y) be an m-bit
binary sequence B, (y) = bib2 - - - by, such that

y = Z bm_|_1._i2i‘1.
=1

Conversely, for each binary sequence W of length m, let
B1(W) be a number y such that 3,,(y) = W.

The main task of the encoding algorithm is to find a sin-
gleton set corresponding to an input ¢ with 0 < <Gy .
The encoding algorithm consists of two parts: EncodePSC

(k,m,z) and CodePSC(k,m,z). EncodePSC(k,m,z) calls



2162

CodePSC(k, m, z) to get sequence {2 () corresponding to a
number z, 0 < z < Gg,m and then returns the concatenation
of Pg and Q ,(z). The task of CodePSC(k,m,z) is to
construct Qy, ,,(z) with recursive calls

X = EncodePSC(k,m, x)
Return X = Pg CodePSC(k,m, ).
(End of EncodePSC)
Y = CodePSC(k, m, x)

begin
if (m > k) then begin
t:=1y:=x;
‘while (y > G m—+) do begin
Y=Y — Grm—t;
ti=1t+4+1; -
end;
if (¢ = k) then return (Y = 1™)
else return (Y = 1*710 CodePSC(k, m — t,))
8 end else return (Y = S,(z))
end

[S N VS

~N o

(Bnd of CodePSC)

Example: Let us consider the encoding procedure of gl(j(f)
with prefix Pg = 1110 where m = 6 and k = 4.

EncodePSC(4, 6, x) converts a number z from 0 to 51 into a
codeword in gﬁ%. For instance, tracing the encoding proce-
dure for x = 17, we obtain the codeword 1110€,44(17) =
1110010010. Similarly, we obtain 46(3) = 000011 and
Q46(42) = 101111.

As shown in this example, the value of Qg (z) is recur-
sively determined during the encoding process. Let

0, 1=1
i1

Ly, mli] = ZGk,m—j’ 1<i<k.
i=1

Let us denote the set of integers {0,1,- -+, G —1} by Zg m
for m > 1. Then, we divide Z ,,, into & distinct sets Zy ,, []
with 1 < i < k, which are defined by

Timli] = { %fi@m_[z]l}ﬁ J < Lim[i+1]},

1<e<k
i=k.
a7

Theorem 4: (g m is a one-to-one mapping from 7y, ,, onto
A,

Proof: Tf m <k, then Qg m(x) is the m-bit binary rep-

resentation of z with 0 < z < G, = 2™, and 7—"1(3’2) = AP

Therefore, the theorem holds. For m > k, we use induction. "

We assume that 0y ,,_1 is a one-to-one mapping from Ty ,—1
onto F, 1(372—1). Then, we prove that ., i a one-to-one
; (m)
mapping from 7 ,,, onto Fp_’.
First, we will show .., maps 7y ., into .7-"1(32). Suppose
that = € Ty, ,,[k], that is, z = Gy ,,, — 1. Then, the while-loop
at step 3 in CodePSC(k, m, z) is repeated k — 1 times since

G —1=Gim-1+Grm—2+ -+ Grm—t+1-
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At the kth repetition of step 3, y = 0,t =k, and Gy -3 > 0
for m > k. Therefore, the sequence 1™ is returned (step 6).
It implies that Qp ., maps Gg,m — 1 into 1™. Next, suppose
that © € Iy m[f] 4 < k. Then

=1 7
ZGk,m—j <z < ZGk,m—j-
i=1 i=1

The while-loop at step 3is repeated ¢ — 1 times until the ith
repetition, when ‘

(18)

i1 :
y=x- Z Gk,m——j < Gk,m—i
i=1
and ¢t = 7. In step 6, since i < k holds, CodePSC(k,m — i,y)
is called in step 7. Hence, if © € T, [¢](i < k), we can write

Qe () = 157200, i (v) (19)

where
’ i—1
Y=o — § Gk’,m—j-»
i=1

From the assumption of induction, 2, m—;(2) € F. 1(:2_0 holds
forz € Iy mm—iland 1 < ¢ < m. Since 0 <y < Grm—i, ¥y
must be in Zg, p,—;. Therefore, Qg m—i(y) € f'gg_i). Equation
(19) shows that Pg does not appear in 17109y n,—(y) if
1 <4< k—1. Thus

Qo) € FEV. (20)

Since (20) holds for any ¢ € Zj, [ and 1 < ¢ < k, we have
Qk,m(Ik,m) C F‘gg) ) ) .

Now, we will show that 2 ,,,(x) is one-to-one. If z €
Timlt] and y € Ty 1 [7] (¢ # ), the sequences corresponding
to those numbers have distinct prefixes. Therefore, Qy, . (z) #
Qg,m(y). In case that z and y belong to the same Zj, ,,[¢], the
corresponding sequences can be represented as

Qk,m(w) = 1i_109k7m_i($/)
Qe (¥) = 17102 m—i(y)

respectively, where

i—1

!

r =T — E Gk,m—j
J=1

and
i—1
Y =y- Z Gy
Jj=1

From the assumption of induction, Qg m—i(2") # Qg m=i(y').
Hence, Qg m () # Qgm(y) holds. O
The time complexity of the encoding algorithm is evaluated
as the number of comparisons of possibly large numbers y and
G',m—¢ at step 3 and the number of recursive calls at step 7.
The sum of the numbers of comparisons and recursive calls is
upper-bounded by m. Hence, the time complexity is O(m). At
most m values of Gy ; (1 < ¢ < m) must be stored in memory
to invoke EncodePSC(k, m, z). Since Gy, ; can be represented
by at most m bits, the total amount of memory is O(m?).
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B. Decoding Algorithm

Suppose that the decoder receives a series of codewords
in ggﬁjm) = nggg). After finding prefix Pg followed by
an m-bit block W = (wy,ws,- -+, w.;) from the received
sequence, the decoder converts W ¢ F 1(372) into a number
z where 0 < z < Gy . The following decoding algorithm
returns a unique number for any W € .7-'1(32):

x = DecodePSC(k, m, W)

begin

1 if (m > k) then begin

2 if there exists 1 < 4 < k such that W = 1*~10V then

3 return

i1
(:v = Z Gk,m—; + DecodePSC(k, m — 1, V))
7=1
4 elsereturn (z = Gim — 1)
5 end else return (z = 3,1 (W))
end

(End of DecodePSC)

Let Zg (W) denote the returned value of DecodePSC(k,
m, W). Then, Ey, ,,, maps ]-'1(37:) to the set of integers.
Theorem 5: Zy p, is the inverse mapping of (U .
Proof: If m <k, then

Ek,m(W) = DecodePSC(k, m, W)

is a number z such that W equals the m-bit binary rep-
resentation of z. Given z,EncodePSC(k,m,z) returns the
m-bit binary representation of x(0 < x < 2™). Hence,
Ek,m(Q,m(z)) = z. Now, suppose that !

Erm—1(Qkm-1(z)) =2

holds for m > k and z € Zp m—1. We will show that the
assumption also holds when m — 1 is replaced by m. First
we consider the case © = G — 1. As shown in the proof
of Theorem 4, Qpm(Grm — 1) = 1™ holds. Moreover,
DecodePSC(k, m, 1™) returns Gy ., — 1. Hence,

Ekm (e, (G — 1)) = Grm — 1

holds. Assume that € T ,,[¢] for 1 < ¢ < k. Then, there
exists a value r such that

i—1

xr = Z Gk,m—j"i’ r

=1

for which 0 < r < G m—;). Moreover, according to (19),
Q,m () can be written as

kal(flj) = 1i_1OQk7m_i(r).
With W = Qk’m(.’ﬂ) and V = Qkym_i(T),Ekfm(W) can be

written as

1—1
Ek’m(W) = Z Gk,m—j -+ Ek;m_i(V).

=1
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From the assumption of induction, Ey, ,,—; (V') = r. Therefore

!
-

i

Eem(Qem(2) = ) Grm—j + Zhme—i(Qpem—i(7))

PN
[
e

Grm—j + 7

Il
-

J
Z.

The proof is complete. U

Although DecodePSC needs the same amount of memory
for storing the values of G ; as EncodePSC does, the decoder
is much faster than the encoder since no comparisons of two
large integers are required in the decoding process.

V. CONSTRUCTION OF MPS CODES WITH
ARBITRARY SELF-UNCORRELATED PREFIXES

In practical situations, one might want to use another prefix
than Py = 1¥710. Although we can easily obtain the encoding
and decoding algorithms for the negation of Fg or the reversed
Pgq, it seems to be hard to obtain a recursive relation on the
partitions even for any self-uncorrelated prefix other than Fg.
We will present the encoding and decoding algorithms for
Qg ™) with a self-uncorrelated prefix Q). As in the previous
section, we will only consider the binary alphabet case for the
sake of simplicity. The algorithm can be easily extended to
nonbinary alphabets.

We will describe a mapping P to transform each sequence
in F 1(;.2) into another Tg”) where Q is any prefix but Pg. If
Q is self-uncorrelated, that is, @ o Q = 10*~?, then it is
shown that CPQ(JTI(ZZ)) = gn). As a byproduct of this result,
Qg ™) with a

self-uncorrelated prefix @ has the same size as Ql(f;m) [5].

The main idea of the mapping is to uniquely transform a
sequence X = Qy, ,(x) obtained from EncodePSC(k,m, x),
to another sequence in .7-'8”) where ( has the same length
as Pg. Scanning X from the left to the right, check pattern
X for the occurrence of (J. If we find (J as a subsequence
of X, this subsequence is replaced by FPg. Let us denote
the sequence obtained after the transformation by rg— p (X).
After the conversion, no ( is supposed to appear in anywhere
in 7g—, p, (X), which means that the obtained sequence would
be in ]-"g"). Unfortunately, 7g_,p,(X) € fc(gm) does not
always hold, since the replacement of @) with Pz may cause
@ to occur at a position which has been scanned before. For
example, for P = 1110 and @ = 1011, let us convert
the sequence W = 0101011001 € .7-"1(3100). When we scan
this sequence, (J is found at the fourth position, and W is
converted to 0101110001. However, another () now appears
at the second position. Hence, replacing ¢) by Py might result
in scanning the sequence again and again. Fortunately, if we
replace Pe by Pg, then no Q appears at the position of W
scanned before. In fact, W is converted to 0100001001 which
belongs to ]-"8 9 In general, there exists a one-path scanning

we obtain another proof of the statement that

from left to right to uniquely transform .7-'1(,72) to }_‘gn) or }"-%)

to }”g"). In the rest of this section, we will show this method
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for correctly transforming 7};5’ into }"gn). The following
lemma shows a sufficient condition for the existence of a
“one-pass” transformation.

Lemma 2: Let S and T be distinct sequences of length
k. Let X be a sequence in Fém). If T o S = 0% then
rrs(X) € F,

Proof: Let us assume that T' is found for the first time
at the 4th position of X. It means that X can be written as
X = VI'W where V is a string of length ¢ — 1 such that
VT o T = 0 11(x)*~1 and W is the remaining part of X.
By replacing 7' with .S at the ¢th position, X is converted to
VSw.

To prove the Lemma, it is sufficient to show that V.S o T =
0%(x)*~1. If another T is found at the jth (j > i) position, the
prefix V' of length 7 — 1 followed by T satisfies VT o T =
07~11(*)*=! and the situation is equivalent.

Suppose that the Ath symbol of V.S o T is one, where
1 < h < 1—1. Then, T can be written as T = 11715
where 77 is equal to a suffix of V and 13 to a prefix of
S. However, this contradicts T o S = 0*. Therefore, we have
VS o T =0 x)k"1 O

Lemma 3: For Q € AL, if the last symbol of @ is zero and
Q +# Pg, then Q o Py = 0F. If it is one and Q # Pg, then
Q o Pz = 0%,

Proof: If g, = 0, qy, is different from any symbol of Py
but the last one. Hence,

Qo Pg=0% ifQ+#Pg.

If g = 1, it is different from any symbol of Pg but the last
one. Hence,

Qo Pg=0F ifQ+#Pg. ]

Lemma 3 guarantees that if Pg or Pg is chosen appropri-
ately depending on the “target” prefix (), then the sufficient
condition of Lemma 2 holds.

Using Lemmas 2 and 3, let us construct a mapping

(m), {m) (m)
Q" Fp = Fp

as follows:
Toore(X), ifge=0

o5V (X) = @1)

5. pe(X), otherwise.

We note that @Y™ (X) € F5™ holds for X € Fo.
Theorem 6: For any Q € A%, @g") is a one-to-one map-
ping from ]-'gZ) to ]—"((Qm) for m > 1.
Proof: We will show that
PYV(X) £ BG(Y) HXAY

for any pair X,Y € F I(D’Z). This statement will be proved using
induction on m. First, let us consider the case that g, = 0.
If m <k, then the statement holds since <I>g”)(X ) = X for

X € AP and X belongs to both Fo) and Fg” since
F 1(;2) = ﬁé)m) = A from (2). Next, assume m = k. Then,
it X = Q, then d%(Q) = Ps. If X € FE\(Q), then

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 6, NOVEMBER 1996

oY (X) = X. Since Q € Fu) and Ps € Fy), @3 is
one-to-one. Assuming that the statement holds for m = ¢, we
will now prove that the statement holds for m = ¢ + 1. Let
X =212y T4y and Y = 392 - - - Y41 be in }-1(}:1)' We
assume X # Y. Let W’ denote the subsequence of W obtained
by removing the first symbol. That is, X’ = (zo, -, Z141)
and Y/ = (y2,--, ¥r41).

According to the values of the first & symbols of X and Y,
we have four cases to consider:

) Xp#@Q and Y #0Q,
i) Xp=@Q and Y =0Q,
i) Xp=Q and Y; #Q,
tv) Xp#Q and Y, =0Q,

where X3 = x129--- x5 and Yy = y1ys - - - yi. For case 1),
we obtain

U (X) =, 00X (22)
oS (v) =y 2d (V). (23)

If 1 # ¥, the statement is obviously true. Otherwise, X' #
Y’ must hold from the assumption. Then, by the inductive
hypothesis, we have @8) (X') # @g)(Y’ ). Next, we consider
case ii). By choosing appropriate sequences R and S, (R # 5)
of length t+1—k, X and Y can be written as X = QR and
Y = @S, respectively. Then, we have

1 —
el (X) =100 (1% 20R) (24)
o4t () =100 (157208). (25)

By the hypothesis of induction, we obtain <I>g+1>(X) #
<I>S+1)(Y) since R # S. Because of the symmetry of both
cases iii) and iv), it is sufficient to consider case iii). In case
iil), X and Y can be written as X = QT and Y = Y,U.
Then, we obtain

(26)

ot (x) = 108 (1¥-20T)
o5 (V) =% (VU). @7

If y; # 1, then the statement is true. Otherwise, Y} # 15720,

since Y is assumed to be in F 1(,72). Hence, YU # 157207
By the inductive hypothesis, we have

l - t
W (157207 # 0 (VLU).
Now we consider the case that g = 1. Using the same
argument as for g = 0, we take the negation of ), and show
5 P, 1S @ ONE-to-one mapping from 7, 1(372) to ]—ié_m) - Note that

(m) _ (m)
Fo = 7§

and the correspondence between X and X is one-to-one. Thus'

is one-to-one if g5 = 1. This completes the proof. O
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Using Theorem 6, we can construct the coding algorithms
of a PS-code C**™ for a self-uncorrelated prefix () by com-
bining the algorithms for Pg and one of the transformations
TQ— P and To_ . The PS-code Cg +m) constructed inthis

)

way is a subset of gg“ *™) because of the existence of a one-

to-one mapping from F I(;Z) to ]__gn)' In what follows, we will
show that Cg“ ™) equals gg“ tm),

Now let us assume that ¢, = 0, and consider a conversion
TQe—p; from Fézm) to .7—"1(3? as follows: by scanning W ¢
FEP from right to left, look for pattemn Pg in W. If Pe is
found as a subsequence of W, then it will be replaced by Q.
We continue the above operation until we reach the left-end
of W. The obtained sequence is denoted by 7. p,, (W). This
-conversion does not produce Pg at any position in W which
has been already scanned. Therefore, the obtained sequence
after the conversion belongs to 7:1(32)- That is, Tg.—p, is a
mapping from .7-'6(2"1) into F gg). If ¢ = 1, replace Py by
Pg. Then we similarly obtain a conversion To—p; Which
transforms .’Fg") to ]-"I(D_TZ). Now we define a mapping \II(E?m) (X)
as follows:

) To—Ps(X), if g =0
m ,
L) (X)=

(X), ifq =1

TQ—Ps
From the definition, \Ilg")(X ) is a mapping from ]:C(;)m) to
F 1(372)' Let us note that

To 5(X) = Tg_p, (7) (28)

Theorem 7: If @ is self-uncorrelated, then \Ilg”) is a one-
to-one mapping from Fc(;)m) to ]-"1(32).

Proof: Using the same arguments as in Theorem 6, we
show that \I!g") is one-to-one for m < k. Next, assuming that
the statement holds for m = ¢, we will now prove that it also
holds for m = t-+1 with the condition ¢; = 0. Let two distinct
sequences X = (21,%2, -, &ry1) a0d Y = (y1,y2, -, Yr41)
be in fg +1). Using the same notation as in Theorem 6, X and
- Y can be written as z1 X’ and y,Y”, respectively. Let us write

T (X') = MxRx (29)
v (Y") = My Ry (30)

where Mx and My are sequences of length & — 1, and Rx
and Ry are sequences of length ¢ + 1 — k. Before the last step
of the conversion 7g._ p,,, sequences X and Y must have been
converted into z1 Mx Rx and 3, My Ry, respectively. Then,
Rx # Ry or Rx = Ry may occur. In the former case, it
always holds that \IISH)(X ) # \IJSH)(Y) since neither Rx
nor Ry changes when converting the last part of X and Y.
Hence, the only case where \Ilg"’l)(X) = \I/8+1)(Y) holds is
the latter case.

Assume that Ry = Ry. If z1Mx = y1 My, then
\Ilg) (X" = \I!g) (Y”) follows. From the inductive hypothesis,
X’ = Y’ holds. Hence, X = Y holds since z; = y;. This
contradicts X # Y. Thus z1 Mx # y; My always holds when
Rx = Ry.

2165

Now, we assume that z1Mx # yiMy. Without loss of
generality, it is sufficient to consider the following four cases:

) 1My =Fg and y1 My = Q.
i) z1Mx =Pz and y1My #Q.
i) z1Mx # FPg and y1 My = Q.
) z1Mx # P, x1Mx #Q, ynMy # FPg,
My # Q.
In cases iii) and iv), neither x;Mx nor y1 My change at

the last step of conversion Tg..p,. From the assumption,
1 Mx # y1 My holds. Hence, we have

I (X) £ 95T (1),

and

In case ii), £1 Mx is converted into Q, while y; My keeps the
same values. Hence,

U (X) # vg )

also follows.

The only remaining case to be considered is case i). We
aim to show that case i) never holds if YV € ]:gﬂ). Let
us break Y’ into two parts, Yy = (yo2,---,ux) and Y =
(Yr+1, ", Yt+1)- Since YV € ]-"SH),leM is not equal to
@ while y; My = @, which implies that a Pg exists with
overlapping Y; and Yp. That is, a suffix of Yy, equals a
prefix of Py and a suffix of Py equals a prefix of Yg. Let
Y, be the sequence obtained after converting the suffix of
Y into the corresponding prefix of Q. And let Y} be the
sequence obtained after converting the prefix of Yy into the
corresponding suffix of Q. If Y}, Y} contains no Pg, then it
equals My Ry . Hence, a suffix of My equals a prefix of Q.
Even if Py is found again before the scan reaches the left end
of Y, YE, a suffix of My equals a prefix of @) after all. This
contradicts the assumption that Q o Q = 1051,

If ¢ = 1 and Q is replaced by @, we can use the same
arguments as for ¢ = 0 to show that TG Pg is a one-to-one
mapping from FI™ to F },’;”.

Since @ = 0, from the arguments developed above, we have
that TGPy is a one-to-one mapping from ]_-%m) to ]-'},7:)‘
Using (28) and

(m) _ Z0m)
F& = 7§

\118) is proved to be a one-to-one mapping from Fézm) to
Fm. O
Corollary 1: Let Pg be 1°710 and let @ be a sequence of
length k. If Q o Q = 10*~%, then
NFG = |, for m > 1.

Proof: According to Theorem 6, there exists a one-
to-one mapping from .7-'1(3’2) 1o Fg”). Thus, the inequality
|]-'I(,Z)| < Ifém)| always holds. If Q o @ = 10F~1, there
exists a one-to-one mapping from ]:gn) to .7-"1(32) according to
Theorem 7. Hence, fg") has the same size as 7:1(:;1)- O
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VI. CONCLUSION

Encoding and decoding algorithms for a class of MPS-codes
have been presented. The key idea used in the algorithms is to
partition recursively the set 7 1(32) of the constrained sequences
of length m in which pattern Pg = 1¥710 does not appear,
from which it is straightforward to obtain the algorithms.

‘Moreover, a method to transform f (™) into Fp (™) with a
self-uncorrelated prefix P has been obtamed Based on this
method, the algorithms have been extended to construct MPS
codes with arbitrary self-uncorrelated prefixes. The obtained
algorithms provide us a variety of options of selecting a prefix
since the majority of prefixes used in practical applications of
frame synchronization [14] are known to be self-uncorrelated.

The time complexity of the algorithms is proportional to the
code length n since we can adopt one of the linear-time string
matching algorithms [15] for the transformation.
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