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Abstract. We consider some examples of two-user access channeldahat ple
in information theory. We concentrate on two non-trivial aets, the 2-adder and
the switching channel model, respectively. For these oblamodels we discuss
the capacity for the feedback and feedback free situatiaalb give examples of
coding methods that approach or achieve the capacity.
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1. Introduction

Information theory considers the capacity or maximum miuinf@rmation of multi-
access channels (MAC) for a fixed amount (normally 2) of ussithough the practical
importance is limited, a number of interesting basic ideas@ncepts can be developed.
In the Introduction we give the capacity regions for the twaer access channels. The
general model is given in Figure 1.

The channel capacity for a two-access channel without feeldis given in the
following theorem, due to Ahlswede [1] and Liao [2].

Theorem 1. The capacity of a memoryless two-access channel is therelasithe
convex hull of all rate pairs Rand R satisfying
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Figure 1. The two input multiple access channel model
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Figure 2. The two input multiple access channel model with feedback

R < |(X1;Y | Xz) (1a)
Ro <1(X2;Y | X1) (1b)
Ri+R < (Xl,XZ;Y) (1c)

for a probability product distribution xq,x2) = f(x1) f(x2).

Cover and Leung [3] found an achievable rate region for tilserdie memoryless
MAC with feedback, using superposition coding. Subsedugmillems [4] showed that
for MACs for which at least one input is a function of the outjuand the other input
(class D), the region found by Cover and Leusdeed the feedback capacity region.

Theorem 2. The feedback capacity region of MACs in class D is given by

R(D) = {(Rl,Rz) .

0 <Ry <I(Xg;Y | X,U) (2a)
0< R2§|(X2;Y|X1,U) (2b)
Ri+ R <1(X1,X2,Y) = H(Y)} (2¢)

for P(u,x1,%2,y) = P(u)P(xy | u)P(x2 | U)P(y | X1,X2),
U < min([X|-[Xz| +1,[Y|+2),

where Ru,x1,X2,Y) is a joint probability distribution and Xdenotes the alphabet size of
the random variables U, Xand X, respectively.

This capacity region is sufficient for the types of multipkxass channels that we
consider in the next sections. One of the information thézakproblems is the evalua-
tion of (1) and (2) for different types of channels. An intgieg problem is the design
of coding methods that achieve or approach the capacitysel'heoblems are in gen-
eral very difficult and only to solve for small examples andhaited number of inputs.
Another mathematical problem is to calculate the maximurtaiobble rate when the
decoding error probability is exactly 0.

Definition 1. The zero-error capacity of a channel is the number of bitsgh@nnel use
that can be transmitted with zero probability of error.
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Figure 3. Four equivalence classes of binary input 2-access channels

The next section considers the different possible noratrdhannel models that can
occur. Then, we discuss the capacity and coding techniqueké only two non-trivial
cases: the 2-adder and the switching channel.

2. Access Models

In [5], we consider the possible equivalence classes ofrpimput 2-access channels.
Two 2-access channels are equivalent if one channel canrverted into the other by
renaming the inputs and/or outputs of the channel. It is éasge that four non-trivial
classes remain, see Figure 3.

The output of the access channels can be 2-, 3-, or 4-argcteply. For channel 3
(b) the outputis 4-ary, and thus the inputs are uniquelyifgetby the output. Channel 3
(c) has a binary output. By using time sharing (Time Divisidultiple Access, TDMA),
the maximum sum rate equal to 1 bit per transmission can biewath The channels
from Figures 3 (a) and (d) are ternary output channels. Thdaman output entropy
is less than or equal to I9§. We conclude that the channels from Figure 3 (a) and (d)
are the two channels that need further investigation witheet to channel capacity. We
will also investigate coding techniques that achieve thpacdy of these channels for the
situations: no feedback; feedback; zero error probabiline channel models of Figure
3 can also be seen as combinational circuits. This is ikttt in Figure 4, where we
give several input/output combinations.

3. The 2-Adder Channel

The ADD+CARRY channel from Figure 4 is known as the 2-addanctel. Its transition
diagram is given in Figure 5.

We first consider the capacity region as given in (1). Then iseuss the feedback
capacity region, followed by some examples of error fre@eascodes. Using the product
input probability distribution, we can evaluate (1) as:

Ri < I(X1;Y [ X2) =H(X [ X2) —H(X1|Y,Xz) =H(X1) <1 (3a)
Ro < I(X2Y [ X1) =H (X2 [ X1) —H(X2[ Y, X1) =H(Xz) <1 (3b)
RI+R < |(X1,X2;Y) = H(Y) — H(Y | Xl,XZ) = H(Y) (3C)

The capacity region is given in Figure 6.
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Figure 5. Transition diagram for the 2-adder channel
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Figure 6. Capacity region for the binary 2-adder channel

The point(R;,R) = (1,0.5) can be achieved as follows. Suppose that transmitter
1 transmits information witP(0) = P(1) = 0.5. Hence] (X1;Y | X2) = H(X1) —H (X4 |
Y, X2) = 1 bit per transmission. For the other user the channel lotksdn erasure
channel, see Figure 7. The capacity for this channeli$@ per transmission. Accord-
ing to classical information theory, we can achieve thigldrthannel capacity with er-
ror probability going to zero. Hence, the poir{ts 0.5) and (0.5,1) or R + Rx = 1.5
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Figure 7. Binary erasure channel for user 2

bits/transmission can be achieved. The points on the straightchm also be achieved
by using time sharing or Time Division Multiple Access (TDMA

ForP(x; = 0) = P(xz = 0) = 3, the output probabilitieB(y = 0) = P(y=2) = 1,
respectively. Hence, the entropl(Y) = 1.5 bit/channel use. In general, one can show
[6], that for any product input distribution for bina¥s and binaryX,, the maximum out-
put entropyH (Y) = 1.5 bit/channel use. The proofis based on taking partial derivative
This shows that Figure 6 indeed represents the capacitgrregithe 2-adder channel.
The capacity region specifies the total amount of infornmetti@t can be transmitted with
a vanishing small probability of error. In literature, mamgearchers also investigate the
development okrror free codes for particular multi-access situations. We now give a

example of these efforts.

Example 1. For the 2-adder channel, Figure 5, the following code achges total effi-
ciency of0.5log, 6 = 1.29 bits/transmission. The code is uniquely decodable.

Table 1. Code book for the 2-adder channel

Itis very difficult to improve on this short length codebodke problem is to design
codebooks for both users such that the sum of two codewovds gi unique outpux.
Coebergh and van Tilborg [7], developed a strategy with sats130565. The so called
zero-capacity region is still an open problem. The obtaimdk efficiency can be used
as a lower bound to the zero-error capacity region. Sinceateepoints(0.5,1.29) and
(1.29,0.5) can be achieved, the connecting straight line can also hiewth by using
the time sharing argument.

Gaarder and Wolf [8] showed that feedback may increasesiecity region of the
multi-access channel. They used the 2-adder channel as andeating example and
developed a simple two stage coding strategy.

e During the first stage the channel accedttndependent input digits from both
users. On the avera% ambiguous receptions are known to both users, due to
the presence of the feedback links. Note: we can also assamntission until
exactly% ambiguous transmissions occur (vaijue 1).
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Figure 8. The input/output relation for the 2-adder channel dependeb

e After a block ofN transmissions, both encoders transmit at the cooperdtae-c
nel capacity of log|Y| = log, 3 bits per transmission in order to resolve the re-
ceiver’'s uncertainty. In total cooperation, they can cleabg output to be 0, 1, or
2.

The sum rate is thus expected to be on the average

2N : o
R= ————— = 1.52 bit/transmission

N+ IogiS

For the feedback situation we can use the capacity regiomfased in (2). Using
the properties of the 2-adder channel, we obtain

0§R1§|(X1;Y|X2,U)=H(X1|U) (4a)
0< Ry <1(%iY [ X1,U) = H(X |U) (4b)
RI+R < |(X1,X2;Y) = H(Y) (4c)

for P(u,x1,%2,y) = P(U)P(x1 | u)P(x2 | u)P(y | x1,%2), [U[<5.

The problem here is that we do not know the distribution nerdhrdinality of the ran-
dom variableJ. We will give an intuitive interpretation df and show its practical im-
portance.

From [6], we know that, without feedback, for any productubpistribution for
binary X; and binaryXy, the maximum output entropi (Y) = 1.5 bit/channel use.
However, the maximum value for H(Y) id(Y) = log, 3 bit for equally likely outputs
Y. We show, that the variablé plays a crucial role in the attempt to increase the output
entropy.

In Figure 7, we illustrate the input distribution fo€, X, andU, using the unit
squares, that show th®(Y =0) =P(Y =1) =P(Y =2) = % is indeed possible for
A =0.2113. The lengths of the intervals along the unit squaregspond to the respec-
tive probabilities. FoA = 0.2113H(Y) =logy3 = 1.584 andH (X1) = H(X2) =h(A) =
0.744. Hence, the sum ral®(X;) + H(X2) = 1.488. Willems [9] optimized the sum rate
and found that foh = 0.24,H(Y) = 2,h(A) = 1.5822 bitgtransmission.

Suppose that both users hammmon knowledgd@hen, the two users can cooperate
and use thé&) to create an artificial channel to the receiver and trankfuitY) bits of



Figure 9. Artificial channel fromU toY

information per channel use about the common knowledgef-ggee 9. The capacity
Cu_y of the channel is

-2 (in( )

The question is: how do the two users get their common knayd@®uppose that user
1 and user 2 use the unit square for 0 for N subsequent transmission. After these
N transmissions, the receiver has(2 — A)N bits of uncertainty whether the input pair
(X1,%2) = (0,1) or (X1,X2) = (1,0) occurred. Since we assume feedback, the trans-
mitters know this uncertainty. In the following block &F transmissions, they use the
artificial channel to transmit this common knowledge to theeiver

This leads to the following strategy of transmission:

e repeat the transmission, i.e., the same input symbol, asdsrerasure§/ = 1)
occur. This reduces the efficiency({tb— 2A(1—A));

e use a constructive feedback scheme for the binary symnetaicnel with tran-
sition probability f = 1— (A2/(A®+ (1—\)?)). This strategy will then deliver
u.

We are able to transmit the uncertainty of block 1 in the next blockl, if
Cu_y > 2A\(1—A). For this, we use the constructive feedback scheme thatllSdjia
[10] developed. The performandg; curve for this scheme, where each erroneously re-
ceived digit is repeated 4 times, is given by the straiglg lin

0.25—f

Rs= 9.25_0.0804

-0.5966 bi/transmission

ForA =0.76252A(1—A) < (1-2A(1—-A))Rs, and the error probability i) goes to
zero for large values dfi. For this value oh,2h(A) = 1.5819. A more complex strategy
could yield the optimum sum result of884 bits/'transmission, see Zigangirov [11].

We now give a suboptimal strategy, that operates beyondiingé b5 bits/transmission.
The coding method can be described as follows.

e Both users transmit a block &f pairs of symbols (i.e., |2 transmissions), each
with probability%. For every pair, they select the same values for the binaiy va
ableU. For the first block they may seleat= 0 for N pairs. The inpytoutput re-
lation is given in Figure 10. We have 1 bit of uncertainty & thceiver when we
receive the symbols 11, 01, 10, 21 or 12. This uncertaintyisowith probability
%. Hence, a block generates on the aver%bits of uncertainty.
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Figure 11. Artificial channel with feedback for jointly transmittingé uncertainty

e In the next block we transmiNl pairs of symbols as follows. We again use the
random variabléJ, which in our case is binary. The uncertainty that occurs in a
block, known at bothtransmitters, can be described with the averag@olbits.
How do we transmit this uncertainty to the receiver? Depagpain the uncer-
tainty (which is now considered to be common information éotkansmitted)
both encoders select the same input scheme fe10, or the scheme fan = 1,
see Figure 10. By doing this, the transmitters create a eidontransmitting
the uncertainty to the receiver, see Figure 11. The capatitige channel i%
bits/transmission.

e The decoder for blockfirst decodes the uncertainty for the previous blbekl.
Knowing this uncertainty, the decoder can reconstruct iuesimitted messages
for this particular block — 1.

We can transmit the uncertainty for the previous block vgilhits/transmission via
the artificial channel ankbg,3 bits in total cooperation after the end of each block. Since
in a block of length &, we haveZ! bits of uncertainty and we resolve onf bits,
the Iast% bits are resolved in total cooperation, i.e.,ﬁ@@ transmissions. The overall
efficiency is

= &g?f = 1.54 bits/transmission
2N+ TTog;3
As in the non-feedback situation, for the feedback situatve can also design cod-
ing methods witlzero error For this, we replace the two blocks in Figure 10 as follows
Since both users are assumed to have full feedback, they kmowmbiguity of
the receiver after every transmission (3 digits). This ayalty is at maximum 1 bit of
information. In the next transmission they can both decideusing the same = 0



Figure 12. Summary of the capacity regions for the binary erasure MAC
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Figure 14. A distance 2 code for the interference channel

or u =1, depending on the ambiguity. The outputs of the block amseh in such a
way that the receiver camlwaysdetect the particular block used by the transmitters and
thus solve the ambiguity of the previous triple. The ovesalh rate of this scheme is
R= % = 1.33 bhitg/transmission. It is a challenge to improve the idea of thesgmeed
scheme. For this, we have the freedom to incréid$end the length of the codewords.
In[12] Zhang et al., constructed a more complicated methatldchieves an overall rate
of 1.38 bits/transmission.

In Figure 12 we summarize the capacity regions found for tad@er channel. For
the zero-error region we use the Kasami-Lin lower bound.[13]

Itis difficult to find good applications for the 2-adder chahi\n interesting idea is
to see the 2-adder channel as an interference channel viifivadvhite Gaussian noise.
A problem is to design error correcting/detecting codegsHar application. We give an
example of a distance 2 block code in Figure 14. Researchdmitection, using trellis
codes, can be found in [14,15].
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Figure 16. Capacity region for the switching channel

4. The Switching Channel

The binary input ternary output channel from Figure 15 iswnas the switching chan-
nel. It was first described by Vinck in [16]. The transitioragram is given in Figure
15.

We first consider the capacity region as given in (1). Then iseuss the feedback
capacity region, followed by some examples of error freesscodes. For the two-adder
channel, with the product input probability distributiave can evaluate (1) as:

Ri < 1(XyY [ X2) = H(X1 | X2) = H(X1) = h(A) (1a)
Ro < I(X2;Y [ X1) =H(Xz2 [ X1) —H(X2[ Y, X1) =AH(X2) <A (1b)
Ru+ R < 1(Xe, Xo:Y) = H(Y) — H(Y | X1, X2) = H(Y) < A+ h(A) (10)

whereh(-) is the binary entropy function. The capacity region is giireRigure 16.

The capacity region can be achieved in the same way as for-&ugl@r channel.
User 1 transmits with rath(A), and is uniquely decodable by the receiver. For User 2
we then have a binary erasure channel with transition pribtyafil — A) and capacity.
This together gives the sum rater h(A). Note that forA = % the sum rate equals the
total cooperation value lg@. For the switching channel from Figure 15 feedbdoles
notincrease the capacity region, since



Ri<H(X:|U) <} Raih(A) <,
Re <H(X2|U) < % Rh(ai) < h(@),

Ri1+ Rz < 1(X1,X2;Y) =H(Y) <@+ h(@),

wherea; =P(X;=1|u=i), Ai=P(Xy=1|u=1i), R =P(u=i). Thisis an example,
where the feedback does not help to improve the maximumrtrasgn rate.

Example 2. P. Vanroose designed code constructions for the switchiagmel in [17].
These constructions can be explained as follows. Suppasegér 1 specifies up {om—

k) positions in a binary length n vector to be 0. User 2 transmai®ctor of length n from
alinear code. At the receiver, the 0-positions are recogaias the erased positions from
theo symbol. Hence, if the remaining non-erased part uniquedniifies the transmitted
vector from user 2, then the decoding problem at the recaigarbe solved. For error
correcting codes with minimum distance-fk+ 1 (Singleton bound), a k erasures can
be decoded. The total efficiency would then be

R—=— ;4_ % |0922nh(ﬂ77k) :=A+h(}d),

which equals the capacity boundary. The proof can also bergissing combinatorial
arguments.

Suppose that we havekax n binary matrixK. We letX; specify (n—k) columns
by selecting at the output the symbol. User two transmits a linear combination of the
k rows of K. If the specified columns are such that the remaining parhefrbatrix
has rankk, then the input oiX, can be reconstructed from The question is: what is
the maximum number of selectioixg can make for a particular matrix, such that the
remaining part has rark? The answer can be given using the following steps:

1. the numbeF of invertiblek x k matricesF = (2K —1)(2¢—2)... (2k— 2k 1);

2. a specification allows:(2Xk. F matrices;

3. F >0.28- (2K, see Tolhuizen [18];

4. for largen, the average number of allowed sequences per matrix is
2nh(“%k)2(nfk)k|:

o > 0.28.2"(""),

From this it follows that at least one matrix must have moeatthe average number
of allowable sequences and thus the normalized sum rate

Ri+Ro> If + } log,0.28- 2nh(%‘) iy I—(-l- h (ﬂ) ,
n n n n

can be obtained with zero error probability.
From the above we see that we have an example whegedtrer, the feedback and
the 0-error capacity regions are the same!



5. Extensions

Extensions of the two user Multiple Access Channel go intess directions. We can
increase the number of users, the size of the input alphaldetiao the channel transition
diagram can be extended.

5.1. Extension 1: Binary input T-user

Example 3. For the binary input adder MAC with E 3, we have the following code
with efficiencyl.5 bits/transmission. Length 2 code for theT3 binary adder channel:

x1 € {00,11}, x2 € {10,01}, x3 € {00,10},
y = X1+ X2+ X3 € {10,20,01,11,21,31,12, 22}.

Example 4. The following code is again for the binary input adder MAC=T3. The
sum rate i.‘sﬂ,&926 = 1.53bits/transmission. Length 3 code for theT3 binary adder
channel:

x1 € {000,111}, x2 € {110,001}, x3 € {000,001,010,100,011,101}.
y = X1+ X2+ Xs € {001,110,112,221, 002 111 113 223,011,120 122 231, 101,
210,212,321,012 121,123,232 101 211,213 322}.

The code is uniquely decodable. More results can be foundissBet al. [14].
5.2. Extension 2: M-ary input two-user access channel

Two classes of two user channels withary inputs are given in [16]. The output of the
first channel indicates the subset of input symbols, i.e.,

Y= {XlaXZ}v XLXZG {Ovlva_l}

The receiver does not know the origin of the two symbols if ithyguts are different.
There are('\é') of these ambiguous subsets, see also Figure 17 (a). If hmiksiare equal,

then only one letter is detected. Hence, the cardinalithefdutput igY| = (“é') +M=

w. This channelis referred to as thkary frequency detecting channel. The second

M-ary channel model B gives as output the arithmetic sum oiftpet letters, i.e.,
Y = X1+ Xg, X1,X2€4{0,1,...,M —1}.

For this channel the output cardinality|¥§ = 2M — 1. This channel is referred to as
the adder channel. In Figure 17 we give the input/outputiceia for both channels when
M = 3. ForM = 2 all channels reduce to the well-known 2-adder MAC from Fégd.
The channels (c) and (d) are the erasure and the collisiamehaespectively.

The channels in Figure 17 A and B are in class D and the maximaioevof
Ri+Re < 1(X1,X2;Y) = H(Y) is log, w and log(2M — 1), respectively. This sum
rate can be obtained fov > 5, [U| = M for the A channel and/ > 2, |U| = 2 for
the (b) channel, respectively. In the evaluation of (2), needs the maximizing proba-
bility P(u,xq,x2,y), which could be difficult to obtain for even small valuesMf The
capacities for the channels in Figure 17 (c) and (d) are opaolgms.
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Figure 17. Examples of two usevl-ary input channels
5.3. Extension 3: M-ary input T -user access channel

In [19] Chang and Wolf introduce th&-userM-frequency noiseless multiple access
channel with (A) and without (B) intensity information. Botodels use the same input
alphabet for each of the users.

For the B channel, the output at each time instant is a symbihwdentifies which
subset of integers occurred as inputs to the channel, budtawstmany of each integer
occurred. Chang and Wolf showed that capacity of the cotipersi-ary OR channel
approached/! — 1 bits per transmission. A simple time division method aebsethe
capacity of(M — 1) bits/transmission for large.

Assume that we divide thE users into groups of sizéM — 1). Within one group the
users are numbered from 1 upNb— 1. Useri, 1 <i <M — 1, uses as the transmitting
frequenciedy andf;. At the receiver, we are able to detect whether usses frequency
fo or fj and thus we transmi¥ — 1 bits per transmission. Note that here, we have a
“central” frequencyfy.

Example 5. ForM =3, % groups of users use the pairf, f1) and(fo, f2), respectively.
The output of the channel i, f fo, f1), (fo, f2), or (f1, f2). Note that the input of the
channelis uniquely decodable.

For the A channel the output indicates which subset of imegrs transmitted and
also how many of each integer were transmitted.

6. Conclusions

We learn that the multiple access channel leads to intagestiding problems. An open
problemis the development of fixed length coding for the besik situation. In addition,
zero error codes are to be improved and new applications developed.
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