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Abstract. We consider some examples of two-user access channels that play a role
in information theory. We concentrate on two non-trivial models, the 2-adder and
the switching channel model, respectively. For these channel models we discuss
the capacity for the feedback and feedback free situation. We also give examples of
coding methods that approach or achieve the capacity.
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1. Introduction

Information theory considers the capacity or maximum mutual information of multi-
access channels (MAC) for a fixed amount (normally 2) of users. Although the practical
importance is limited, a number of interesting basic ideas and concepts can be developed.
In the Introduction we give the capacity regions for the two-user access channels. The
general model is given in Figure 1.

The channel capacity for a two-access channel without feedback is given in the
following theorem, due to Ahlswede [1] and Liao [2].

Theorem 1. The capacity of a memoryless two-access channel is the closure of the
convex hull of all rate pairs R1 and R2 satisfying
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Figure 1. The two input multiple access channel model
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Figure 2. The two input multiple access channel model with feedback

R1 ≤ I(X1;Y | X2) (1a)

R2 ≤ I(X2;Y | X1) (1b)

R1 +R2 ≤ I(X1,X2;Y) (1c)

for a probability product distribution f(x1,x2) = f (x1) f (x2).

Cover and Leung [3] found an achievable rate region for the discrete memoryless
MAC with feedback, using superposition coding. Subsequently, Willems [4] showed that
for MACs for which at least one input is a function of the output Y and the other input
(class D), the region found by Cover and Leungis indeed the feedback capacity region.

Theorem 2. The feedback capacity region of MACs in class D is given by

R(D) := {(R1,R2) :

0≤ R1 ≤ I(X1;Y | X2,U) (2a)

0≤ R2 ≤ I(X2;Y | X1,U) (2b)

R1 +R2 ≤ I(X1,X2;Y) = H(Y)} (2c)

for P(u,x1,x2,y) = P(u)P(x1 | u)P(x2 | u)P(y | x1,x2),

|U | ≤ min(|X1| · |X2|+1, |Y|+2),

where P(u,x1,x2,y) is a joint probability distribution and Xi denotes the alphabet size of
the random variables U, X1 and X2, respectively.

This capacity region is sufficient for the types of multiple access channels that we
consider in the next sections. One of the information theoretical problems is the evalua-
tion of (1) and (2) for different types of channels. An interesting problem is the design
of coding methods that achieve or approach the capacity. These problems are in gen-
eral very difficult and only to solve for small examples and a limited number of inputs.
Another mathematical problem is to calculate the maximum obtainable rate when the
decoding error probability is exactly 0.

Definition 1. The zero-error capacity of a channel is the number of bits perchannel use
that can be transmitted with zero probability of error.
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Figure 3. Four equivalence classes of binary input 2-access channels

The next section considers the different possible non-trivial channel models that can
occur. Then, we discuss the capacity and coding techniques for the only two non-trivial
cases: the 2-adder and the switching channel.

2. Access Models

In [5], we consider the possible equivalence classes of binary input 2-access channels.
Two 2-access channels are equivalent if one channel can be converted into the other by
renaming the inputs and/or outputs of the channel. It is easyto see that four non-trivial
classes remain, see Figure 3.

The output of the access channels can be 2-, 3-, or 4-ary, respectively. For channel 3
(b) the output is 4-ary, and thus the inputs are uniquely specifyed by the output. Channel 3
(c) has a binary output. By using time sharing (Time DivisionMultiple Access, TDMA),
the maximum sum rate equal to 1 bit per transmission can be achieved. The channels
from Figures 3 (a) and (d) are ternary output channels. The maximum output entropy
is less than or equal to log23. We conclude that the channels from Figure 3 (a) and (d)
are the two channels that need further investigation with respect to channel capacity. We
will also investigate coding techniques that achieve the capacity of these channels for the
situations: no feedback; feedback; zero error probability. The channel models of Figure
3 can also be seen as combinational circuits. This is illustrated in Figure 4, where we
give several input/output combinations.

3. The 2-Adder Channel

The ADD+CARRY channel from Figure 4 is known as the 2-adder channel. Its transition
diagram is given in Figure 5.

We first consider the capacity region as given in (1). Then we discuss the feedback
capacity region, followed by some examples of error free access codes. Using the product
input probability distribution, we can evaluate (1) as:

R1 ≤ I(X1;Y | X2) = H(X1 | X2)−H(X1 |Y,X2) = H(X1) ≤ 1 (3a)

R2 ≤ I(X2;Y | X1) = H(X2 | X1)−H(X2 |Y,X1) = H(X2) ≤ 1 (3b)

R1 +R2 ≤ I(X1,X2;Y) = H(Y)−H(Y | X1,X2) = H(Y) (3c)

The capacity region is given in Figure 6.
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Figure 5. Transition diagram for the 2-adder channel
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Figure 6. Capacity region for the binary 2-adder channel

The point(R1,R2) = (1,0.5) can be achieved as follows. Suppose that transmitter
1 transmits information withP(0) = P(1) = 0.5. Hence,I(X1;Y | X2) = H(X1)−H(X1 |
Y,X2) = 1 bit per transmission. For the other user the channel looks like an erasure
channel, see Figure 7. The capacity for this channel is 0.5 bit per transmission. Accord-
ing to classical information theory, we can achieve this single channel capacity with er-
ror probability going to zero. Hence, the points(1,0.5) and (0.5,1) or R1 + R2 = 1.5
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Figure 7. Binary erasure channel for user 2

bits/transmission can be achieved. The points on the straight line can also be achieved
by using time sharing or Time Division Multiple Access (TDMA).

For P(x1 = 0) = P(x2 = 0) = 1
2, the output probabilitiesP(y = 0) = P(y = 2) = 1

4,
respectively. Hence, the entropyH(Y) = 1.5 bit/channel use. In general, one can show
[6], that for any product input distribution for binaryX1 and binaryX2, the maximum out-
put entropyH(Y) = 1.5 bit/channel use. The proof is based on taking partial derivatives.
This shows that Figure 6 indeed represents the capacity region of the 2-adder channel.
The capacity region specifies the total amount of information that can be transmitted with
a vanishing small probability of error. In literature, manyresearchers also investigate the
development oferror freecodes for particular multi-access situations. We now give an
example of these efforts.

Example 1. For the 2-adder channel, Figure 5, the following code achieves a total effi-
ciency of0.5log26 = 1.29bits/transmission. The code is uniquely decodable.

Table 1. Code book for the 2-adder channel

11 10 01

00 11 10 01

11 22 21 12

X1

X2

It is very difficult to improve on this short length codebook.The problem is to design
codebooks for both users such that the sum of two codewords gives a unique outputY.
Coebergh and van Tilborg [7], developed a strategy with sum rate 1.30565. The so called
zero-capacity region is still an open problem. The obtainedcode efficiency can be used
as a lower bound to the zero-error capacity region. Since therate points(0.5,1.29) and
(1.29,0.5) can be achieved, the connecting straight line can also be achieved, by using
the time sharing argument.

Gaarder and Wolf [8] showed that feedback may increases the capacity region of the
multi-access channel. They used the 2-adder channel as a demonstrating example and
developed a simple two stage coding strategy.

• During the first stage the channel acceptsN independent input digits from both
users. On the averageN2 ambiguous receptions are known to both users, due to
the presence of the feedback links. Note: we can also assume transmission until
exactly N

2 ambiguous transmissions occur (valuey = 1).



0 1

1 2

X2

1

0

0 1
X1

u = 0
P(u = 0) = 1

2

2 1

1 0

X2

1

0

0 1
X1

u = 1
P(u = 1) = 1

2

1−λ λ

λ

1−λ

Figure 8. The input/output relation for the 2-adder channel dependent onU

• After a block ofN transmissions, both encoders transmit at the cooperative chan-
nel capacity of log2 |Y| = log2 3 bits per transmission in order to resolve the re-
ceiver’s uncertainty. In total cooperation, they can choose the output to be 0, 1, or
2.

The sum rate is thus expected to be on the average

R=
2N

N+
N
2

log2 3

= 1.52 bit/transmission.

For the feedback situation we can use the capacity region as defined in (2). Using
the properties of the 2-adder channel, we obtain

0≤ R1 ≤ I(X1;Y | X2,U) = H(X1 |U) (4a)

0≤ R2 ≤ I(X2;Y | X1,U) = H(X2 |U) (4b)

R1 +R2 ≤ I(X1,X2;Y) = H(Y) (4c)

for P(u,x1,x2,y) = P(u)P(x1 | u)P(x2 | u)P(y | x1,x2), |U | ≤ 5.

The problem here is that we do not know the distribution nor the cardinality of the ran-
dom variableU . We will give an intuitive interpretation ofU and show its practical im-
portance.

From [6], we know that, without feedback, for any product input distribution for
binary X1 and binaryX2, the maximum output entropyH(Y) = 1.5 bit/channel use.
However, the maximum value for H(Y) isH(Y) = log23 bit for equally likely outputs
Y. We show, that the variableU plays a crucial role in the attempt to increase the output
entropy.

In Figure 7, we illustrate the input distribution forX1,X2 andU , using the unit
squares, that show thatP(Y = 0) = P(Y = 1) = P(Y = 2) = 1

3 is indeed possible for
λ = 0.2113. The lengths of the intervals along the unit squares correspond to the respec-
tive probabilities. Forλ = 0.2113,H(Y) = log23 = 1.584 andH(X1) = H(X2) = h(λ) =
0.744. Hence, the sum rateH(X1)+H(X2) = 1.488. Willems [9] optimized the sum rate
and found that forλ = 0.24,H(Y) = 2,h(λ) = 1.5822 bits/transmission.

Suppose that both users havecommon knowledge. Then, the two users can cooperate
and use theU to create an artificial channel to the receiver and transmitI(U ;Y) bits of
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information per channel use about the common knowledge, seeFigure 9. The capacity
CU→Y of the channel is

CU→Y = (1−2λ(1−λ))

(

1−h

(

λ2

λ2 +(1−λ)2

))

.

The question is: how do the two users get their common knowledge? Suppose that user
1 and user 2 use the unit square foru = 0 for N subsequent transmission. After these
N transmissions, the receiver has 2λ(1−λ)N bits of uncertainty whether the input pair
(X1,X2) = (0,1) or (X1,X2) = (1,0) occurred. Since we assume feedback, the trans-
mitters know this uncertainty. In the following block ofN transmissions, they use the
artificial channel to transmit this common knowledge to the receiver

This leads to the following strategy of transmission:

• repeat the transmission, i.e., the same input symbol, as long as erasures(y = 1)
occur. This reduces the efficiency to(1−2λ(1−λ));

• use a constructive feedback scheme for the binary symmetricchannel with tran-
sition probability f = 1−

(

λ2/(λ2+(1−λ)2)
)

. This strategy will then deliver
U .

We are able to transmit the uncertainty of blockI − 1 in the next blockI , if
CU→Y > 2λ(1−λ). For this, we use the constructive feedback scheme that Schalkwijk
[10] developed. The performance,Rs curve for this scheme, where each erroneously re-
ceived digit is repeated 4 times, is given by the straight line

Rs =
0.25− f

0.25−0.0804
·0.5966 bit/transmission.

For λ = 0.7625,2λ(1− λ) < (1−2λ(1−λ))Rs, and the error probability inU goes to
zero for large values ofN. For this value ofλ,2h(λ) = 1.5819. A more complex strategy
could yield the optimum sum result of 1.584 bits/transmission, see Zigangirov [11].

We now give a suboptimal strategy, that operates beyond the point 1.5 bits/transmission.
The coding method can be described as follows.

• Both users transmit a block ofN pairs of symbols (i.e., 2N transmissions), each
with probability 1

3. For every pair, they select the same values for the binary vari-
ableU . For the first block they may selectu = 0 for N pairs. The input/output re-
lation is given in Figure 10. We have 1 bit of uncertainty at the receiver when we
receive the symbols 11, 01, 10, 21 or 12. This uncertainty occurs with probability
2
3. Hence, a block generates on the average2N

3 bits of uncertainty.
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• In the next block we transmitN pairs of symbols as follows. We again use the
random variableU , which in our case is binary. The uncertainty that occurs in a
block,known at bothtransmitters, can be described with the average of2N

3 bits.
How do we transmit this uncertainty to the receiver? Depending on the uncer-
tainty (which is now considered to be common information to be transmitted)
both encoders select the same input scheme foru = 0, or the scheme foru = 1,
see Figure 10. By doing this, the transmitters create a channel for transmitting
the uncertainty to the receiver, see Figure 11. The capacityof the channel is5

9
bits/transmission.

• The decoder for blockI first decodes the uncertainty for the previous blockI −1.
Knowing this uncertainty, the decoder can reconstruct the transmitted messages
for this particular blockI −1.

We can transmit the uncertainty for the previous block with5
9 bits/transmission via

the artificial channel andlog23 bits in total cooperation after the end of each block. Since
in a block of length 2N, we have2N

3 bits of uncertainty and we resolve only5N
9 bits,

the lastN9 bits are resolved in total cooperation, i.e., inN9 log2 3 transmissions. The overall
efficiency is

R=
2N log23

2N+ N
9 log2 3

= 1.54 bits/transmission.

As in the non-feedback situation, for the feedback situation we can also design cod-
ing methods withzero error. For this, we replace the two blocks in Figure 10 as follows

Since both users are assumed to have full feedback, they knowthe ambiguity of
the receiver after every transmission (3 digits). This ambiguity is at maximum 1 bit of
information. In the next transmission they can both decide on using the sameu = 0
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or u = 1, depending on the ambiguity. The outputs of the block are chosen in such a
way that the receiver canalwaysdetect the particular block used by the transmitters and
thus solve the ambiguity of the previous triple. The overallsum rate of this scheme is
R = 4

3 = 1.33 bits/transmission. It is a challenge to improve the idea of the presented
scheme. For this, we have the freedom to increase|U | and the length of the codewords.
In [12] Zhang et al., constructed a more complicated method that achieves an overall rate
of 1.38 bits/transmission.

In Figure 12 we summarize the capacity regions found for the 2-adder channel. For
the zero-error region we use the Kasami-Lin lower bound [13].

It is difficult to find good applications for the 2-adder channel. An interesting idea is
to see the 2-adder channel as an interference channel with additive white Gaussian noise.
A problem is to design error correcting/detecting codes forthis application. We give an
example of a distance 2 block code in Figure 14. Research in this direction, using trellis
codes, can be found in [14,15].
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4. The Switching Channel

The binary input ternary output channel from Figure 15 is known as the switching chan-
nel. It was first described by Vinck in [16]. The transition diagram is given in Figure
15.

We first consider the capacity region as given in (1). Then we discuss the feedback
capacity region, followed by some examples of error free access codes. For the two-adder
channel, with the product input probability distribution,we can evaluate (1) as:

R1 ≤ I(X1;Y | X2) = H(X1 | X2) = H(X1) = h(λ) (1a)

R2 ≤ I(X2;Y | X1) = H(X2 | X1)−H(X2 |Y,X1) = λH(X2) ≤ λ (1b)

R1 +R2 ≤ I(X1,X2;Y) = H(Y)−H(Y | X1,X2) = H(Y) ≤ λ +h(λ) (1c)

whereh(·) is the binary entropy function. The capacity region is givenin Figure 16.
The capacity region can be achieved in the same way as for the 2-adder channel.

User 1 transmits with rateh(λ), and is uniquely decodable by the receiver. For User 2
we then have a binary erasure channel with transition probability (1−λ) and capacityλ.
This together gives the sum rateλ + h(λ). Note that forλ = 2

3, the sum rate equals the
total cooperation value log23. For the switching channel from Figure 15 feedbackdoes
not increase the capacity region, since



R1 ≤ H(X1 |U) ≤ ∑
u

Piαih(λi) ≤ α,

R2 ≤ H(X2 |U) ≤ ∑
u

Pih(αi) ≤ h(α),

R1 +R2 ≤ I(X1,X2;Y) = H(Y) ≤ α+h(α),

whereαi = P(X2 = 1 | u = i), λi = P(X1 = 1 | u = i), Pi = P(u = i). This is an example,
where the feedback does not help to improve the maximum transmission rate.

Example 2. P. Vanroose designed code constructions for the switching channel in [17].
These constructions can be explained as follows. Suppose that user 1 specifies up to(n−
k) positions in a binary length n vector to be 0. User 2 transmitsa vector of length n from
a linear code. At the receiver, the 0-positions are recognized as the erased positions from
the∞ symbol. Hence, if the remaining non-erased part uniquely identifies the transmitted
vector from user 2, then the decoding problem at the receivercan be solved. For error
correcting codes with minimum distance n−k+1 (Singleton bound), n−k erasures can
be decoded. The total efficiency would then be

R=
k
n

+
1
n

log22nh( n−k
k ) := λ +h(λ),

which equals the capacity boundary. The proof can also be given using combinatorial
arguments.

Suppose that we have ak×n binary matrixK . We letX1 specify(n− k) columns
by selecting at the output the∞ symbol. User two transmits a linear combination of the
k rows of K . If the specified columns are such that the remaining part of the matrix
has rankk, then the input ofX2 can be reconstructed fromY. The question is: what is
the maximum number of selectionsX1 can make for a particular matrix, such that the
remaining part has rankk? The answer can be given using the following steps:

1. the numberF of invertiblek×k matrices:F = (2k−1)(2k−2) · · ·(2k−2k−1);
2. a specification allows: 2(n−k)k ·F matrices;
3. F ≥ 0.28· (2k)k , see Tolhuizen [18];
4. for largen, the average number of allowed sequences per matrix is

2nh( n−k
n )2(n−k)kF

2nk ≥ 0.28·2nh(n−k
n ).

From this it follows that at least one matrix must have more than the average number
of allowable sequences and thus the normalized sum rate

R1 +R2 ≥
k
n

+
1
n

log20.28·2nh(n−k
n ) n→∞

→
k
n

+h

(

n−k
n

)

,

can be obtained with zero error probability.
From the above we see that we have an example where theε-error, the feedback and

the 0-error capacity regions are the same!



5. Extensions

Extensions of the two user Multiple Access Channel go into several directions. We can
increase the number of users, the size of the input alphabet and also the channel transition
diagram can be extended.

5.1. Extension 1: Binary input T -user

Example 3. For the binary input adder MAC with T= 3, we have the following code
with efficiency1.5 bits/transmission. Length 2 code for the T= 3 binary adder channel:

x1 ∈ {00,11}, x2 ∈ {10,01}, x3 ∈ {00,10},
y = x1 +x2+x3 ∈ {10,20,01,11,21,31,12,22}.

Example 4. The following code is again for the binary input adder MAC, T= 3. The
sum rate is2+log2 6

3 = 1.53bits/transmission. Length 3 code for the T= 3 binary adder
channel:

x1 ∈ {000,111}, x2 ∈ {110,001}, x3 ∈ {000,001,010,100,011,101}.
y = x1 +x2+x3 ∈ {001,110,112,221,002,111,113,223,011,120,122,231,101,
210,212,321,012,121,123,232,101,211,213,322}.

The code is uniquely decodable. More results can be found in Bross et al. [14].

5.2. Extension 2: M-ary input two-user access channel

Two classes of two user channels withM-ary inputs are given in [16]. The output of the
first channel indicates the subset of input symbols, i.e.,

Y = {X1,X2}, X1,X2 ∈ {0,1, . . . ,M−1}.

The receiver does not know the origin of the two symbols if theinputs are different.
There are

(M
2

)

of these ambiguous subsets, see also Figure 17 (a). If both inputs are equal,
then only one letter is detected. Hence, the cardinality of the output is|Y| =

(M
2

)

+M =
M(M+1)

2 . This channel is referred to as theM-ary frequency detecting channel. The second
M-ary channel model B gives as output the arithmetic sum of theinput letters, i.e.,

Y = X1 +X2, X1,X2 ∈ {0,1, . . . ,M−1}.

For this channel the output cardinality is|Y|= 2M−1. This channel is referred to as
the adder channel. In Figure 17 we give the input/output relations for both channels when
M = 3. ForM = 2 all channels reduce to the well-known 2-adder MAC from Figure 4.
The channels (c) and (d) are the erasure and the collision channel, respectively.

The channels in Figure 17 A and B are in class D and the maximum value of
R1 +R2 ≤ I(X1,X2;Y) = H(Y) is log2

M(M+1)
2 and log2(2M−1), respectively. This sum

rate can be obtained forM > 5, |U | = M for the A channel andM > 2, |U | = 2 for
the (b) channel, respectively. In the evaluation of (2), oneneeds the maximizing proba-
bility P(u,x1,x2,y), which could be difficult to obtain for even small values ofM. The
capacities for the channels in Figure 17 (c) and (d) are open problems.
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5.3. Extension 3: M-ary input T -user access channel

In [19] Chang and Wolf introduce theT-userM-frequency noiseless multiple access
channel with (A) and without (B) intensity information. Both models use the same input
alphabet for each of theT users.

For the B channel, the output at each time instant is a symbol which identifies which
subset of integers occurred as inputs to the channel, but nothow many of each integer
occurred. Chang and Wolf showed that capacity of the cooperative M-ary OR channel
approachesM − 1 bits per transmission. A simple time division method achieves the
capacity of(M−1) bits/transmission for largeT.

Assume that we divide theT users into groups of size(M−1). Within one group the
users are numbered from 1 up toM−1. Useri, 1≤ i ≤ M−1, uses as the transmitting
frequenciesf0 and fi . At the receiver, we are able to detect whether useri uses frequency
f0 or fi and thus we transmitM − 1 bits per transmission. Note that here, we have a
“central” frequencyf0.

Example 5. For M = 3, T
2 groups of users use the pairs( f0, f1) and( f0, f2), respectively.

The output of the channel is f0,( f0, f1),( f0, f2), or ( f1, f2). Note that the input of the
channel is uniquely decodable.

For the A channel the output indicates which subset of integers was transmitted and
also how many of each integer were transmitted.

6. Conclusions

We learn that the multiple access channel leads to interesting coding problems. An open
problem is the development of fixed length coding for the feedback situation. In addition,
zero error codes are to be improved and new applications to bedeveloped.
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