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It is further noted that the bounds derived do not depend
on the nature of the noise or on the channel impulse response
for given L, and so will apply generally for equally likely
transmission.
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Syndrome Decoding of Binary Rate-/2 Convolutional Codes

J. PIETER M. SCHALKWIJK, MEMBER, IEEE, AND A. J. VINCK

Abstract—The classical Viterbi decoder recursively finds the trellis
path (code word) closest to the received data. Given the received data,
the syndrome decoder first forms a syndrome instead. Having found
the syndrome, that only depends on the channel noise, a recursive al-
gorithm like Viterbi’s determines the noise sequence of minimum Ham-
ming weight that can be a possible cause of this syndrome. Given the
estimate of the noise sequence, one derives an estimate of the original
data sequence. The bit error probability of the syndrome decoder is
no different from that of the classical Viterbi decoder. However, for
short constraint length codes the syndrome decoder can be imple-
mented using a read-only memory (ROM), thus obtaining a consider-
able saving in hardware. The syndrome decoder has at most %as many
path registers as does the Viterbi decoder. There exist convolutional
codes for which the number of path registers can be even further
reduced.
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I. INTRODUCTION

HIS paper extends and generalizes some earlier results [1]
on syndrome decoding of rate-% convolutional codes. The
binary code generated by the encoder of Fig. 1 will again be
used as an example throughout the paper. The additions in
Fig. 1 are modulo-2 and all binary sequences -+, b_y, bg, b1,
- are represented as power series b(e) = -+ + b_ja 1 +
bo + bia + . The encoder has connection polynomials
Ci(@) =1+ a2 and Cy(@) = 1 + a + 2. In general, the
encoder outputs are C;(a)x(a) and Cy(a)x(a). The syndrome
z(a) only depends on #;(a) and ny(a), i.e., not on the data
sequence x(a), for

z() = Ca()[C1(0)x(a) + 11 (0)] + C1()[Ca(@)x(e) + na(a)]
= Ca(en1 (@) + Cy(o)nz(a). @

Having formed the syndrome z(a), Section III describes a
recursive algorithm like Viterbi’s [2] to determine from the
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Fig. 1. Encoding and syndrome forming for a R = 3 code.

syndrome z(¢) the noise sequence pair [#;(a),t5(c))] of mini-
mum Hamming weight that can be a possible cause of this
syndrome.

Given the estimate [/;(a)12(a)] of the noise sequence
pair, one derives an estimate %(e) of the original data sequence
x(a) as follows. For a noncatastrophic code, C; (o) and Cy(c)
are relatively prime. Hence, by Euclid’s algorithm [3] there
exist polynomials D;(«) and Dy(a) such that Dy (a)Cy (o) +
Dy(0)Ca(a) = 1. For the example of Fig. 1, we have D4 (o) =
1+ «, Dy(a) = a. We receive the sequence pair

yi(a) = Cilapx(o) + nyw), i=1,2, )
and form the estimate

%(0) = D1()[y1(®) + A (@] + Da(@)[y2(e) + A2()].  (3)

Note that if the noise sequence estimate [f;(a)7(c)] is
correct we have

yi(@) + (@) = Cax () + ny(a) + @)
= Ciap(o), i=1,2,

and, hence
F(@) = D1 ()Cy (ape(@) + Da()Cao(a)x() = x().

Note that (3) for the estimate %(a) of the data sequence
x(o) can be rewritten as

%(@) = [D1(e)y1(e) + Dp(@)yz(e)] + (@), @)
where
w(@) = Dy (0)n1 (&) + Dy(0)nz(a), (5)

and <) equals the right-hand side (RHS) of (5) with 7;(c)
substituted for n;(a), i = 1, 2. The term in square brackets in
(4) can be computed directly from the received data using very
simple circuitry. As there is no need to distinguish between
pairs [/ (@), 7ia(a)] and [fi4(e).7iz(c)]’ that lead to the same
value for ¢>(@) in (4), the algorithm to be discussed in Section
I computes c(e) directly.

II. STATE DIAGRAM

In Fig. 2 we have redrawn the syndrome former of our
example. As, according to (1), the syndrome z(a) only
depends on the noise pair [n1(a),n(e)], all other binary

IEEE TRANSACTIONS ON COMMUNICATIONS, SEPTEMBER 1976

Fig. 2. Syndrome former in its base state.

sequences have been omitted from Fig. 2. For minimum dis-
tance decoding we are now presented with the following prob-
lem. Given the syndrome z(«), determine the noise pair [# (),
fia(@)] of minimum Hamming weight that can be a cause of
this syndrome. Before tackling this problem in Section III, it
will be necessary to first derive some general properties of the
state diagram of a syndrome former for a binary rate % con-
volutional code.

Let v be the number of memory stages of the encoder, i.e.,
v = 2 for the encoder of Fig. 1. The corresponding syndrome
former of Fig. 2 has 22” = 16 “physical states,” where a
physical state is defined as the contents S = [s1(a),52(a)],
where
s@) =s8;_,0 Vs _peq0 Aty 07l i=1,2,
of the 2v = 4 memory cells of the syndrome former. Thus, at
first sight, the state diagram of the syndrome former appears
more complicated than the state diagram used to implement
the classical Viterbi decoder [2], that has only 2¥ = 4 states.
However, on closer inspection, it turns out that the 22¥ = 16
physical states of the syndrome former can be divided into

v = 4 equivalence classes or “abstract states,” where any two
physical states in the same equivalence class give the same
output z(a) irrespective of the input pair [r;(a),n2(@)]. In
general, to prove the existence of the 2%, v =1, 2, -+, abstract
states defined above, we need the following definitions. As the
syndrome former is a time invariant circuit we assume without
loss of generality that the state S is present at time 7z = 0.

Definition 1: A “zero-equivalent” state is a physical state
with the property that if the syndrome former is in such a
state, an all-zero input [ny(a),na(e)] o™ gives rise to an all-
zero output {z(a)] o>, where [b(a)]k1k2 indicates that part
of the power series b(«) for which k1 <exp a<k,.

Definition 2: A “base” state S = [o1,55°(0)] is a zero-
equivalent state with a single “1” in the rightmost position of
the top register of the syndrome former, see Fig. 2.

A base state can be constructed as follows. Start with the
top and bottom registers of the syndrome former, Fig. 2, all
zero. Put a 1 in the leftmost position of the top register.
Assuming that C;(a) and Ca(a) both have a nonzero term of
degree v, we now have to put a 1 in the leftmost position of
the bottom register, as otherwise the corresponding digit of
the syndrome z(«) would differ from zero. Subsequently, shift
the contents of the top and the bottom register one place to
the right, feeding 0’s into both leftmost positions, respectively.
If the corresponding digit of the syndrome z(a) differs from
zero set the leftmost position of the bottom register equal to
1, thus complementing the corresponding syndrome digit, etc.
This process continues until the single 1 in the top register is in
the rightmost position. The bottom register now contains



SCHALKWIIK AND VINCK: BINARY RATE-1/2 CONVOLUTIONAL CODES

$5°(a). It is clear that the above construction leads to a unique
result. This base state S? is indicated in the example of Fig. 2.
However, there might conceivably be another construction
leading to a different base state. The following theorem shows
that this is not the case.

Theorem 1: The base state S? = [a—1,558 ()] is unique.

Proof: Suppose there are two base states S;° and S,°.
These base states are zero-equivalent states, hence, so is their
sum S = §1% + Syb. But as the sum of two base states the
physical state S has all zeros in the top register of the syn-
drome former

As Cy(a) has a nonzero term of degree v, the only zero-
equivalent state with the top register contents all zero is the
all-zero state. Hence, S is the all-zero state and the physical
states $1? and S,? are equal. Q.E.D.

We will now show that there are 2 equivalence classes of
physical states and that each class has a unique representative
physical state for which the contents of the top register of the
syndrome former, Fig. 2, is all zero. It is these representative
states S = [0,s5(@)], to be referred to as “the states,” that will
be used in the remainder of the paper.

Theorem 2: The 22¥,p = 1, 2, -, physical states of the syn-
drome former, corresponding to a binary rate-3 encoder
with v memory cells, can be divided into 2” equivalence classes
or abstract states. Each equivalence class has a unique repre-
sentative physical state S = [0,59(e)] for which the top
register, see Fig. 2, of the syndrome former is all zero.

Proof: Two physical states were related if they resulted
in the same output z(«) irrespective of the input pair [n(a),
ny(a)]. To prove that this relation is an equivalence relation,
we must show that it is reflexive, symmetric, and transitive.
Reflexivity and symmetry are obvious. To show transitivity
let S, be related to Sy and S, be related to S5. Since S; and
Ss produce the same output z(a), their sum Sy + .55 is a zero-
equivalent state, as is S, + S3. But §; + S35 =(S7 + Sp) +
(Ss + S3). Hence, §; + S3 is the sum of two zero-equivalent
states and thus also zero equivalent. In other words, the phys-
ical states Sy and S; + (S; + S3) = S3 produce the same
output z(a) and thus the relation defined above is transitive.
This completes the first part of the proof. The relation defined
above is an equivalence relation and, hence, divides the set of
physical states into equivalence classes or abstract states. As
the sum of zero-equivalent states is again zero equivalent, left
shifts of the base state S? can be added to the all zero state to
obtain a zero-equivalent state for which the top register has
any desired contents. Two zero-equivalent states Sy and Sy
that have the same top register contents are identical, for
their sum S = §; + S, is a zero-equivalent state with top
register contents all zero. Hence, as shown in the proof of
Theorem 1, S is the all-zero state and thus S; = S,. In other
words, there are 2V zero-equivalent states and, im fact, all
equivalence classes have 2¥ members, giving 227/2% = 2¥
abstract states. As we can add left shifts of the base state S? to
any particular physical state without leaving its equivalence
class, each equivalence class has a representative member,
called the state S = [0,55()], that has the contents of the
top register, Fig. 2, of the syndrome former all zero. To prove
uniqueness of the representative state within an equivalence
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Fig. 3.

State diagram of syndrome former.

class, assume two representative states Sy and Ss. The sum
§; + Sy of two representative states S3 and S, within the
same equivalence class is a zero-equivalent state with top
register contents all zero. This sum state again must be the
all-zero state. Hence, S; + S5 = 0 or S; = S, proving that the
representative state of an equivalence class is unique. Q.E.D.

We are now ready, as an example, to construct the state
diagram, see Fig. 3, of the syndrome former of Fig. 2. The
states So = [0,0], S = [0,a1], Sy = [0,6—2], and S5 =
[0,0=2 + o] are representative states with the contents of
the bottom register, Fig. 2, of the syndrome former equal to
00, 01, 10, and 11, respectively. An input [n;(@),n2(0)] o® =
[0,1] brings us from state S, to state S;. An input [nq (),
na()]o® = [1,0] brings us from state Sy to state S =
[61,0], which is not a representative physical state. The
representative state in the equivalence class of S’ can be found
through addition of the base state S® = [a1,5,%(a)], where
$9%(a) = =2 + a1 from Fig. 2. Hence, S’ + b = [0,0—2 +
a~1], ie., an input [r3(@),n5(a)]o® = [1,0] brings us from
state So to state S = S’ + SP. In the same fashion [n (),
ny(a)]o® = [1,1] brings us from state Sy to state S,. All
states in the state diagram of Fig. 3 have now been identified
and we leave it to the reader to fill in the remaining edges. A
solid edge in Fig. 3 indicates that the syndrome digit corre-
sponding to the particular transition is O, a dashed edge
corresponds to a syndrome digit 1. The numbers next to the
edges are the values ny, ng; w. As has been explained in
Section 1, it is the coefficients -, w._q, wq, wy, ' of the
power series w(a) of (5) that one is really interested in. It
requires some explanation that the generic value w of these
coefficients can also be indicated next to the edges in Fig. 3.

Theorem 3: The value of the coefficient ) of the power
series w(@) = = + w_q1a~1 + wp + wya + -+ defined by (5)
is uniquely determined by the state S(k) of the syndrome
former at time 7z = k and by the value of its input [r1,121],
k=--,—1,0,+1, .

Proof: As the syndrome former is a time-invariant cir-

cuit, all one must prove is that wg is uniquely determined by
S(0) and {n, ¢,nz0] - Equation (5) can be rewritten as
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wo = [D1'(@)n1(®) + Dy (@)na(@)] 6 + (D010 + D2olizo),
)

where the prime on D;'(a), i = 1, 2, indicates that a possible
constant term D;, has been omitted. The second term
(D1oh10 T+ Daohao) on the RHS of (6) is completely deter-
mined by the input {r;9,n90] to the syndrome former at time
t = 0. Now if the state S(0) of the syndrome former at time
t = 0 determines [n1(a),n2(0)] -, 1 and if deg Dy'(@) < v
and deg Dy'(@) <v, then S(0) determines the value of the first
term [D;'()ny(e) + Dy'(@)ng(@)] ¢ on the RHS of (6) and
we are done. Now from Berlekamp [3, p. 27} we know that
there exist polynomials D;(e) and Ds(c) satisfying
D{()Cy(a) + Dy(a)Cy(e) = 1 and thus that deg Dy(a) <

deg Ca(a) and deg Dy(a) < deg C;(e). Hence, the degrees of .

both D;'(a) and Dy'(c) are less than the common degree v of
Ci(a) and Cy(c). However, the state S(0) determines [n4 (a),
ng(a)] _,~1 only to within an equivalence class. It thus
remains to be shown that addition of a zero-equivalent state
S = [s1(a),52(a)] does not affect the value of [D;'(c)n; () +
Dy'(@)ng(a)] 9. For a zero-equivalent state we have by
definition

[Ca(@)sy (@) + Cr(@)s2 ()] o= = 0. ™

From Dj(a)Ci(e) + Da(a)Co(a) = 1 it follows that
D;'(0)Cy (@) + Dy'(0)Ca(a) = 0. Thus we can define the poly-
nomial P(c) by

P(0)) = Dy '()C1 (@) = Dy (@)Ca (). (8)
It now follows that
P()[D;'(0)s1(@) + Dy (@)s(e)]
= D; (@)D" ()[Ca ()s1(e)) + C(@)s2(V)] . ©)

As deg Cy(a) > deg D,'(a), we have deg Pla) > deg
Dy' (@)D (¢). Thus, if [Dy'(@)s1(e)) + Dy'(@)sa()] had a non-
zero term of degree 0, then [Cy(a)sy (@) + Cq(@)sa ()] would
have a nonzero term of degree larger than 0. As, according to
(7), this cannot be the case it follows that [D;’(a)sy(e) +
Dz'(a)SZ(Ol)] 00 = 0. Q.E.D.

In fact, we even have the stronger result that all edges

leading to the same state S(k + 1),k =+, —1,0,+1, -, have
the same value of wy associated with them.
Corollary: The value of wy, k = -, —1, 0, +1, -, is

uniquely determined by the value of S(k + 1).

Proof: As the syndrome former is a time-invariant cir-
cuit, all one must prove is that wg is uniquely determined by
the state S(1) of the syndrome former at time ¢ = 1. Accord-
ing to (6), the value of wq is uniquely determined by [#; (@),
na(@)] —,+1 9 as the degree of both D;(a) and Dy(a) is less
than the common degree v of Cy(a) and Co(). In fact, we
only need to know [ny(a),na(e)] —,+1° to within an equiva-
lence class. The proof is identical to the proof of Theorem 3,
except that we redefine P(c) of (8), as

0(a) = D1 (0)C1 (@) + Dy(@)Cy' ().

(10).
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As S(1), in fact, defines [y (a),na(@)] —p+1© to within such an
equivalence class, S(1) uniquely determines cyg. QE.D.

III. ALGORITHM

As the recursive algorithm to be described in this section is
similar to Viterbi’s [2], we can be very brief. For reasons of
clarity the decoding algorithm will be explained using the code
generated by the encoder of Fig. 1 as an example. Fig. 4 repre-
sents the kth section, k = -+, —1, 0, +1, -, of the trellis
diagram corresponding to the state diagram of Fig. 3. The
decoding algorithm is to find the coefficients ), of the power
series w(a) = + w_107t + g + wya + - associated with
the path of minimum weight through the trellis diagram. The
pertinent weight is the Hamming weight of the pair [/ (),
fig(e)] associated with the particular path. As in the Viterbi
algorithm [2], to find the minimum weight path we associate
a metric with each possible state. The metrics at time ¢ = k can
be computed recursively given the metrics at time ¢t = k£ — 1.
For the trellis diagram of Fig. 4, the recursion is given by

My(k + 1) =z, min [Mo(k), M, (k) + 2]

+ zp, min [Ma(k), M3(k) + 2] (11a)
My(k+ 1) =7Z, min [My(k) + 1,M3(k) + 1]
+ zp, min [Mo(k) + 1, M, (k) + 1] (11b)
My(k + 1) =72, min {My(k) + 2, M, (k)]
+ zp, min [My(k) + 2, M3(k)] (11¢c)
Ma(k + 1) =7, min [Ma(k) + 1, Ma(k) + 1]
+ z;, min [Mo(k) + 1, M, (k) + 1], (11d)
where zj, is the modulo-2 complement of z,, k = -, —1, 0,
+1, ---. Note that for each value z, = 0 or z, = 1 two arrows

impinge on each (k + 1)-state. The arrow associated with the
minimum within the relevant pair of square brackets in (11)
is called the “survivor.” If both arrows have this property, flip
a coin to determine the survivor. In the classical Viterbi [2]
implementation of the algorithm each state S;, j = 0, 1, 2, 3,
has a metric register MR; and a path register PR; associated
with it. The metric register is used to store the current metric
value Mi(k + 1) at time t = k, k =+, —1, 0, +1, -, associ-
ated with state S;, j = 0, 1, 2, 3. The path register PR;[0:
D — 1] stores the cw-values associated with the current
sequence of the D most recent survivors leading up to state S;
af time ¢ = k. The pertinent output is

&p—p = CONTENTS PR;,[D — 1: D — 1], (12a)
where j(k) minimizes M;(k + 1), ie.,
Moy (k + 1) = min M(k + 1). (12b)
J

If more than one j satisfies (12b), select j(k) arbitrarily among
the candidates. As the algorithm returns ¢, —p at time 7 =k,
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Fig. 4. kth section of the trellis diagram, k = -+, -1, 0, +1, ---.

k="+,-1,0,+1, - the path register length D is also referred
to as the coding delay. The resulting bit error probability P,
decreases as the coding delay D increases. Increasing D beyond
5(v + 1) does not lead to appreciable further decrease in the
value of P,. This relation between the bit error probability P,
and the coding delay D will be elaborated on further in
Section VI. The next section is concerned with a practical
implementation of the syndrome decoder.

IV. IMPLEMENTATION

So far, the syndrome decoder has only been of theoretical
interest as a possible alternative for the classical Viterbi
decoder [2]. We will now study a practical implementation
and in the next section make some comparisons as to the rela-
tive hardware complexity of these competing decoders.

Using (11) we construct Table I. The first column just
numbers the rows of the table. The second column lists all
possible metric combinations My(k), My (k), Ma(k), M3(k) at
time k —1. As only the differences between the metrics of a
quadruple matter, we substract from each member of a quad-
ruple of metrics the minimum value of the quadruple, i.e., all
quadruples of metrics in Table I have one or more zeros.
Columns 3 and 4 apply to the case that z;, = 0 and columns 5
and 6 to the case that z, = 1. Columns 3 and S list the sur-
vivors, i.e., the indices of the associated (k — 1) states, and
columns 4 and 6 the new metrics My(k + 1), My(k + 1),
My(k + 1), Ma(k + 1) as given by (11). If there is a choice of
survivors, the candidates are placed within parentheses in the
survivor columns.

Table I contains more information than is necessary for the
actual implementation of the syndrome decoder. As explained
in Section III, knowledge of the survivor leading to each state,
together with the index j,, of the minimum within each new
quadruple of metrics, suffices to determine the key sequence
w(a) of (5). Hence, we omit the quadruples of metrics from
Table I and store the resulting Table II in a read-only memory
(ROM). The operation of the core part of the syndrome
decoder can now be explained using the block diagram of
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TABLE 1
METRIC TRANSITIONS
Zk =0 zk =1

Row ola New New
Number Metrics Survivors Metrics Survivors Metrics
[} 0000 0(2,3) 1 (2,3) 0101 2 (0,1)3(0,1) 0101
1 0101 0o 2 1 2 o111 2 0 3 0 0t11
2 0111 0(2,3) 1 (2,3 0212 2 0 3 0 0000
3 0212 0o 2 (0,1) 2 0222 2 0 3 0 0010
4 0222 0(2,3)(0,1)(2,3) 0323 2 0 3 0 1010
5 0010 o 3 1 3 0101 2 (0,1)3(0,1) 1101
(3 0323 0 2 0 2 0323 2 0 3 0 1020
7 1010 o 3 1 3 1101 2 1t 31 1101
8 1101 0 2 1 2 0000 2 (0,1)3(0,1) 0212
9 1020 0 3 1 3 1101 (2,3) 1t 1 2101
10 2101 0 2 1 2 1000 2 1 3 1 0212
11 1000 0(2,3) 1t (2,3) 1101 2 1 3 1 0101

Fig. 5. Assume that at time k¥ the ROM address register AR
contains (AR) = 7 and the ROM data register DR contains
(DR) = (ROM,7). Note, see Fig. 4 and also the corollary to
Theorem 3, that the w-values to be shifted into PRy [0:0],
PR, [0:0], PR,[0:0], PR3[0:0] are 0011, respectively.
Let z;, = 1. Then according to row 7 and column 5 of Table II,
or according to the contents (DR) of the DR, replace

PRo[1: D — 1] < CONTENTS PR, [1: D — 1]
PR, [1: D — 1] < CONTENTS PR, [1: D — 1]
PRy[1: D — 1] « CONTENTS PR3 [1: D — 1]
PR;[1: D — 1] < CONTENTS PR, [1: D — 1].

The rightmost digit,PRg[D —1:D —1},PR; [D—-1:D —1],
PR,{D —~ 1:D — 1], PR3[D — 1:D — 1], of all four path
registers is fed to the selector, see Fig. 5, that determines
p—p according to (12a) using as j(k) the entry in row 7 and
column 7, i.e., j,, = 2, of Table II which can also be found in
the DR. To complete the kth cycle of the syndrome decoder,
set (AR) = 8 and read DR < (ROM,8). The ROM decoder for
the code of Fig. 1 has been realized in hardware using path
registers of length D = 11. The experimental results will be
discussed in Section V1.

V. PATH REGISTER SAVINGS

The ROM-implementation of the syndrome decoder as des-
cribed in Section IV has been realized for the codes listed in
column 2 of Table IT1. We will discuss some interesting aspects
of this table. The first row lists several properties of code 1
that was used as an example throughout the earlier part of
the paper. Column 3 lists the number of metric combinations
of the various codes. The classical Viterbi decoder [2] can also
be realized using a ROM in the manner described in Section
IV. However, the Viterbi decoder for code 1 has 31 metric
combinations, whereas the syndrome decoder has only 12
metric combinations. For the v = 4 codes this difference is
even more pronounced. For codes 2 and 3 the syndrome
decoder has, respectively, 1686 and 1817 metric combina-
tions, whereas the classical Viterbi decoder for either of these
codes has more than 15 000 metric combinations. Note that in
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TABLE II
CONTENTS OF THE ROM

k k
0ld New New
ROM ROM ROM
Address Survivors Address Index jm Survivors Address Index j
m
o] 0(2,3) 1 (2,3) 1 (0,2) 2 (0,1)3(0,1) 1 (0,2)
1 0o 2 1 2 2 0 2 0 3 0 2 o}
2 0(2,3) 1 (2,3) 3 0 2 0 3 © 0 0,1,2,3)
3 0 2 (0,1) 2 4 ] 2 0 3 0 5 (0,1,3)
4 0(2,3)(0,1)(2,3) 6 0 2 0 3 © 7 (1,3)
5 0 3- 1 3 1 (0,2) 2 (0,1)3(0,1) 8 2
6 0 2 o} 2 6 o] 2 0 3 o 9 (1,3)
7 0 3 1 3 8 2 2 1 3 1 8 2
8 0 2 i 2 0 (0,1,2,3) 2 1(0,1)3(0,1} 3 0
9 0 3 1 3 8 2 2,3) 1 3 1 10 2
10 o 2 1 2 11 (1,2,3) 2 1 3 1 3 0
11 0(2,3) t (2,3) 8 2 2 i 3 1 1 (0,2)
PROIO:D=|1|0| |—-
Z 1
.1 rom setector:|Mep
L m—
PR3[0.D-‘I]|1 l—"
Fig. 5. Block diagram of the core of the syndrome decoder.
TABLE III
CODES REALIZED
code| connection number of minimuam distance | number of |total num-
polynomials; metric com-|number of path paths at |ber of as-
O-th order right binations registers given dis-|sociated
tance bit errors
1 101 12 3 5 1 1
111 6 2 4
2 10011 1,686 12 7 2 4
11011 8 4 12
3 10011 1,817 9 7 3 7
10111 8 3 10
4 10011 11,304 12 7 2 4 h
11101 8 4 12

columns' 5, 6, and 7 both error events at the free distance and
error events at the free distance plus one are considered. In a
binary comparison with the no-error sequence, an error event
at distance 2k has the same probability of occurrence [4} as an
error event at distance 2k — 1, k = 1, 2, --. Thus, in the case
that the free distance is odd, error events at the free distance
plus one should also be considered when comparing codes as
to the bit error probability P,. Studying columns 5, 6, and 7
of Table III, we observe that as far as the bit error probability
is concerned code 4 is indistinguishable from codes 2 and 3.
However, the syndrome decoder for code 4 requires 11 304
ROM-locations and code 4 is thus, from a complexity point
of view, inferior to codes 2 and 3.

" The number of metric combinations increases rapidly with
the constraint length » of the code. Hence, for larger values of
v the size of the ROM in the implementation according to
Section IV soon becomes prohibitive. In the classical imple-
mentation [2] with a metric register and a path register for

each state S;, j = 0, 1, -+, 2¥ — 1, the Viterbi decoder and the
syndrome decoder require roughly the same amount of hard-
ware per state. However, comparing (11b) and (11d) for code
1, one observes that S; and S3 have the same metric value.
Moreover, selecting the identical survivor in case of a tie, Sy
and S35 also have the same path register contents. As far as
metric and path register contents are concerned, the states S;
and Sg are not distinct. The metric, register and the path
register of either state Sy or state S3 can be eliminated. Thus,
in the classical implementation with metric registers and path
registers, the syndrome decoder for code 1 requires only % of
the amount of hardware that the Viterbi decoder requires. We
will prove that, in general, one can eliminate the metric and
path registers of half the odd numbered states, where the state
number of a representative state S = [0,55(c)] is the value of
the contents of the bottom register of the syndrome former
interpreted as a binary number, i.e., odd states have s, _1 =
1. Hence, the syndrome decoder is at most % as complex as
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is the Viterbi decoder. Looking again at Table 11l column 4 we
see that code 1 can be realized with 3 instead of 2V = 4 path
registers, and that codes 2 and 4 can be realized with 12
instead of 2¥ = 16 path registers. Code 3 requires even fewer,
i.e., nine instead of 2¥ = 16 path registers. We now prove that
the syndrome decoder is, in general, at most % as complex as
is the Viterbi decoder.

Theorem 4: The odd numbered (representative) states
S(1) = [0,52(a)] and S'(1) = [0,55'(@)], where 55'(@) =
s9(0) + s9?(e) + o1 have identical metric equations, com-
pare (11b) and (11d),iff C; g =Co0=C1, =Ca = 1.

Proof: An odd numbered state S(1) = [0,55(a)] has
$2.—1 = 1. If both connection polynomials Cy(a) and Co(a)
have a nonzero term of degree v, it follows from the construc-
tion of the base state S? that s, _;® = 1. Hence, s5'(0) =
sa(@) + $92(e) + o1 has s, ;' = 1, and the requirement
that both S(1) and S'(1) are odd numbered states is consistent.
Consider the following parent states:

S4(0) = {0,059 ()] —, 1

Sp(0) = [0,077 + asp ()] —, 1
S.(0) = [0:0’52,(0‘)] ——

S4(0) = [0, + asy ()] -, 1.

As both C;(a) and Cy(a) have a nonzero term of degree »,
S.(0) and Sp(0) give rise to complementary syndrome digits,
and so do S.(0) and S4(0). For an input [rq9,n29] = [0,1]
the parent states S,;(0) and S, (0) go into S(1) and the parent
states S.(0) and S4(0) go into S'(1), and vice versa for an input
[n10,m90] = [1,0]. Assuming that Cj () and Cy(c) both have
a nonzero constant term and that [rq¢,n5¢] is either [0,1] or
[1,0], the syndrome value only depends on the parent state
S(0). Hence, S(1) and S'(1) have identical equations. ~ Q.E.D.

Theorem 4 proves that the syndrome decoders for the v =
4 codes 2, 3, and 4 in Table III can be realized with no more
than 12 instead of 2¥ = 16 path registers. Column 4 of Table
III shows, however, that code 3 requires only 9 instead of 2V =
16 path registers. The following theorem shows how this
further reduction in hardware can be accomplished.

Theorem 5: One 4-tuple of pairs of odd numbered parent
states gives rise to two pairs of odd numbered states that have
identical metric equations iff C; 3 = Co 3 and Cy 3 =
Cop—1-

Proof: Assume that S,(0), S,(0), S,(0), and S4(0) in
the proof of Theorem 4 are odd numbered states, i.e., s5 _p =
Sa.—2' = 1. This can be a consistent requirement if s _,? =
0, and from the construction of the base state S it is clear
that sp 5% =0iff Cy ,_; = Cy . If $,(0), S,(0), S.(0),
S4(0) are odd numbered states, then according to Theorem 4
there exists a corresponding 4-tuple of odd numbered states
S,'(0), S,'(0), S.'(0), S4'(0) such that the corresponding com-
ponents of these 4-tuples have identical metrics. According to
Theorem 4, the first 4-tuple S;(0), Sp(0), S.(0), S4(0) gives
rise to the states S,(1) and S4(1) that have identical metric
equations. Similarly, according to Theorem 4 the second
4-tuple S,'(0), Su'(0), S.'(0), Sq'(0) gives rise to the states
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S,'(1) and S,'(1) that also have identical metric equations. As
the corresponding members of the parent 4-tuples S,(0),
S, (0), S,(0), S4(0) and S,'(0), S,'(0), S.'(0), S4.,(0) have
identical metrics, the four states Sp(1), Sg(1), S,'(1), and
Sq' (1) have identical metric equations iff corresponding states
in the parent 4-tuples give rise to the same syndrome digit.
For this to occur it is necessary that the difference S =
[0,522() + a~1] between corresponding states is a zero-
equivalent state. But the base state S = [o1,5,%(c)] is a
zero-equivalent state, hence, S = [a™1,55% ()} + [0 1,071]
is a zero-equivalent state iff Cy 3 = Cp ;. Q.ED.

It is easy to verify that the two 4-tuples S (0), S3(0),
S.(0), S4(0) and S,'(0), S,'(0), S.'(0), S4'(0) in Theorem 5
with [ny0,720] equal to either [0,0] or [1,1] lead to four
even numbered states that have pairswise-identical metric
equations.

Corollary: The 4-tuple of pairs of odd numbered parent
states of Theorem 5 gives rise to 4 even numbered states that
have pairswise identical metric equations.

Summarizing, we have the following results. According to
Theorem 4, the odd numbered states have pairswise-identical
metric equations for codes, such as codes 1, 2, and 4 of Table
I, with C; o = C30 = Cy,, = Cy,, = 1. Hence, for such
codes 2¥~ 2, y = 2, 3, -, metric and path register combina-
tions can be eliminated. This leads to a syndrome decoder of
% of the hardware complexity of the Viterbi decoder. Accord-
ing to Theorem 5, each 4-tuple of pairs of odd numbered
states leads to two pairs of odd numbered states that have
identical metric equations for codes, such as code 3 of Table
HI, with Cl.O = C2‘0 = C]_’v = Cz’,, = 1 and C]_‘]_ =

.C21'Cy p—1 = Cy . Hence, for such codes an additional

2v—4, p = 4,5, - metric and path register combinations can
be eliminated. According to the corollary to Theorem 5, the
4-tuple of pairs of odd numbered states mentioned above also
leads to four even numbered states that have pairswise-
identical metric equations. This leads to an additional saving of
2.2¥—4% metric and path register combinations. The total
savings for codes with C; 9 = C3 9 = €1, = Cap =1 and
C]_’]_ = CZ’I’CI’V_I = Cz'y._.l is thus equal to 2v—2 +
32v=4, v = 4,5, . The resulting syndrome decoder has 9/16
of the hardware complexity of the Viterbi decoder. Con-
tinuing this series of reductions the ultimate savings in metric
and path register combinations is equal to 2V—2 + 3.2V—4 +
32.2¥—6 + ... [9], leading to a syndrome decoder of hardware
complexity equal-to (—%\/?)” times the hardware complexity
of the Viterbi decoder. Note that in order to achieve this
ultimate savings in hardware complexity one must put severe
constraints on the encoder. Code 3 of Table III still achieves
the maximum free distance for constraint length v = 4 codes.
It is quite conceivable, however that in putting on further
constraints on the encoder for larger values of v it is no longer
possible to achieve the maximum free distance. However,
by only requiring C; ¢ =Co0=C1,,=Ca,,=1,and C; ; =
C2,1'Ciy—1 = Cy p—y one already achieves the reduction of
7/16, as shown above.

One final comment is in order. The hardware reduction
with respect to the Viterbi decoder has been equated with the
savings in metric and path register combinations. Note that the
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path registers in the snydrome decoder are used to store the
binary c-values, compare (5), i.e., they are binary storage
registers just as are the path registers of the Viterbi decoder.
One might remark that the path registers of the syndrome
decoder are more complex because each state has four possible
parent states instead of two as in the Viterbi decoder. How-
ever, by filling the path registers serially this aspect hardly
adds to the complexity.

VI. EXPERIMENTAL RESULTS

The solid lines in Fig. 6 give the measured bit error proba-
bility P, of code 3 of Table III as a function of the transition
probability p of the binary symmetric channel (BSC), for both
a path register length D = 11 and a path register length D =
16. The dashed line in Fig. 6 is a refinement of Van De
Meeberg’s [4] of Viterbi’s upper bound on the bit error proba-
bility. This dashed bound is valid for infinite path register
length. We extended Van De Meeberg’s upper bound to also
apply to finite path register lengths. The derivation of this
extended bound will be published shortly. The dashed curves
in Fig. 6 give the upper bound on the bit error probability for
both D = 11 and D = 16. It is clear from Fig. 6 that it does
not pay to increase the path register length much beyond
D= 16.

It appears, so far, that the syndrome decoder is an inter-
esting (from the hardware point of view) substitute for the
classical Viterbi decoder. In closing, we want to mention two
important applications of the syndrome decoder where the
classical Viterbi decoder cannot be used. These applications

! . . .
are in feedback communications [5], and in source coding

(data reduction) [6]. In the next two paragraphs we describe
these uses, both of which have been simulated on the com-
puter, of the syndrome decoder, respectively.

Reference [5] describes a coding strategy for duplex chan-
nels that enables ong to transfer the hardware or the program

complexity from the passive (receiving) side to the active .

(transmitting) side of the duplex channel. As pointed out in
reference [5], this coding strategy can be used to great advan-
tage in a computer network with a star configuration. For the
information flow from the central computer to the sateilites
one uses the duplex strategy thus only requiring one complex
one-way decoder at the central facility. For the information
flow from a satellite computer towards the central facility
one uses one-way coding, again using the complex one-way
decoder at the central computer. One thus saves a number of
complex one-way decoders equal to the number of satellite
computers in the multiple dialog system (MDS). The duplex
strategy [5] requires at the active (transmitting) side of the
duplex channel an estimate of the forward noise n;(a). To
form this estimate 711(a), the data received at the passive
-station are scrambled by a convolutional scrambler C(a) and
sent back to the active station. At the active station one can
now form the estimate 7, (o) using the Viterbi decoder for the
“systematic” convolutional code generated by an encoder with
connection polynomials Cy(a) = 1, Co(a) = C(a). It is well
known that “nonsystematic” convolutional codes are more
powerful than systematic convolutional codes. With our syn-
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Fig. 6. Bit error rate Py, versus channel transition probability p.

drome decoder we are now able to find #; (a) according to a
nonsystematic cade. To this end we modify the feedback-free
scrambler C(«) [5] into a feedback scrambler C,(a))/Cy (), see
Fig. 7. Note that z(a) according to Fig. 7 is identical to (1).
Hence, we can use our syndrome decoder to obtain 7, ().
Fig. 8 gives the feedback scrambler for the convolutional code
generated by the encoder of Fig. 1.

Note that the syndrome former, Fig. 2, has two input
sequences ni{a), ny(e) and one output sequence z(a) =
Co(a)ny (o) + Ci(a)na(e). Thus, the syndrome former com-
presses two binary streams n(a), ng(e) into one stream z(a)
and, hence, achieves a data compression of a factor of 2. The
estimator part of the syndrome decoder can with high proba-
bility of being correct recover the original sequences nq (),
na(a) given the compressed data sequence z(e). The use of
a syndrome decoder for data compression has also been
studied by Massey [6]. In general, to obtain a data compres-
sion factor n, n =2, 3, --, one used the syndrome decoder of a
rate —(n — 1)/n convolutional code.

VII. CONCLUSIONS

This paper considers the syndrome decoding of rate -—;—

convolutional codes. Table III shows that the number of
metric combinations of the syndrome decoder is small com-
pared to the number of metric combinations of the corre-
sponding Viterbi decoder. For the constraint length » = 4 code
of row 3 of Table III, for example, the number of metric com-
binations with syndrome decoding is 1817, whereas the
Viterbi decoder for this same code has over 15 000 metric
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Fig. 8. Feedback scrambler with Cy(a) =1 + o2, Col@y=1+a+ o2,

combinations. This relatively smail number of metric combina-
tions for small constraint length codes enables the ROM-
implementation of Section IV, that eliminates the need for
metric registers. For larger constraint lengths, the storage
requirements of the ROM would become excessive. However,
by putting mild constraints on the encoder it is possible to
eliminate more than half of the metric and path register com-
binations. The syndrome decoder of code 3 of Table III, for
example, only requires nine path registers, whereas the corre-
sponding Viterbi decoder has 27 = 16 path registers.

The idea of syndrome decoding can be extended to rate
~k/n convolutional codes. Forney [7], [8] describes the
mathematical tools necessary to find the general syndrome
former equations and the equations of the inverse encoder.

Note added in proof: A. W. J. Kolen has pointed out
a mistake in the proof of Theorem 3, ie., Di'(0)Ci(®) +
Dy'(@)Cy(a) = 0 is incorrect. The proof can be corrected
by observing that deg [Co(a)si(e) + Ci(@sy(w)] >
deg [Ds(@)s1 (@) + Da(@)s(@)].
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