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It is further  noted  that  the  bounds derived do  not depend 
on  the  nature  of  the noise or on  the  channel impulse response 
for given L, and so will apply generally for  equally likely 
transmission. 
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Abstract-The classical Viterbi  decoder recursively fiids  the trellis 
path (code word) closest to the received data. Given the received data, 
the syndrome  decoder first forms a syndrome instead. Having found 
the  syndrome,  that  only  depends  on  the channel noise, a recursive al- 
gorithm  like Viterbi’s determines the noise  sequence  of  minimum  Ham- 
ming weight that can be a possible cause of this syndrome. Given the 
estimate of the noise  sequence, one derives an estimate  of  the original 
data sequence. The  bit  error probability of  the  syndrome  decoder is 
no  different from that of the classical Viterbi decoder. However, for 
short  constraint length  codes the  syndrome  decoder can be imple- 
mented using a  read-only memory (ROM), thus  obtaining a  consider- 
able saving in hardware. The  syndrome decoder  has at  most 2 as many 
path registers as does the Viterbi decoder. There  exist convolutional 
codes for which the  number of path registers can be even further 
reduced. 
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I. INTRODUCTION 

HIS paper  extends  and generalizes some  earlier  results [ l ]  
T o n  syndrome  decoding of  rate-$  convolutional  codes.  The 
binary  code  generated  by  the  encoder of Fig. 1 will again be 
used  as an  example throughout  the paper.  The  additions in 
Fig. 1 are modulo-2  and all binary  sequences e-, b-l, bo, bl,  

are represented as power series b(a) = + b-la-l + 
bo + bla + -. The  encoder  has  connection  polynomials 
Cl(a) = 1 + a2 and C2(a) = 1 + a + a2. In general, the 
encoder  outputs are Cl(a)x(a) and C2(a)x(a). The  syndrome 
z(a) only  depends on nl(a) and n2(a), i.e., not  on  the  data 
sequence x(&), for 

z(a> = C2(4[C1(a)X(4 + n1(41  + cl(a)[Cz(W“) + n2(4 l  

= cz(a)nl(QI) + C,(a>nz(a). (1) 

Having formed  the  syndrome z(a), Section 111 describes  a 
recursive algorithm  like  Viterbi’s 121 to determine  from  the 
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Fig. 2. Syndrome former in its base state. 

Fig. 1. Encoding and syndrome forming for a R = 4 code. 
sequences have been  omitted  from Fig. 2. For  minimum dis- 

syndrome z(a) the noise sequence  pair [A1(a),A2(a)] of mini- 
mum Hamming weight that can  be  a possible  cause of this 
syndrome. 

Given the  estimate [A1(a),A2(a)] of the noise sequence 
pair, one derives an  estimate ;(a) of the original data sequence 
X(.) as follows.  For  a  noncatastrophic  code, Cl(a) and C2(a) 
are relatively prime.  Hence, by Euclid’s algorithm [3] there 
exist  polynomials Dl(a) and D2(a) such  that Dl (a)Cl(a) + 
D2(a)C2(a) = 1.  For  the  example of Fig. 1,  we  have &(a) = 
1 + a, D2(a) = a. We receive the sequence  pair 

yi(a) = Ci(a)x(a) + ni(a), i = 1,2 ,  (2) 

and  form  the  estimate 

Note  that if the noise sequence  estimate [A1(a),h2(a)] is 
correct we  have 

yi(a) + Ai(&) = Ci(a)x(a) + ni(a) + ?$(a) 

= Ci(a)x(a), i = 1,2 ,  

and,  hence 

Note  that (3) for the estimate ;(a) of  the  data sequence 
x(a) can be  rewritten as 

where 

and ;(a) equals the right-hand side (RHS) of ( 5 )  with Ai(a) 
substituted  for ni(a), i = 1, 2.  The  term  in square  brackets  in 
(4) can be computed  directly  from  the received data using  very 
simple circuitry. As there is no need to distinguish  between 
pairs [A1(a),ri2(a)] and [hl(a),l?2(a)]’ that lead to the same 
value for &(a) in (4), the algorithm to be discussed in  Section 
I11 computes (;(a) directly‘ 

11. STATE DIAGRAM 

In Fig. 2 we  have redrawn the  syndrome  former of our 
example. As, according to (l), the  syndrome z(a) only 
depends on  the noise pair [nl(a).n2(a)], all other  binary 

tance  decoding we are now presented  with  the following prob- 
lem. Given the  syndrome z(a), determine  the noise  pair [Al(&), 
h2(a)] of  minimum  Hamming weight that can  be  a cause of 
this  syndrome. Before tackling this  problem  in  Section 111, it 
will be necessary to first derive some general properties  of  the 
state diagram of  a  syndrome  former  for  a  binary  rate -$ con- 
volutional  code. 

Let v be the  number of memory stages of  the  encoder, i.e., 
v = 2 for the encoder  of Fig. 1.  The  corresponding  syndrome 
former  of Fig. 2 has 22u = 16 “physical  states,”  where  a 
physical state is defined as the  contents S = [sl(a),s2(a)], 
where 

of  the 2v = 4 memory cells of  the  syndrome  former.  Thus,  at 
first  sight, the  state diagram of  the  syndrome  former appears 
more  complicated  than  the  state diagram  used to implement 
the classical Viterbi  decoder [2], that  has  only 2’ = 4 states. 
However, on closer inspection, it  turns  out  that  the  22u = 16 
physical  states  of the  syndrome  former can be divided into 
2’ = 4 equivalence classes or  “abstract  states,” where  any two 
physical  states in  the same  equivalence class give the same 
output z(a) irrespective of the  input pair [n l (a ) ,nz (a ) ] .  In 
general, to prove the existence  of the 2’, v = 1 , 2 ,  e - ,  abstract 
states  defined  above, we need the following  definitions. As the 
syndrome  former is a  time  invariant  circuit we  assume without 
loss of generality that  the  state S is present  at  time t = 0. 

Definition 1: A “zero-equivalent” state is a  physical state 
with  the  property  that if the  syndrome  former is in  such  a 
state, an all-zero input [n1(a),n2(a)]o” gives  rise to an all- 
zero  output [z(a)] O m ,  where [b(a)lklk2 indicates  that  part 
of the power series b(a) for which kl =G exp a < k 2 .  

Definition 2: A “base”  state Sb = [a-l,sab(a)] is a  zero- 
equivalent state  with a single “1” in the  rightmost  position  of 
the  top register of  the  syndrome  former, see Fig. 2. 

A base state  can  be  constructed as  follows. Start  with  the 
top and  bottom registers of  the  syndrome  former, Fig. 2, all 
zero. Put a  1 in  the  leftmost  position  of  the  top register. 
Assuming that Cl(a) and C2(a) both have a nonzero  term  of 
degree v, we now have to  put a  1 in  the  leftmost  position  of 
the  bottom register, as otherwise the  corresponding digit  of 
the  syndrome z(a) would  differ  from  zero.  Subsequently,  shift 
the  contents  of  the  top  and  the  bottom register one place to 
the  right, feeding 0’s into both leftmost  positions,  respectively. 
If the  corresponding digit of  the  syndrome z(a) differs from 
zero  set  the  leftmost  position  of  the  bottom register equal to 
1, thus  complementing  the corresponding  syndrome  digit, etc. 
This  process  continues  until the single 1 in  the  top register is in 
the rightmost  position.  The bottom register now  contains 
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szb(a). It is clear that  the above construction leads to a  unique 
result.  This base state Sb is indicated  in  the  example  of Fig. 2. 
However, there might  conceivably  be another  construction 
leading to  a  different  base  state.  The  following  theorem  shows 
that  this is not  the case. 

Theorem 1: The  base state Sb = [a-l,sZb(a)] is unique. 
Proof: Suppose there are two base states Slb and SZb. 

These base states are zero-equivalent states,  hence, so is their 
sum S = S1 + S2 b .  But as the sum of  two base states  the 
physical state S has all zeros  in the  top register of  the  syn- 
drome  former 

As C,(a) has  a nonzero  term  of degree Y ,  the  only  zero- 
equivalent state  with  the  top register contents all zero is the 
all-zero  state.  Hence, S is the all-zero state and the physical 
states S1 and S z b  are  equal. Q.E.D. 

We will now  show  that  there are 2’ equivalence classes of 
physical  states  and that each class has  a  unique  representative 
physical state  for which the  contents  of  the  top register of  the 
syndrome  former, Fig. 2 ,  is all zero. It is these  representative 
states S = [0,s2(a)], to  be  referred t o  as “the  states,”  that will 
be  used in the remainder of  the paper. 

Theorem 2: The 2 2 u ,  v = 1 , 2 ,  e.., physical  states of the  syn- 
drome  former,  corresponding to a  binary  rate --$ encoder 
with Y memory cells, can  be divided into 2’ equivalence classes 
or  abstract states.  Each  equivalence class has  a  unique  repre- 
sentative physical state S = [0,s2(a)] for  which  the top 
register, see  Fig. 2,  of  the  syndrome  former is all zero. 

Proof: Two  physical  states were related if they resulted 
in the same output z(a) irrespective of  the  input pair [n,(a), 
n2(a)]. To prove that  this relation is an  equivalence  relation, 
we must  show  that  it is reflexive, symmetric,  and  transitive. 
Reflexivity  and  symmetry are obvious. To show  transitivity 
let S, be  related to S2 and S2 be  related to  S 3 .  Since S1 and 
S2 produce  the same output z((w), their  sum S1 + S2 is a  zero- 
equivalent state, as is S2 + S 3 .  But S1 + S3 = (S, + S2) + 
(S2 + S3). Hence, S1 + S3 is the sum of  two zero-equivalent 
states  and  thus also zero  equivalent.  In other  words,  the phys- 
ical states S1 and S1 + (SI + S 3 )  = S3 produce  the same 
output z(a) and thus  the relation  defined above is transitive. 
This  completes  the  first  part of  the  proof.  The relation  defined 
above  is an  equivalence  relation and,  hence, divides the  set of 
physical  states into equivalence classes or  abstract  states. As 
the sum of zero-equivalent  states is again zero  equivalent,  left 
shifts of  the base state Sb can be added to  the all zero  state to 
obtain a  zero-equivalent state  for which the  top register has 
any  desired contents.  Two zero-equivalent  states SI and S2 
that have the same top register contents are identical,  for 
their sum S = S1 + S2 is a  zero-equivalent state with top 
register contents all zero.  Hence, as shown  in  the  proof of 
Theorem 1 ,  S is the all-zero state  and  thus S, = S2. In other 
words,  there  are 2’ zero-equivalent  states and, in fact, all 
equivalence classes have 2’ members, giving 22v/2u = 2’ 
abstract  states. As we can  add left  shifts  of  the base state S b  to 
any  particular  physical state  without leaving its equivalence 
class, each equivalence class has  a  representative member, 
called the  state S = [0,s2(a)], that  has  the  contents of the 
top register, Fig. 2 ,  of the  syndrome  former all zero. To prove 
uniqueness of  the representative state  within  an equivalence 
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Fig. 3. State diagram of syndrome  former. 

class, assume two representative  states S1 and S a .  The sum 
S1 + S2 of  two representative  states S1 and S2 within the 
same  equivalence class is a  zero-equivalent state  with  top 
register contents all zero.  This sum state again must be the 
all-zero state. Hence, S, + S2 = 0 or S1 = S 2 ,  proving that  the 
representative state  of an equivalence class is unique. Q.E.D. 

We are now  ready, as an  example, to  construct  the  state 
diagram, see  Fig. 3, of  the  syndrome  former  of Fig. 2.  The 
states So = [ O , O ] ,  SI = [O,a-l], S, = [O,CY-~], and S, = 

[ 0 , c r 2  + a-l] are representative  states  with the  contents of 
the  bottom register, Fig. 2,  of  the  syndrome  former equal to 
00, 01, 10, and 1 1 ,  respectively. An input [n1(a),n2(a)] oo = 
[OJ] brings us from  state So to  state S1. An input [n,(a), 
n2(a)] oo = [1,0] brings us from  state So to state S’ = 
[a-l,O] , which is not a  representative physical state.  The 
representative state in the equivalence class of S’ can be found 
through  addition  of  the base state Sb = [a-1,s2b(a)] , where 

= a-2 + 01-1 from Fig. 2 .  Hence, S’ + Sb = [O,a-2 + 
a-l] ,  i.e., an input [ ~ ~ ~ ( a ) , n ~ ( a ) ] ~ ~  = [1,0] brings us from 
state So to  state S3 = S’ + Sb.  In  the same fashion [nl(a), 
n2(a)]0° = [1,1] brings us from  state So to  state Sa.  All 
states  in  the  state diagram of Fig. 3 have now  been  identified 
and we  leave it  to  the reader to  fill in the remaining edges. A 
solid edge in Fig. 3 indicates that  the  syndrome digit corre- 
sponding to  the particular  transition is 0, a dashed  edge 
corresponds to  a  syndrome digit 1. The  numbers  next to  the 
edges are the values nl, n 2 ;  w. As has  been  explained  in 
Section I ,  it is the coefficients ..e, w-,, wo,  a,, ... of the 
power series a(.) of ( 5 )  that  one is really interested  in. It 
requires  some  explanation that  the generic value w of these 
coefficients  can also be  indicated  next  to  the edges in Fig. 3. 

Theorem 3: The value of  the coefficient of  the power 
series w(a) = + w-,a-1 + wo + wla  + ... defined  by ( 5 )  
is uniquely  determined  by  the  state S(k) of  the  syndrome 
former  at  time t = k and by  the value of  its  input , 

Proof: As the  syndrome  former is a  time-invariant  cir- 
cuit, all one  must prove is that wo is uniquely  determined  by 
S(0) and [ n l o , n 2 0 ] .  Equation ( 5 )  can  be  rewritten as 

k = ... , -1,o, + 1 ,  .... 
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a 0  = Pl‘@>nl(a) + D2’(4n2(oc)l oo + ( 4 o n 1 o  + Dzonzo) ,  

(6) 

where  the  prime on Di’(a), i = 1,  2, indicates that a possible 
constant  term Dio has  been omitted. The  second  term 
(Dlonlo + D20n20)  on  the RHS of (6) is completely  deter- 
mined by  the  input [n10,n20]  to  the  syndrome former  at  time 
t = 0. Now if the  state S(0) of  the  syndrome  former  at  time 
t = 0 determines [nl(a),n2(a)] -,-l and if  deg &‘(a) < v 
and  deg D2’(a) < v, then S(0) determines  the value of the first 
term  [Dl’(a)nl(a) + D2‘(a)n2(a)] oo on  the  RHS of (6) and 
we are  done. Now from Berlekamp [3, p. 271 we know  that 
there  exist  polynomials &(a) and D2(a) satisfying 
Dl(a)Cl(a) + D2(a)C2(a) = 1  and thus  that deg &(a) < 
deg C2(a) and deg &(a) < deg Cl(a). Hence, the degrees of 
both Dl’(a) and D2’(a) are less than  the  common degree v of 
Cl(a) and C2(a). However, the  state S(0) determines [nl(a), 
n2(a)]-,-l only to within an equivalence class. It  thus 
remains to be shown that  addition of  a  zero-equivalent  state 
S = [s1(a),s2(a)]  does not affect the value of [Dl’(a)nl(a) + 
D2‘(a)n2(a)] o0. For  a  zero-equivalent  state we have by 
definition 

It now  follows that 

P(a) [Dl ’(4Sl ( 4  + D2 ‘(4s2 ( 4  

= Dl ‘(a)02’(a) LC2 (a)  + C1(+2(QOI . (9) 

As  deg Ci(a) > deg D2’(a), we have deg P(a) > deg 
Dl’(a)D2’(a). Thus, if [Dl’(a)sl(a) + D2’(a)s2(a)] had  a non- 
zero  term  of  degree 0, then [C2(a)s1(a) + Cl(a)s2(a)] would 
have a  nonzero  term of degree larger than 0. As, according to 
(7),  this  cannot be the case it follows that [Dl’(a)sl(a) + 

In  fact, we even have the stronger  result that all edges 
leading to  the same state S(k + l ) ,  k = e.., - 1 , O ,  +1, -, have 
the same value of ak associated  with  them. 

Corollary: .The value of a h ,  k = ... , -1, 0, +1, -, is 
uniquely  determined  by  the value of S(k + 1). 

Proofi As the  syndrome former is a  time-invariant  cir- 
cuit, all one  must prove is that a. is uniquely  determined  by 
the  state S( 1) of the  syndrome former  at  time t = 1. Accord- 

Dz’(a)s2(a)] 0 0  = 0. Q.E.D. 

As S(1),  in  fact, defines [nl(a),n2(a)]  to within  such an 
equivalence class, S( 1) uniquely  determines w0 . Q.E.D. 

111. ALGORITHM 

As the recursive algorithm to be  described  in  this  section is 
similar to Viterbi’s [2], we can be very brief. For reasons of 
clarity the decoding  algorithm will be explained using the code 
generated  by the encoder  of Fig. 1 as  an example.  Fig. 4 repre- 
sents  the kth section, k = * * a ,  -1, 0, +1, -, of the trellis 
diagram corresponding to  the  state diagram of Fig. 3. The 
decoding  algorithm is to find the coefficients of  the power 
series w(a) = .*. + ~ - ~ a - l  + oo + ala + associated  with 
the  path of  minimum  weight  through  the  trellis  diagram.  The 
pertinent  weight is the Hamming  weight  of the pair [A1(a), 
&(a)] associated  with  the  particular path. As in  the  Viterbi 
algorithm  [2] , to find  the  minimum  weight path we associate 
a  metric  with  each possible state. The  metrics at  time t = k can 
be computed recursively given the metrics  at  time t = k - 1. 
For  the trellis  diagram of Fig. 4, the recursion  is given by 

Mo(k + 1) =?k min [Mo(k),Ml(k) + 21 

Ml(k + 1) =?k min [M2(k) + 1,M3(k) + 11 

M2(k + 1) =?k min [Mo(k) + 2,M1(k)] 

M3(k + 1) = y k  min [M2(k) + 1,M3(k) + 11 

+ z k  min [Mo(k)+ l ,Ml(k)+  11,  ( l ld) 

where Z k  is the  modulo-2  complement of z k ,  k = *-e, -1, 0, 
+1, -. Note that for  each value zk = 0 or z k  = 1  two arrows 
impinge on each (k + 1)-state.  The  arrow  associated  with  the 
minimum within the relevant  pair  of  square  brackets in (1 1) 
is called the “survivor.” If both arrows have this  property,  fhp 
a  coin to  determine  the  survivor.  In  the classical Viterbi [2] 
implementation  of  the  algorithm  each  state Si, j = 0, 1, 2, 3, 
has  a  metric  register MRj and a path  register P R j  associated 
with  it. The  metric  register is used to  store  the  current  metric 
value Mj(k + 1)  at  time t = k,  k = e - ,  -1, 0, +1, -, associ- 
ated  with  state Sj, j = 0, 1,  2, 3.  The path register PRj [0 : 
D - 13 stores  the U-values associated  with the  current 
sequence  of the D most  recent survivors leading up to state Sj 
at‘ time t = k. The  pertinent  output is 

ing to (6),  the value of (30 is uniquely  determined  by [nl(a), ;k-D = CONTENTS p ~ ~ ( ~ )  [D - 1: D - 11, 
n2(a)]-,+10 as the degree of both Dl(&) and D2(a) is less 
than  the  common degree v of Cl(a) and C2(a). In  fact, we where j(k) minimizesMj(k + l), i.e., 
only  need to  know [n1(a),122(a)]-,+10 to within an equiva- 
lence class. The  proof is identical to  the  proof of  Theorem 3, Mj(tz )(k 1) = min Mj(k 1). (12b) 
except  that we redefine P(a) of (8), as 

If more than  one j satisfies  (12b),  select j (k)  arbitrarily  among 
Q(Q) =Dl(a>Cl’(a) +Dp(a>C2’(a). (10). the candidates. As the algorithm  returns &k-D at time t = k, 

(1 2 4  

i 
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Fig. 4. kth 

t I me ; k=.-;1.0.1, .. 

tates; 

O! 2.3 

section of the trellis  diagram, k = ..., -1, 0, + 1, -.. 

k = ... , -1,O,  +1, -, the  path register  length D is also referred 
to as the coding  delay. The resulting  bit  error  probability Pb 
decreases as the coding  delay D increases.  Increasing D beyond 
5(v + 1) does not lead to appreciable further decrease in  the 
value of Pb. This  relation between  the  bit  error probability Pb 
and the coding  delay D will be  elaborated on  further  in 
Section VI. The  next  section is concerned  with  a  practical 
implementation of the  syndrome decoder. 

IV. IMPLEMENTATION 

So far,  the  syndrome  decoder  has  only  been  of  theoretical 
interest as a  possible  alternative  for the classical Viterbi 
decoder [2]. We will now study  a practical  implementation 
and  in the  next section  make  some  comparisons as to  the rela- 
tive hardware  complexity  of  these  competing  decoders. 

Using (11) we construct  Table I. The first  column just 
numbers the rows of the  table. The  second  column  lists all 
possible metric  combinations Mo(k), Ml(k),  M2(k),  M3(k) at 
time k -1. As only  the differences  between the metrics  of a 
quadruple  matter, we substract  from  each  member  of  a  quad- 
ruple  of  metrics the minimum value of the  quadruple, i.e., all 
quadruples of metrics i n  Table  I have one  or  more  zeros. 
Columns 3 and 4 apply to  the case that zk = 0 and  columns 5 
and  6 to  the case that zk = 1.  Columns 3 and 5 list the sur- 
vivors, i.e., the indices of  the associated (k - 1) states,  and 
columns 4 and  6 the new metrics Mo(k + l), Ml(k + l ) ,  
M2(k + l),  M3(k + 1) as  given by (1  1). If  there is  a  choice of 
survivors, the candidates are placed  within  parentheses in the 
survivor columns. 

Table I contains  more  information  than is necessary  for the 
actual  implementation  of  the  syndrome  decoder. As explained 
in  Section 111, knowledge  of the survivor  leading to each state, 
together  with  the  index j ,  of  the  minimum  within  each  new 
quadruple  of  metrics,  suffices to determine  the key  sequence 
~ ( a )  of (5). Hence, we omit  the  quadruples  of  metrics  from 
Table I and  store  the resulting  Table I1 in  a  read-only memory 
(ROM). The  operation of the core  part  of the  syndrome 
decoder  can  now  be  explained using the  block diagram of 

TABLE I 
METRIC TRANSITIONS 

Zk = 0 z = 1  

Row Old 
Number Metrics  Survivors  Metrics  Survivors  Metrics 

New  New 

0 0000 O ( 2 . 3 )  1  (2.3) 0101 2 (0,1)310,1)  0101 
1  0101 0 2 1 2 0111 2 0 3 0 0111 
2  0111 0 ( 2 , 3 )  1 (2.3) 0212 2 0 3 0 
3 0212 0 2 (0.1) 2 0222 2 0 3 0 

0000 
0010 

4 0222 0 (2 ,3 ) (0 ,1 ) (2 ,3 )  0323 2 0 3 0 
5 0010 0 3 1 3 

1010 
0101 2 (0,1)3(0,1)  1101 

6 0323 0 2 0 2 
7 1010 0 3 1 3 

0323 2 0 3 0 1020 
1101 2 1  3  1 

8 1101 0 2 1 2 
1101 

9 1020 0 3 1 3 
0000 2 10,1)3(0,1)  0212 
1101  12,3)  1 3 1 

10  2101 0 2 1 2 1000 2 1 3 1 
2101 

11 
0212 

1000 0 ( 2 , 3 )  1 ( 2 . 3 )  1101 2 1 3  1  0101 

Fig. 5. Assume that  at time k the ROM address  register  AR 
contains (AR) = 7  and the ROM data register DR  contains 
(DR) = (ROM,7). Note, see Fig. 4 and also the corollary to  
Theorem 3, that  the U-values to be  shifted  into PR,  [0 : 01 , 
PR1 [0 : 01 , PR2 [O : 01 , PR, [0 : 01  are 001  1, respectively. 
Let zk = 1.  Then according to row 7  and  column 5 of  Table 11,' 
or  according to  the  contents (DR) of the DR,  replace 

P R o [ l : D -  11 +CONTENTSPR2[1:D- 11 

PR1 [ l :  D - 11 +CONTENTS  PR1 [ l :  D - 11 

PRZ[ l :D-  11 +CONTENTSPR,[l:D- 11 

PR3[1:D- I ]  +CONTENTSPRl[l:D- 11. 

Therightmostdigit,P~[D-l:D-l],PRl[D-l:D-l], 
P R 2 [ D - 1 : D - 1 ] , P R 3 [ D - 1 : D - 1 1 , o f a l l f o u r p a t h  
registers is fed to  the selector, see Fig. 5, that determines 
ShPD according to  (12a) using as j(k) the  entry in row 7  and 
column 7, i.e., j m  = 2, of Table I1 which  can also be  found  in 
the DR. To complete  the kth cycle  of the syndrome  decoder, 
set  (AR) = 8  and  read DR + (ROM,8). The ROM decoder  for 
the  code of Fig. 1 has  been realized in  hardware using path 
registers of length D = 11. The  experimental  results will be 
discussed in  Section  VI. 

V. PATH REGISTER SAVINGS 

The  ROM-implementation of the  syndrome decoder as des- 
cribed  in  Section IV has  been realized for  the codes  listed  in 
column  2 of Table 111. We will discuss some  interesting  aspects 
of this  table.  The  first row lists several properties of code 1 
that was used as an example  throughout  the  earlier  part  of 
the paper.  Column 3 lists the  number of  metric  combinations 
of the various  codes.  The classical Viterbi  decoder  [2] can also 
be  realized using a ROM in the manner  described  in  Section 
IV.  However, the  Viterbi decoder  for  code 1 has 31 metric 
combinations,  whereas  the  syndrome  decoder  has  only  12 
metric  combinations.  For the v = 4 codes  this  difference is 
even  more  pronounced.  For  codes 2 and 3 the syndrome 
decoder  has,  respectively, 1686 and 1817  metric combina- 
tions,  whereas the classical Viterbi  decoder  for  either  of  these 
codes  has more  than 15 000 metric  combinations.  Note  that  in 
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TABLE I1 
CONTENTS OF THE ROM 

Zk = 0 z = 1  

Old New 
ROM ROM 

New 
ROM 

Address Survivors Address Index j Survivors  Address  Index j 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10  
11 

O ( 2 . 3 )  1  (2,3) 1 
0 2  1 2 2 
O(2.3)  1  (2,3) 3 
0 2  (0.1) 2 4 

0 3 -  1 3 
0(2,3)  ( 0 , l )  (2.3) 6 

1 
0 2  0 2 6 
0 3  1 3 
0 2  1 2 

8 
0 

0 3  1 3 8 
0 2  1  2  11 
O ( 2 . 3 )  1 (2.3)  8 

(0,2) 2   (0 ,1 )3(0 ,1)  
0 2 0 3 0  
0 2 0 3 0  
0 2 0 3 0  

(0 ,2 )   2   (0 ,1 )3(0 ,1)  
0 2 0 3 0  

0 2 0 3 0  
2 

(0,1.2.3) 2 (0 ,1 )3 (0 ,1 )  
2 1 3 1  

2 (2 ,3)  1  3 1 
(1 ,2,3)  2 1  3 1 

2 2 1 3 1  

1 
2 
0 
5 
7 
8 
9 
8 

10  
3 

3 
1 

I I I I 

I I '  - 1  I 

& 
Fig. 5 .  Block diagram of the core of the  syndrome decoder. 

TABLE 111 
CODES  REALIZED 

polynomials; 
0-th order r q h t  

I 1001  1 

10011 
11011 

10111 
10011 
11101 

number of 
metric com. 
binations 

1 -1 

minimum 
number of patt 
r e g i s t e r s  

d is tance  

12 

1,686 

1,817 

11,304 

3 

12 

9 

12 

columns 5, 6, and 7 both  error events at  the free  distance  and 
error  events  at the free  distance  plus  one  are  considered. In a 
binary  comparison  with the no-error  sequence,  an  error  event 
at distance 2k has the same probability of occurrence [4] as an 
error  event at distance 2k - 1, k = 1, 2 ,  .-. Thus, in the case 
that  the free  distance is odd,  error events  at the free  distance 
plus  one  should also be considered  when  comparing  codes as 
to  the  bit  error  probability P b .  Studying  columns 5, 6, and 7 
of  Table 111, we observe that as far as the  bit  error  probability 
is concerned  code 4 is indistinguishable  from  codes 2 and 3. 
However, the  syndrome decoder  for  code 4 requires 11304 
ROM-locations  and  code 4 is thus,  from a complexity  point 
of view, inferior to  codes 2 and 3. 

The number  of  metric  combinations increases  rapidly  with 
the  constraint  length v of  the  code.  Hence,  for  larger values of 
v the size of the ROM in the  implementation  according to 
Section IV soon  becomes  prohibitive. I n  the classical imple- 
mentation [2] with  a  metric register and  a path register  for 

I 

each state Si, j = 0,  1, - a ,  2' - 1,  the Viterbi  decoder  and the 
syndrome  decoder  require  roughly the same amount of  hard- 
ware per state. However,  comparing ( l l b )  and (1 Id)  for  code 
1, one  observes that S1 and S3 have the same metric  value. 
Moreover,  selecting the identical survivor in case of  a tie, SI 
and S3 also have the same path register contents. As far as 
metric  and  path register contents are concerned,  the  states S1 
and S3 are not  distinct. The metric, register and the  path 
register  of  either  state S1 or  state S3 can be eliminated.  Thus, 
in the classical implementation  with  metric  registers  and  path 
registers, the  syndrome decoder  for  code 1 requires  only  of 
the  amount of  hardware that  the  Viterbi decoder  requires. We 
will prove that,  in general,  one  can  eliminate the  metric and 
path registers of  half the  odd  numbered  states, where the  state 
number  of  a representative state S = [0,s2(ol)] is the value of 
the  contents of the  bottom register of the  syndrome  former 
interpreted as a  binary  number,  i.e.,  odd  states have s2,-1 = 
1.  Hence, the  syndrome decoder is at  most as complex as 
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is the  Viterbi  decoder. Looking again at Table 111 column 4 we 
see that  code  1 can  be realized with 3 instead  of 2’ = 4 path 
registers, and  that  codes 2 and 4 can  be realized with  12 
instead  of 2’ = 16  path registers. Code 3 requires even fewer, 
i.e., nine  instead  of 2’ = 16  path registers. We now prove that 
the  syndrome  decoder  is,  in  general,  at  most $ as complex as 
is the  Viterbi  decoder. 

Theorem 4: The  odd  numbered  (representative)  states 
S(1) = [0,s2(a)] and  S’(1) = [0,s2’(a)], where s2’(a) = 
s2(a) + + a-l have identical  metric  equations,  com- 
pare ( l l b )  and ( l ld ) ,  iff C1,o = C2,o = C1,u = C2,u = 1. 

Proof: An odd  numbered  state  S(1) = [0,s2(a)] has 
s2,-l = 1. If both connection  polynomials Cl(a)  and C2(a) 
have a  nonzero  term  of degree v, it follows  from the  construc- 
tion  of  the base state Sb that s ~ , - ~ ~  = 1. Hence, s2’(a) = 
s2(a) + ~ ~ ~ ( a )  + a-l has s ~ , - ~ ’  = 1, and the  requirement 
that  both S(1) and S’(1) are odd  numbered  states is consistent. 
Consider the following  parent  states: 

= Eo,md41 -u-l 

Sb(0) = [o,a-’ + mZ(a)] -vP1 

SC(0) = [O,mz’(a)l -u-l 

Sd(0) = [O,a-’ + mp’(a)] -~-l. 

As both Cl(a) and C2(a) have a  nonzero  term  of degree v, 
S,(O) and Sb(0) give  rise to complementary  syndrome digits, 
and so do S,(O) and Sd(0). For an input  [n10,n20] = [0,1] 
the  parent  states S,(O) and Sb(0) go into  S(1)  and  the  parent 
states S,(o) and &(o) go into  $(I), and vice  versa for an input 
[n10,1220] = [1,0] . Assuming that Cl(a) and Cz(a) both have 
a  nonzero  constant  term  and  that [nlo,n20] is either [0,1] or 
[1,0] , the  syndrome value only  depends  on  the  parent  state 
S(0). Hence, S(1)  and  S‘(1) have identical  equations. Q.E.D. 

Theorem 4 proves that  the  syndrome decoders  for the v = 
4 codes 2,  3, and 4 in  Table 111 can be realized with  no  more 
than 12 instead  of 2” = 16  path registers. Column  4 of  Table 
I11 shows,  however, that  code 3 requires  only 9 instead of 2’ = 
16  path registers. The following theorem shows how  this 
further  reduction  in  hardware  can  be  accomplished. 

Theorem 5: One 4-tuple  of  pairs  of  odd  numbered  parent 
states gives  rise to  two pairs  of odd  numbered  states  that have 
identical  metric  equations  iff Cl,l = C2,1 and Cl,v-l = 

Proof: Assume that S,(O), Sb(o), S,(O), and Sd(0) in 
the  proof  of  Theorem 4 are odd  numbered  states, i.e., = 
S Z , - ~ ’  = 1. This can be a  consistent  requirement if ~ ~ , - ~ b  = 
0, and  from the construction  of  the base state Sb it  is clear 
that s ~ , - ~ ~  = 0 iff Cl,u-l - - C2,u-1. If S,(O), Sb(O),S,(o), 
&(o) are odd  numbered  states,  then according to Theorem 4 
there  exists  a  corresponding  4-tuple  of odd  numbered  states 
S,’(O), Sb’(o), S,‘(O), Sd’(0) such  that  the corresponding  com- 
ponents  of these  4-tuples have identical  metrics.  According to 
Theorem 4,  the first  4-tuple S,(O), Sb(o), S,(O), &(o) gives 
rise to the  states  Sp(l)  and Sq(l) that have identical  metric 
equations.  Similarly,  according to Theorem 4 the second 
4-tuple Sa’@), Sb’(o), S,’(O), Sd’(0) gives  rise to  the states 

c2.u-1. 

Spf( l )  and Sq’(l) that also  have identical  metric  equations. As 
the corresponding  members of the  parent  4-tuples S,(O), 

identical  metrics, the  four  states Sp(l), Sq(l) ,   Spf(l) ,  and 
Sq’( 1) have identical  metric  equations  iff  corresponding  states 
in the  parent  4-tuples give  rise to  the same syndrome  digit. 
For  this to occur it is  necessary that  the difference S = 
[0,s2b(a) + a-11 between  corresponding  states is a  zero- 
equivalent state. But the base state Sb = [a-1,s2b(a)] is a 
zero-equivalent state,  hence, S = [ a - l , ~ 2 ~ ( a ) ]  + [a-l,a-l] 
is a  zero-equivalent  state  iff Cl ,1 = C2 ,l. Q.E.D. 

It is easy to verify that  the  two 4-tUpkS S,(o), Sb(o), 
s,(o), &(o) and s,’(o), Sb‘(o), s,’(o), S d ‘ ( 0 )  in  Theorem 5 
with [n10,1220] equal to  either [O,O] or  [1,1] lead to four 
even numbered  states  that have  pairswise-identical metric 
equations. 

Corollary: The  4-tuple  of  pairs  of  odd  numbered  parent 
states  of  Theorem  5 gives  rise to 4 even numbered  states  that 
have  pairswise identical  metric  equations. 

Summarizing, we  have the following  results.  According to 
Theorem 4, the  odd  numbered  states have  pairswise-identical 
metric  equations  for  codes,  such as codes 1 ,2 ,  and 4 of  Table 
111, with Cl ,o = C2,0 = Cl ,u = C2,u = 1. Hence,  for  such 
codes 2’-2, v = 2, 3 ,  -., metric  and  path register combina- 
tions can be eliminated.  This leads to a  syndrome  decoder of 
$ of  the  hardware  complexity  of  the  Viterbi  decoder. Accord- 
ing to Theorem 5, each  4-tuple  of  pairs  of  odd  numbered 
states  leads to  two pairs of  odd  numbered  states  that have 
identical  metric  equations  for  codes,  such as code 3 of  Table 
111, with Cl,o = C2,0 = Cl ,u  = c 2 . u  = 1 and Cl,l = 
C2,11C1 ,u-l = C2,u-1. Hence,  for  such  codes an additional 
2’-4, v = 4, 5 ,  -, metric  and  path register combinations can 
be  eliminated.  According to the corollary to Theorem 5 ,  the 
4-tuple  of  pairs  of  odd  numbered  states  mentioned above also 
leads to four even numbered  states  that have  pairswise- 
identical  metric  equations.  This leads to an additional saving  of 
2.2’-4 metric  and  path register combinations.  The total 
savings for  codes  with Cl,o = C2.0 = Cl ,u  = C2,v = 1 and 

3.2’-4, v = 4 , 5 ,  -. The  resulting  syndrome  decoder  has 9/16 
of the  hardware  complexity  of  the  Viterbi  decoder.  Con- 
tinuing  this series of  reductions  the  ultimate savings in  metric 
and path register combinations is equal to 2v-2 + 3.2v-4 + 
32.2v-6 + [9] , leading to a  syndrome  decoder of hardware 
complexity  equa1,to ($fl)’ times  the hardware  complexity 
of  the  Viterbi  decoder.  Note  that  in  order to achieve this 
ultimate savings in hardware  complexity  one  must  put severe 
constraints on  the encoder.  Code 3 of Table 111 still achieves 
the  maximum free  distance  for  constraint  length v = 4 codes. 
It is quite conceivable, however that in putting  on  further 
constraints  on  the  encoder  for larger values of v it is no longer 
possible to achieve the  maximum free distance.  However, 
by only  requiring Cl,o = C2.0 = C1,u = C2,u = 1, and Cl,l = 
C ~ J ~ C ~ , ~ - ~  = C2,v-l one  already achieves the  reduction  of 
7/16, as shown  above. 

One  final  comment is in  order.  The  hardware  reduction 
with respect to  the Viterbi  decoder  has been  equated  with  the 
savings in  metric  and  path register combinations.  Note  that  the 

S b ( o ) ,  Sc(o), Sd(0)  and Sa’(o), Sb’(o), Sc’(o) ,  S d , ( o )  have 

c1.1 = Cz,lCl,v-l = C2,u-1 is thus  equal to 2’-2 + 
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path registers in the  snydrome  decoder are used to store the 
binary  U-values,  compare ( 9 ,  i.e., they are binary  storage 
registers just as are the  path registers of  the  Viterbi  decoder. 
One might  remark that  the  path registers of the  syndrome 
decoder are more  complex because each  state  has  four possible 
parent  states  instead  of  two as in the  Viterbi  decoder.  How- 
ever, by filling the  path registers serially this  aspect  hardly 
adds to the  complexity. 

VI.  EXPERIMENTAL  RESULTS 

The solid lines  in Fig. 6 give the  measured  bit  error  proba- 
bility P b  of  code 3 of  Table 111 as a  function  of  the transition 
probability p of  the  binary  symmetric  channel (BSC), for  both 
a  path register length D = 11 and a  path register length D = 
16. The  dashed line in Fig. 6 is a  refinement  of  Van De 
Meeberg’s [4]  of Viterbi’s upper  bound on the  bit  error  proba- 
bility.  This  dashed  bound is  valid for infinite path register 
length. We extended Van De  Meeberg’s upper  bound to also 
apply to finite path register lengths.  The  derivation of  this 
extended  bound will be published  shortly.  The  dashed curves 
in Fig. 6 give the  upper  bound on the  bit  error  probability  for 
both D = 11  and D = 16.  It is clear from Fig. 6  that  it  does 
not  pay to increase  the  path register length  much  beyond 
D =  16. 

It  appears, so far,  that  the  syndrome  decoder is  an inter- 
esting  (from the  hardware  point  of view) ,substitute  for  the 
classical Viterbi  decoder.  In closing, we want to mention  two 
important  applications  of  the  syndrome  decoder  where  the 
classical Viterbi,  decoder caqnot  be’  used. These  applications 
are in  feedback  communications [5],  and in source  coding 
(data  reduction) [ 6 ] .  In  the  next  two  paragraphs we describe 
these uses, both of  w@ch have been  simulated on the  com- 
puter,  of  the  syndrome  decoder, respectively. 

Reference  [5]  describes  a  coding  strategy  for  duplex  chan- 
nels that  enables one to transfer the  hardware  or  the  program 
complexity  from  the passive (receiving) side to  the active 
(transmitting) side of  the  duplex  channel. As pointed  out in 
reference [ S I ,  this  coding  strategy can be  used to great  advan- 
tage in a  computer  network  with  a star  configuration.  For  the 
information flow from  the  central  computer to the satellites 
one uses the  duplex  strategy  thus  only  requiring  one  complex 
one-way  decoder  at  the  central  facility.  For  the  information 
flow from  a  satellite computer  towards  the  central facility 
one uses one-way  coding, again  using the  complex  one-way 
decoder  at  the  central  computer. One thus saves a number of 
complex  one-way  decoders  equal to  the number  of  satellite 
computers in the  multiple dialog system (MDS). The  duplex 
strategy  [5]  requires  at  the active (transmitting) side of  the 
duplex  channel an estimate  of  the  forward noise nl(a). To 
form  this  estimate Al(a), the  data received at  the passive 
station are scrambled by  a  convolutional  scrambler C(a) and 
sent  back to the active station. At the active station  one can 
now  form  the  estimate using the  Viterbi  decoder  for  the 
“systematic”  convolutional  code  generated  by an encoder  with 
connection  polynomials Cl(a) = 1 ,  C2(a) = C(a). It is well 
known  that  “nonsystematic”  convolutional  codes are more 
powerful  than  systematic  convolutional  codes. With  our syn- 
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Fig. 6 .  Bit error rate Pb versus channel transition  probability p .  

drome  decoder we are now able to find A1(a) according to a 
nonsystematic  code. To this  end we modify  the  feedback-free 
scrambler C(a) [SI into  a  feedback  scrambler C,(a)/C,(a), see 
Fig. 7.  Note  that z(a) according to Fig. 7 is identical to (1). 
Hence, we can use our  syndrome  decoder to  obtain &(a). 
Fig. 8 gives the  feedback  scrambler  for  the  convolutional  code 
generated  by  the  encoder  of Fig. 1. 

Note  that  the  syndrome  former, Fig. 2 ,  has  two  input 
sequences nl(a), n2(a) and  one output sequence z(a) = 
C2(a)n1(a) + C1(a)n2(a). Thus,  the  syndrome  former  com- 
presses two  binary  streams nl(a), n2(a) into  one  stream z(a) 
and,  hence, achieves a  data  compression  of  a  factor  of 2. The 
estimator  part  of  the  syndrome  decoder can with  high  proba- 
bility of being correct recover the original  sequences nl(a), 
n2(a) given the compressed data  sequence z(a). The use of 
a  syndrome  decoder  for  data  compression  has also been 
studied  by Massey [6] . In general, to  obtain  a  data  compres- 
sion  factor n, n = 2 , 3 ,  -, one used the  syndrome  decoder  of  a 
rate -(n - l)/n convolutional  code. 

VII. CONCLUSIONS 

This  paper  considers  the  syndrome  decoding  of  rate -+ 
convolutional  codes. Table 111 shows  that  the  number  of 
metric  combinations  of  the  syndrome  decoder is small com- 
pared to  the number  of  metric  combinations  of  the  corre- 
sponding  Viterbi  decoder.  For  the  constraint  length v = 4  code 
of row 3 of Table 111, for  example,  the  number  of  metric  com- 
binations  with  syndrome  decoding  is  1817,  whereas  the 
Viterbi  decoder  for  this same code has over 15 000 metric 
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Fig. 7. Duplex  channel with feedback scramblers. 

Fig. 8. Feedback  scrambler with C1(a) = 1 + a2, Cz(01) = 1 + 01 + 01~. 

combinations. This relatively small number  of  metric  combina- 
tions  for small constraint  length  codes  enables  the ROM- 
implementation  of  Section IV, that eliminates the need for 
metric registers. For larger constraint  lengths,  the  storage 
requirements  of  the ROM would  become excessive. However, 
by  putting mild constraints on the  encoder  it is  possible to 
eliminate  more than half of  the  metric  and  path register com- 
binations.  The  syndrome  decoder  of  code 3 of Table 111, for 
example,  only  requires  nine  path registers, whereas the  corre- 
sponding  Viterbi  decoder  has 2’ = 16 path registers. 

The  idea of  syndrome  decoding  can  be  extended to rate 
-k/n convolutional  codes. Forney [7], [8] describes the 
mathematical  tools necessary to find the general  syndrome 
former  equations  and  the  equations  of  the inverse encoder. 

Note added in proof: A. W. J. Kolen  has  pointed out 
a  mistake in  the  proof of Theorem 3,. i.e., Di‘((Y)C1(cY) + 
Dz’(a)Cz(a) = 0 is incorrect.  The  proof  can  be  corrected 
by observing that deg [Cz(a)sl(a) + Cl(a)s2(a)] > 
deg [Dl(a)sl(a) + D2(4S2(41 . 
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