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d M ( w / ( n / d ) , d )  = total number of n-tuples of weight w. (6) 

However the  right side  can be determined. For  each combination 
of w positions in an n-tuple, there  are (T  - 1)" possible choices 
which produce the  same weight w ;  there  are ( G )  (binomial coeffi- 
cient) such combinations. Equation (6) becomes 

dM(w/ (n , /d ) ,d )  = 6) ( r  - 1)w.  (7) 

dln 

dln 

The Mobius inversion formula [ l ]  can be applied and we have 

The symbol (n,w) denotes the  greatest common divisor of the 
integers n and w and p ( d )  is the Mobius function [ l ] .  

We may combine ( 5 )  and (8) and  incorporate  the properties of 
the  greatest common divisor to  arrive a t  a single expression for 

The weight distribution for binary  CPCW  up  to  length 14 is pre- 
sented  in  Table 1 1 . 2  
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Syndrome  Decoding of Convolutional Codes 

J. P. M. SCHALKWIJK AND A. J. VINCK 

Absfract-The classical  Viterbi  decoder  recursively  finds the 
trellis path (code word)  closest to  the received  data. Given the  re- 
ceived data,  the  syndrome decoder first  forms a  syndrome, instead. 
A recursive algorithm like Viterbi's is used  to  determine  the 
noise  sequence of minimum Hamming weight that  can  be a  possible 
cause of this syndrome. Given the  estimate of the noise  sequence, 
one  derives  an  estimate of the original data sequence.  While the  bit 
error probability of the  syndrome decoder is no  different from  that of 
the classical Viterbi decoder, the  syndrome decoder can  be imple- 
mented using  a read only memory (ROM), thus obtaining  a con- 
siderable saving in hardware. 

I. INTRODUCTION 

The principle of syndrome decoding of convolutional codes will be 
explained using the  binary code generated by  the encoder of Fig. 1. 
The  additions  in Fig. 1 are modulo-2, and all binary sequences 
bo,bl,b2,. - - are represented as power series b ( a )  = bo + bla + 
bza2 + - * -. The encoder has connection polynomials C1(a) = 
1 + a2 and C Z ( ~ )  = 1 + a + a2. Hence, the encoder outputs  are 
Cl (a) z(a) and C z ( a ) z ( a ) .  The  syndrome z (a) only  depends on 
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nl(a) and n~(a), i.e., not on the  data sequence z ( a ) ,  for 

z(a) = Cz(a)[C1(a)z(a) + n , ( a ) I  + cl(a)cc22(a)2(a) + n z ( a ) I  

= Cz(a)n1(a) + C1(a)nz(a). (1) 

Having formed the syndrome z (a), the  next section describes a re- 
cursive algorithm  like  Viterbi's [l] to  determine from the  syndrome 
z ( a )  the noise sequence  pair [&(a),&(a)] of minimum  Hamming 
weight that can be a possible cause of this syndrome. 

Given the  estimate [G1 (a) ,& (a) ] of the noise sequence pair, one 
derives  an estimate $(a) of the original data sequence %(a) as fol- 
lows. For a noncatastrophic code, Cl(a )  and C Z ( ~ )  are relatively 
prime.  Hence, by Euclid's  algorithm [ a ]  there exist polynomials 
D1(a) and D z ( ~ )  such that D1(a)C1(a) +Dz(a)Cz(a) = 1. For 
the example of Fig. 1, we have D t ( a )  = 1 + a, Dz(a)  = a. We 
receive the sequence  pair 

yi(a) = c i (a ) z (a )  +ni(a), i = 1,2, ( 2 )  

and  form  the  estimate 

Note  that if the noise sequence estimate [&(a) ,& (a) ] is  correct we 
have 

yi(a) + &(a) = Ci(a)z(aY) +ni(a) + &(a) 
= Ci(ol)Z(ol), i = 1,2, 

and, hence, 

?(a) = D1(a)G(a) z (a )  + Dz(a)Cz(a)z(a) = %(a). 

Note  that (3) for the  estimate $(a) of the  data sequence z ( a )  can 
be rewritten as 

$(a) = CDl(a)Yl(a) + Dz(a)yz(a)l + w ( a ) ,  (4) 

where 

@(a) = D t ( a ) & ( a )  + Dz(a)&(a) .  ( 5 )  

The  term  in  square  brackets  in (4) can be computed directly from 
the received data using very simple circuitry. As there  is no need to 
distinguish between pairs [n^l(a) , & ( a ) ]  and [&(a) ,&(a) I' that 
lead to  the  same  value for ~ ( a )  in ( 5 ) ,  the algorithm to  be discussed 
in  the  next section computes ~ ( a )  directly. 

11. ALGORITHM 

In  Fig. 2 we have redrawn the syndrome  former. As, according to 
(1), the  syndrome z ( a )  only depends on the noise pair [nl(a) ,  
n z ( a ) ]  all other  binary sequences have been omitted from Fig. 2. 
For  minimum distance decoding we are now presented with  the fol- 
lowing problem. Given the syndrome z (a), determine  the noise pair 
[&(a) ,&(a) ]  of minimum  Hamming  weight that can be a cause of 
this syndrome. 

At first sight  the  state diagram of the syndrome  former of Fig. 2 
has Z4 = 16 states  and, hence, is more  complicated than  the  state 
diagram used to implement the classical Viterbi decoder [I] that 
has only 22 = 4 states. However, a closer inspection of Fig. 2 reveals 
that  the  syndrome former has also 22 = 4 states. In  general, for an 
encoder with Y memory  stages, the syndrome  former  has 2~ states 
just like the  state diagram used to implement the classical Viterbi 
decoder. This can be seen as follows. Writing 

[nl(a) ,nz(a)] [n10,~201 + [1211,12211a + [ ~ 1 2 , ~ 2 2 1 ~ ~  + a, (6) 

we can replace the first coefficient pair [nlo,n20] by its modulo-2 
complement [7i10,7i20] without affecting 20. However, the comple- 
mentation of [n10,n20] may affect z1,zt,- --,z,-1. Nonetheless, there  are 
two  complementary choices of [n11,n21] that give us the required value 
of zl, etc.  Hence,  each of the 22" possible memory states  in Fig. 2 is 
equivalent to 2~ - 1 others as far as z (a) 'is concerned, leaving 22"/ 
2" = 2v different states. Fig. 3 gives the  state  diagram of the syn- 
drome  former of Fig. 2. Solid transitions  in Fig. 3 correspond to  
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I I 

encoder ' channel ' Syndrome  former 
I I 

Fig. 1. Encoding and syndrome forming for a R = 4 code. 

"W' 
Fig. 2. Syndrome  former. 

t9 0o:o 

Fig. 3. State diagram of syndrome former. 

z k  0 = and dashed transitions  to z k  = 1, k = 0,1,2,. - a .  hText  to,  each 
transition one finds the  value of & k , & $ ;  o k,k = 0,1,2, - - *.Fig. 4 gives 
the  kth, k = 0,1,2, - ., section of the trellis diagram  that corresponds 
to  the  state  diagram of Fig. 3. The  algorithm  that determines ~ ( a )  
according to  (5) now operates as follows. With each state  in Fig. 4 
we associate a.,metric Mi(k) , j  = 0,1,2,3,k = 0,1,2,- .  -, that equals 
the  minimum 'Hamming  weight of a path, [&I (a),&(cy)](j), leading 
from  state j = 0 at  time k = 0 to  that  particular  state.  This  path 
has a solid or dashed Zth branch, 0 5 I 5 k - 1, according to  whether 
ZI = 0 or ZI = 1, respectively. The  metric M , ( k  f 1) at  time k + 1 
can be determined recursively, i.e., 

Ma(k + 1) = Zkmin [Mo(k),Ml(k) + 23 

+ zb min CMZ(k),Ms(k) + 27 (7a) 

M l ( k  + 1) = Zkmin [Mz(k) + l,Ma(k) f 11 
+ zk min [Mo(k) + l,M,(k) + 11 (7b) 

time; k: O, I ,Z ,  

4 

states; i : 0,1,2,3 

Fig. 4. k th  section of the trellis diagram, k = 0,1,2,. * *. 

Mz(k + 1) = &min CMo(k) + 2,M1(k)] 

+ min CMa(k) + 2,Ma(k) 1 ( 7 ~ )  

Ma(k + 1) = ikmin [MZ(k) + 1,Ma(k) + 13 

+ zk min LMo(k) + l,Ml(k) 4- 11. (7d) 

Given the value of Zk, i.e., zk = 0 or z k  = I, each (k 1) state  can 
be reached from two k states. For each of these two k states  add 
to  the  metric  the  Hamming weight of the  transition, i.e., of [&,&], 
to  the  particular (k + 1) st,ate. The minimum of the two  values thus 
obtained  is  Mj(k + 1) .  The  transition associated with  the  minimum 
value is called the "survivor." In  case of a tie, choose the  survivor 
a t  random among the two  candidates. The survivor for (k + 1) state 
j = 0,1,2,3 can be specified by  the associated k statejj(k) = 0,1,2,3. 
Going back  from a (k + 1) state each time choosing the survivor we 
obtain  the  path [&(a),&(cy)](i),j = 0,1,2,3, of minimum  Hamming 
weight  leading to  that  particular (k + 1) state.  The coefficients 
o~-D+l( j ) ,ok-D+~(j) ,  * * .,Wk(i), associated with  the  path [;I (a )  ,& (cy) 1") 
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TABLE I 
METRIC TRANSITIONS 

Row Old New New 
Number  Metrics Survivors  Metrics  Survivors Metrics 

0 

2 
1 

4 
3 

5 
6 
7 
8 
9 

10 
I1  

0000 
0101 
0111 
021 2 
0222 
0010 
0323 
1010 
1101 
1020 
2101 
1000 

0 2  0 2 
n 3  1 3 

0101 

0212 
0111 

0323 
0222 

0101 
0323 
1101 
0000 

1000 
1101 

1101 2 1 3 1  

0101 
0111 
0000 
0010 
1010 
1101 
1020 
1101 
0212 
2101 
0212 
0101 

TABLE I1 
CONTENTS OF THE ROM 

Old 
ROM 

Address Survivors Address Index j, Survivors Address Index j ,  

New 
ROM 

New 
ROM 

0 

2 
1 

4 
3 

5 
6 
7 
8 
9 

11 
1n 

1 
2 
3 

6 
4 

1 
6 
8 

8 
11 
8 

n 

1 
2 
0 
5 
7 
8 

8 
9 

10 
3 

3 
1 

of minimum Hamming weight, are  stored in the  path register for the 
j t h  state, j = 0,1,2,3. If 

Mi,(k + 1) = min M i ( k  + I ) ,  ( 8 )  
i 

we set 

Wk-D+1 = W&D+l(im). (9) 

If more than  one j satisfies (8), we select. j ,  arbitrarily among the 
candidates. The longer the  path register length D, t,he smaller the 
resulting bit error  probabilit,y Pt3. Increasing D beyond 5 ( v  + 1) does 
not, lead to an  appreciable further decrease in P b .  We have done de- 
tailed  calculations concerning the relationship  between D and Pa, 
which will be published shortly.  The  next section is concerned with 
the practical implementation of the syndrome decoder. 

111. IiWPLEMENTATION 

Using (7) we construct  Table I. The first, column just  numbers  the 
rows of the table. The second colunm lists all possible metric com- 
binations MO(k),Ml(k),Mq(k),n.T3(k) at, time k. As only the dif- 
ferences between the metrics of a  quadruple matter, we subt,ract(  from 
each  member of a qrmdruple of metrics t,he minimum  value of the 
quadruple, i.e., all quadruples of metrics in Table I have one  or  more 
zeros. Columns 3 and 4 apply to the case t,hat. z k  = 0 and columns 5 
and 6 to  the case that, z g  = 1. Columns 3 and 5 list  the survivors 
jo(k),jl(k),jz(k),ja(k), andcolumns4  and6  thenewmet,rics ilfo(k + 
l), Ml(k + l ) , M z ( k  + 1),3[3(k + 1) as given by ( 7 ) .  If there is a 
choice of survivors the  candidates  are placed within  parentheses in 
the survivor columns. 

Table I contains  more  informat.ion than is necessary for  the  actual 

implementation of the syndrome decoder. As explained in Section I1 
knowledge of t,he successive survivors for each state,  togetherwith  the 
index j ,  of the mihimum  within  each new quadruple of metrics, 
suffices to  determine  the key sequence w i a )  of ( 5 ) .  Hence, we omit 
the quadruples of metrics from Table I and  store  the resulting 
Table I1 in a  read only memory (ROM) . The  operation of the core 
part of the syndrome decoder can now  be explained using the block 
diagram of Fig. 5.  Assnme that   a t  time k the ROM address  register 
AR contains (AR) = 7 and  the RORl data ,  register DR. con- 
tains (DR) = (ROR1,7). Let zk = 1. Note, see  Fig. 4, t,hat COB@) = 
wk(1) = O , W ~ ( ~ )  = wk(3) = 1 independent of k = 0,1,2,-.-, i.e., always 
fill the left-most stages of the four pat,h registers, PRo[0:0],PR1[0:0], 
PR?[O:O],PR3[0:0], with 0011, respectively. Then according to 
row 7 and column 5 of Table 11, or according t,o the  contents (DR) 
of t,he DR, replace 

PRo[l : D  - 11 + CONTENTS PRz[l: D - 11 

PR.l[l : D  - 11 +- CONTENTS PRl[l : D  - I] 

PR?[l: D - I ] +- CONTEXTS PEz[l: D - 13 

PR3[1 : D  - 11 +- CONTENTS PRl[l: D - 11. 

The right-most digit, PR&D - 1:D - l],PII1[T) - 1:D - 11, 
PR,[D - l : D  - I],PRa[D - I :  D - 1.1, of all four path registers 
is fed t,o the select,or, see Fig. 5, that determines W ~ - D + I  according to 
(9) using the  entry in row 7 and colnmn 7 ,  i.e., j, = 2, of Table I1 
which can also be fonnd  in the DR. To complete the  kth cycle 
of the  syndrome decoder, set (All,) = 8 and  read DR. +- (ROP11,S). 

The ROM decoder for the code of Fig. 1 has been realized in hard- 
ware using path registers of length D = 11. The solid line in Fig. 6 
gives the measured bit  error probability P b  as a function of the  transi- 
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F ‘[ , Fig. 5. Block  diagram of the core of the syndrome  decoder. 

\ 

10-6E 10-7 

10-1 10-2 P i -  1 o - ~  

Fig. 6. Bit error rate’Pb versus  channel  transition  probability p .  

tion probability p of the  binary  symmetric channel. The  dashed 
curve is an upper  bound [ 3 ]  on the  bit  error  probability Pa. 

IV.  CONCLUSIONS 

This correspondence describes a syndrome decoder  for convolu- 
tional codes. The recursive algorithm  that forms the core part of 
the decoder can be implemented with a ROM. 

As to  a comparison with  the classical Viterbi decoder, which has 
also been realized using a ROM, we would like to  point  out  that  the 
syndrome decoder has fewer metric combinations and can thus  be 
implemented using a smaller ROM. Secondly, Table I1 provides us 
with some choices as to  the survivors in columns 2 and 5.  By  making 
the  appropriate nonrandom  selection i t  is possible to  save  one  path 
register (path register 1 or 3). We have  not  yet been able to give a 
general formula for the  hardware saving of the  syndrome decoder as 
compared to  the classical Viterbi decoder. However, we have  built 
decoders for v = 2 and v = 4 and observed a hardware saving  in each 
case. For Y = 4, for  example, the classical Viterbi decoder uses 16 
path registers, while i t  is possible to build a syndrome decoder with 
only 9 path registers. This  particular v = 4 syndrome decoder uses 
only 1817 ROM addresses.  A  program has been developed that com- 
putes  the  contents of the ROM for an arbitrary rate-; binary con- 
volutional code. This program enables us to quickly design an ex- 
tremely efficient minimum distance decoder. 
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