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> dM (w/(n/d),d) = total number of n-tuples of weight w. (6)
dln

However the right side can be determined. For each combination
of w positions in an n-tuple, there are (r — 1)* possible choices
which produce the same weight w; there are (i) (binomial coeffi-
cient) such combinations. Equation (6) becomes

n
> dM (w/(n/d),d) = ( > (r—1)w. (N

dln w

The Mobius inversion formula [1] can be applied and we have

1 n/d
M@wn) == 2. u(d) (r — 1)~/ (8)

7 il (n,w) w/d

The symbol (n,w) denotes the greatest common divisor of the
integers n and w and u(d) is the Mobius function [1].

We may combine (5) and (8) and incorporate the properties of
the greatest common divisor to arrive at a single expression for

T r(w).
z n/zy
Tar(w) = 2 3= 2 w(y) (r— 1w )

zl () 1Tyl [(n,w)/z] 'w/xy

The weight distribution for binary CPCW up to length 14 is pre-
sented in Table II.2
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Syndrome Decoding of Convolutional Codes

J. P. M. SCHALKWIJK anp A. J. VINCK

Abstract—The classical Viterbi decoder recursively finds the
trellis path (code word) closest to the received data. Given the re-
ceived data, the syndrome decoder first forms a syndrome, instead.
A recursive algorithm like Viterbi’s is used to determine the
noise sequence of minimum Hamming weight that can be a possible
cause of this syndrome. Given the estimate of the noise sequence,
one derives an estimate of the original data sequence. While the bit
error probability of the syndrome decoder is no different from that of
the classical Viterbi decoder, the syndrome decoder can be imple-
mented using a read only memory (ROM), thus obtaining a con-
siderable saving in hardware.

I. INTRODUCTION

The principle of syndrome decoding of convolutional codes will be
explained using the binary code generated by the encoder of Fig. 1.
The additions in Fig. 1 are modulo-2, and all binary sequences
bo,by,bs,+ ++  are represented as power series b(a) = by + b +
bia? 4 +-+. The encoder has connection polynomials C)(«)=
14+ a? and Ci(e) = 1 4+ a + o2. Hence, the encoder outputs are
Ci(a)z(a) and Ci{a)z(a). The syndrome z(«) only depends on
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ni(a) and na2(a), i.e., not on the data sequence z(«), for
2(a) = Co(a)[Ci(a)z(a) + m(a)] + Ci(a)[Ce(a)z(a) + n2la) ]
= Ca(a)m(a) + Ci(a)nz(a). (1)

Having formed the syndrome z(a), the next section describes a re-
cursive algorithm like Viterbi’s [1] to determine from the syndrome
z(a) the noise sequence pair [#)(a),7:(e) ] of minimum Hamming
weight that can be a possible cause of this syndrome.

Given the estimate [#;(a),7:(a) ] of the noise sequence pair, one
derives an estimate Z(a) of the original data sequence z(«) as fol-
lows. For a noncatastrophic code, C;(«) and C:(«) are relatively
prime. Hence, by Euclid’s algorithm [2] there exist polynomials
Di(a) and Di(a) such that Di(a)Ci(a) +D:(a)Ce(a) = 1. For
the example of Fig. 1, we have Di(a) =1 + «, D:(a) = . We
receive the sequence pair

yila) = Ci(a)z(a) + ni(a),
and form the estimate

2(a) = Di(@)[p(a) + m(a) ] + Da(@)[pe(a) + #i2(a) ] (3)

i=12, (2)

Note that if the noise sequence estimate [#; (a),#2(a) Jis correct we
have

yila) + #s(a) = Ci(a)z(a) + nila) + fila)

Ci(a)z(a), 1=12,

and, hence,
Z(a) = Dy(a)Ci{a)x(a) + Di(a)Co(a)x(e) = z(a).

Note that (3) for the estimate Z(a) of the data sequence z(a) can
be rewritten as

Z(a) = [Di(a)yr(a) + Da(@)ya(e)] + w(a), 4)

where
w(a) = Di(a)m(a) + Dia)#iz(a). (3)

The term in square brackets in (4) can be computed directly from
the received data using very simple circuitry. As there is no need to
distinguish between pairs [ (a),7:(a)] and [#1(a),7:(a)] that
lead to the same value for w(a) in (5), the algorithm to be discussed
in the next section computes w(a) directly.

II. ALGORITHM

In Fig. 2 we have redrawn the syndrome former. As, according to
(1), the syndrome z(a) only depends on the noise pair [ni(a),
nz(a)] all other binary sequences have been omitted from Fig. 2.
For minimum distance decoding we are now presented with the fol-
lowing problem. Given the syndrome z(«), determine the noise pair
[#1(a),#2(a) ] of minimum Hamming weight that can be a cause of
this syndrome.

At first sight the state diagram of the syndrome former of Fig. 2
has 2¢ = 16 states and, hence, is more complicated than the state
diagram used to implement the classical Viterbi decoder [1] that
has only 22 = 4 states. However, a closer inspection of Fig. 2 reveals
that the syndrome former has also 22 = 4 states. In general, for an
encoder with » memory stages, the syndrome former has 2 states
just like the state diagram used to implement the classical Viterbi
decoder. This can be seen as follows. Writing

[ni(a) nz(a) ] = [nona] 4+ (nuynaJe + [gnnle? 4 <--, (6)

we can replace the first coefficient pair [ni,ne] by its modulo-2
complement [70,70] without affecting zo. However, the comple-
mentation of [nig,n2 ] may affect 21,22, ¢+ +,2,_1. Nonetheless, there are
two complementary choices of [711,n21 ] that give us the required value
of 2, etc. Hence, each of the 22” possible memory states in Fig. 2 is
equivalent to 27 — 1 others as far as z(a) is concerned, leaving 22"/
2» = 27 different states. Fig. 3 gives the state diagram of the syn-
drome former of Fig. 2. Solid transitions in Fig. 3 correspond to
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Fig. 2. Syndrome former.

Fig. 3.

State diagram of syndrome former.

z: 0 = and dashed transitions to z, = 1, £ = 0,1,2,-+. Next to each
transition one finds the value of 7y, 7w; w 1,k = 0,1,2,+-~. Fig. 4 gives
the kth, k = 0,1,2,-+ -, section of the trellis diagram that corresponds
to the state diagram of Fig. 3. The algorithm that determines w(e)
according to (5) now operates as follows. With each state in Fig. 4
we associate a.metric M;(k),j = 0,1,2,3,k = 0,1,2,-+-, that equals
the minimum Hamming weight of a path, [7#:(a),%2(a) @, leading
from state 7 = 0 at time & = 0 to that particular state. This path
has a solid or dashed Ith branch, 0 < 1 < k — 1, according to whether
z1 = 0 or z; = 1, respectively. The metric M,(k 4 1) at time k 4+ 1
can be determined recursively, i.e.,

Mo(k + 1) = 2 min [Mo(k), My (k) + 2]
+ 2o min [Ma(k),Ms(k) + 2] (Ta)
M (k + 1) = z min [Ms(k) + 1,Ms(k) + 1]
+ zxmin [Mo(k) + 1,M(k) + 11 (7b)

syndrome former

Encoding and syndrome forming for a R = 4 code.

time; kzo0,1,2,--
_.__) R

states; j-0,1,2,3

l

Fig. 4.,

kth section of the trellis diagram, k¥ = 0,1,2,¢¢-.

Mq(k 4+ 1) =z min {Mo(k) + 2,M(k)]

+ zimin (M3 (k) + 2,M3(k)] (7c)
My(k + 1) = Zemin [Ma(k) + 1,M3(k) + 1]
+ 2z min [Mo(k) + 1,My (k) +1]. (7d)

Given the value of zi, i.e., zx = 0 or z; = 1, each (k 4 1) state can
be reached from two k states. For each of these two k states add
to the metric the Hamming weight of the transition, i.e., of [, %2 ],
to the particular (k + 1) state. The minimum of the two values thus
obtained is M ;(k + 1). The transition associated with the minimum
value is called the “‘survivor.” In case of a tie, choose the survivor
at random among the two candidates. The survivor for (k¥ 4 1) state
Jj = 0,1,2,3 can be specified by the associated k state 7;(k) = 0,1,2,3.
Going back from a (& + 1) state each time choosing the survivor we
obtain the path [ (a),n(a) ], 7 = 0,1,2,3, of minimum Hamming
weight leading to that particular (k + 1) state. The coeflicients
wk_z)+1("),wk_p+2(j), .. ‘,wk(i), associated with the path [ﬁl (a),ﬁz (a) ](i)
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TABLE I
METRIC TRANSITIONS

2 =0 =1
Row Old New New
Number Metrics Survivors Metrics Survivors Metrics
0 0000 0(2,3) 1 (2,3) 0101 2 (0,1)3(0,1) 0101
1 0101 0 2 1 2 0111 2 03090 0111
2 0111 02,3 1 (2,3 0212 2 030 0000
3 0212 0 2 (0,1) 2 0222 2 030 0010
4 0222 0(2,3)(0,13(2,3) 0323 2 030 1010
5 0010 03 1 3 0101 2 (0,1)3(0,1) 1101
6 0323 02 0 2 0323 2 030 1020
7 1010 0 3 1 3 1101 2 1 31 1101
8 1101 0 2 1 2 0000 2 (0,1)3(0,1) 0212
9 1020 03 1 3 1101 23 131 2101
10 2101 0 2 1 2 1000 2 1 31 0212
11 1000 0(2,3) 1 (2,3) 1101 2 131 0101
TABLE 11
CoNTENTs oF THE ROM
2r = 0 2 = 1
Old New New
ROM ROM ROM
Address Survivors Address Index jn Survivors Address Index jm
0 02,3 1 (2,3 1 (0,2) 2 (0,1)3(0,1) 1 0,2y
1 0 2 1 2 2 0 2 030 2 0
2 0(2,3) 1 (2,3) 3 0 2 030 0 (0,1,2,3)
3 02 (01 2 4 0 2 030 5 .1,
4 0(2,3)(0,1)(2,3) 6 0 2 030 7 1,3)
5 03 1 3 1 (0,2) 2 (0,1)3(0,1) 8 2
6 02 0 2 6 0 2 030 9 1,3)
7 0 3 1 3 8 2 2 1 31 8 2
8 D2 1 2 0 (0,1,2,3) 2 (0,1)3(0,1) 3 0
9 0 3 1 3 8 2 23 1 31 10 2
10 0o 2 1 2 11 (1,2,3) 2 1 31 3 0
11 002,3) 1 (2,3) 8 2 2 131 1 (0,2)

of minimum Hamming weight, are stored in the path register for the
jth state, j = 0,1,2,3. If
Min(k + 1) = min M;(k + 1), (8

7

we set

Wg-D+1 = c’ch—D+1(7'"‘)-

(9

If more than one 7 satisfies (8), we select 7, arbitrarily among the
candidates. The longer the path register length D, the smaller the
restilting bit error probability Ps. Increasing D beyond 5(v + 1) does
not lead to an appreciable further decrease in P,. We have done de-
tailed calculations concerning the relationship between D and P,
which will be published shortly. The next section is concerned with
the practical implementation of the syndrome decoder.

III. IMPLEMENTATION

Using (7) we construct Table I. The first column just numbers the
rows of the table. The second column lists all possible metric com-
binations M, (k), M, (k),M:(k),Ms(k) at time k. As only the dif-
ferences between the metrics of a quadruple matter, we subtract from
each member of a quadruple of metrics the minimum value of the
quadruple, i.e., all quadruples of metrics in Table I have one or more
zeros. Columns 3 and 4 apply to the case that z; = 0 and columns 5
and 6 to the case that z; = 1. Columns 3 and 5 list the survivors
Fo(k), J1(k), 72(k), 75 (k), and columns 4 and 6 the new metrics 3, (k 4
1), Mi(k + 1),Mq(k 4+ 1),M3(k + 1) as given by (7). If there is a
choice of survivors the candidates are placed within parentheses in
the survivor columns.

Table I contains more information than is necessary for the actual

implementation of the syndrome decoder. As explained in Section I
knowledge of the successivesurvivors for each state, together with the
index 7, of the mihimium within each new quadruple of metrics,
suffices to determine the key sequence w(a) of (5). Hence, we omit
the quadruples of metrics from Table I and store the resulting
Table II in a read only memory (ROM). The operation of the core
part of the syndrome decoder can now be explained using the block
diagram of Fig. 5. Assume that at time & the ROM address register
AR contains (AR) = 7 and the ROM data register DR con-
tains (DR) = (ROM,7). Let z; = 1. Note, see Fig. 4, that «;® =
WiV = 0,04 = w;® = 1 independent of k& = 0,1,2,- -, i.e., always
fill the left-most stages of the four path registers, PRo,[0:0],PR,[0:0],
PR.[0:07,PR,[0:07], with 0011, respectively. Then according to
row 7 and column 5 of Table IT, or according to the contents (DR)
of the DR, replace

PRo[1:D — 1] — CONTENTS PR,[1:D — 1]
PRy[1:D — 1]« CONTENTS PR,{1:D — 1]
PRJ[1:D — 1]« CONTENTS PR,{1:D — 1]
PRy[1:D — 1]« CONTENTS PRy[1:D — 17.

The right-most digit, PRe[D ~ 1:D — 1], PR[D — 1:D — 17,
PR[D — 1:D — 13,PR;[D — 1:D — 1], of all four path registers
is fed to the selector, see Fig. 5, that determines wi_py1 according to
(9) using the entry in row 7 and column 7, i.e., ji, = 2, of Table I
which can also be found in the DR. To complete the kth cycle
of the syndrome decoder, set (AR) = 8 and read DR « (ROM,8).

The ROM decoder for the code of Fig. 1 has been realized in hard-
ware using path registers of length D = 11. The solid line in Fig. 6
gives the measured bit error probability P as a function of the transi-
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Block diagram of the core of the syndrome decoder.
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Fig. 6. Bit error rate'Pb versus channel transition probability p.

tion probability p of the binary symmetric channel. The dashed
curve is an upper bound [3] on the bit error probability Ps.

IV. CONCLUSIONS

This correspondence describes a syndrome decoder for convolu-
tional codes. The recursive algorithm that forms the core part of
the decoder can be implemented with a ROM.

As to a comparison with the classical Viterbi decoder, which has
also been realized using a ROM, we would like to point out that the
syndrome decoder has fewer metric combinations and can thus be
implemented using a smaller ROM. Secondly, Table IT provides us
with some choices as to the survivors in columns 2 and 5. By making
the appropriate nonrandom selection it is possible to save one path
register (path register 1 or 3). We have not yet been able to give a
general formula for the hardware saving of the syndrome decoder as
compared to the classical Viterbi decoder. However, we have built
decoders for » = 2 and » = 4 and observed a hardware saving in each
case. For y = 4, for example, the classical Viterbi decoder uses 16
path registers, while it is possible to build a syndrome decoder with
only 9 path registers. This particular » = 4 syndrome decoder uses
only 1817 ROM addresses. A program has been developed that com-
putes the contents of the ROM for an arbitrary rate-} binary con-
volutional code. This program enables us to quickly design an ex-
tremely efficient minimum distance decoder.
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