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An Algorithm for Identifying Rate (n - l ) /n  
Catastrophic Punctured Convolutional Encoders 

Feng-Wen Sun, Member, IEEE, and 
Adrianus J. Vinck, Senior Member, IEEE 

Abstract-It is known that both Viterbi and sequential decoding of 
convolutional codes can be greatly simplified by employing punctured 
convolutional codes, which are obtained by periodically deleting a part 
of the hits of a low-rate convolutional code. Even if the original low-rate 
convolutional code is noncatastrophic, some deleting maps may result 
in rate ( n  - l ) / n  catastrophic punctured encoders. An algorithm is 
presented to identify such encoders when the original rate l / b  encoder 
is antipodal. The major part of the algorithm solves a linear equation 
of 7) + 1 variables, where 11 is the constraint length of the original rate 
l / b  code. 

Index Terms-Convolutional codes, catastrophic encoders, puncturing, 
snydrome former. 
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I. INTRODUCTION 

Both Viterbi decoding and sequential decoding of high-rate con- 
volutional codes are greatly simplified by employing the class of 
punctured convolutional codes, which are obtained by periodically 
deleting a part of the bits of a low-rate code [1]-[4]. The simple 
structure of the low-rate code can be utilized to encode and decode 
the high-rate code. 

Good punctured convolutional codes are generally obtained by 
computer searches. During the searching procedure, catastrophic 
encoders, which result in infinite number of decoded errors from finite 
channel errors, must be eliminated. This appears to be a nontrivial 
problem since some deleting maps may result in catastrophic encoders 
even if the original code is noncatastrophic. 

For example, consider the rate 1 / 2  code with generator matrix 

(1 + D 2 ,  1 + D + 0’). (1) 

This is a minimum encoder with constraint length 2. Its trellis diagram 
is shown in Fig. 1. By periodically deleting the last bit of every 
other branches as shown in Fig. 2, a rate 2/3 punctured convolutional 
encoder can be obtained. Note that the state transitions 

01 4 10 --i 01 

give an all-zero output. This simply means that the punctured 
convolutional encoder is catastrophic [5] ! 

Good punctured convolutional codes are found by examining a 
great deal of punctured encoders. Therefore, in order to speed up 
searching procedures, an efficient algorithm to eliminate catastrophic 
encoders is highly desirable. 

Manuscript received July 22, 1994; revised October 25, 1995. The materlal 
in the correspondence was presented at the IEEE International Symposium on 
Information Theory, Whistler, BC, Canada, September 17-22, 1995. 

F.-W. Sun was with the Department of Electrical Engineering, McGill 
University, Montreal, PQ H3A 2A7, Canada. He is now with the Advanced 
Development Group, Hughes Network Systems, Germantown, MD 20876 
USA. 

A. J. Viuck is with the Institute of Experimental Mathematics, Essen 
University, 45326, Essen, Germany. 

Publisher Item Identifier S 0018-9448(96)02929-X. 

11 

Fig. 1. Trellis diagram of (1) 

An algorithm was previously proposed by Hole [5] when the 
punctured encoder is obtained from a rate l / b ,  b < n antipodal 
encoder. A rate l / b  encoder of constraint length t/ is called antipodal 
if each generator polynomial has degree v and the constant term of 
each generator polynomial is equal to one. 

Hole’s algorithm searches for a zero-weight cycle in the punctured 
diagram of the original encoder. Although his algorithm is quite 
efficient for codes with short constraint length, its complexity grows 
exponentially with the constraint length of the original encoder. Thus 
it cannot be applied to punctured encoders with large constraint 
length, for instance, to those punctured codes for sequential decoding 

In this work, we propose an algorithm to eliminate catastrophic 
encoders of rate (TI - l ) / n  punctured codes when the original encoder 
is antipodal. The algorithm is computationally efficient for both large 
and small constraint lengths. 

From [6], we know that a punctured convolutional encoder ob- 
tained from an antipodal encoder is noncatastrophic if and only if 
it is minimum. The algorithm to be presented first finds a nonzero 
codeword of the dual of the punctured rate (72 - l ) / n  code. Since 
the dual code is a rate 1/n code, its minimum encoder can be easily 
found from any nonzero codeword. Thus the overall constraint length 
of a minimum encoder of the dual code is determined. The constraint 
length of a minimum encoder is always equal to that of the minimum 
encoder of its dual [7] .  In this way, the minimality of the punctured 
encoder, thus the catastrophic property, is determined. 

We first review some standard definitions on punctured convolu- 
tional codes. We assume that a rate (n- l ) /n  punctured convolutional 
code is obtained by puncturing a rate l / b  code with a b x (1% - 1) 
deleting matrix whose first column contains two 1’s and the remainder 
of the columns contains one 1 each and all the remaining elements 
are zero. A 0 in the deleting matrix indicates that the corresponding 
coded bit is to be deleted. The columns of the deleting matrix are 

~31. 
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Fig. 2. A catastrophic punctured encoder from the antipodal encoder of (1). 

applied to the output of the original rate l / b  successively. When the 
last column of the deleting matrix is reached, the deleting matrix is 
used once again. For instance, the deleting matrix of Fig. 2 is 

(2) Fig. 3. The syndrome former of the dual code of (1). 

this way, a rate (n  - I ) / ~ ~ ,  time.invariant convo~utiona~ code 
is obtained. The original rate l / b  code is defined by b generator 
polynomials 

Given an n-dimensional vector T ,  y = r . r t ( z )  is defined as a 
b(” - 1)-dimensional vector such that pun(?/) = z and the deleted 
bits of y are equal to zero. For example, for the deleting matrix of (3) 

GJ(D)  = 1 + g:D + ‘ .  . + g;-lD”-l + D” (1  5 j 5 b )  5 =(101) + (100 001) 

= ez t ( z ) .  
where g: is a binary digit and I/ is the constraint length of the code. 

These definitions can be extended to a sequence of vectors in a 
straightforward way. For J: = (...; x ~ ;  z] ,  . . . ,  zk, ...). where x ,  
is an n-dimensional vector, e ~ t ( g )  is defined as 

11. THE ALGORITHM 

The major part of the algorithm looks for a nonzero finite-weight 
codeword of the dual of the punctured rate ( n  - l ) / n  code. We 
shall show that this can be done by using only the original rate l / h  

[. . . , ezt(zo), ez t (z1) .  . . . , e z t ( z k ) ,  . . .]. 

Similarly, for a sequence y = (. . . , yo. y1, . . . yk , . . .) with com- 
ponents over the !I(” - 1Fdimensional binary vector space, pun(y) 
is defined as 

encoder and the deleting matrix. 
Given a b ( n  - 1)-dimensional binary vector L ,  an n-dimensional 

binary vector p u n ( z )  can be obtained by applying the deleting matrix 
to T column by column. 

For example, for the deleting matrix 
[. . . , p?tn,(yo), p n ( y i ) ,  . . . , pun(yn) ,  . . .]. 

The following lemma reveals the relationship of the dual of the 
punctured convolutional code with the dual of the original rate l / b  
code. It is actually an analog of a theorem in [8]. 

Lemma 1: A finite-weight sequence g of n-dimensional vectors is 
in the dual of the punctured convolutional code if and only if ~-.t(-r) 
is in the dual of the original rate l / b  code. 

Pro08 By definition, the componentwise inner product -7: 0 
p u n ( c )  is equal to zero for any c in the original rate l / b  code. Clearly 

(3)  

and a ~ 6-dimensional vector 
be obtained as follows: 

= (lol oll) ,  p 7 L n ( z )  can 

s = ( 1 0 1 0 1 1 )  + (10rczzl)  + (101) 

=p“) (4) 

where ‘‘r” indicates that the corresponding bit is deleted. - 2 0 p u n ( c )  = e.ct(g) 1.1 c. 
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Fig. 4. Syndrome former of the dual code of ( 5 )  

Thus ezt(.z) 0 c is equal to zero for any codeword c in the original 
rate l / b  code. Hence, ezt(g)  is in the dual of the original code. 0 

Let G be a minimum encoder of the original rate l / b  code with 
syndrome former H T  and GT be the syndrome former of the code 
generated by H .  The syndrome former GT can be realized in an 
adjoint-obvious realization [SI, involving a shift register of length v. 
the constraint length of the original minimum encoder. Fig. 3 gives 
the syndrome former of the dual of the code generated by (1) in an 
adjoint-obvious realization, and Fig. 4 illustrates an adjoint-obvious 
realization of the transpose of the generator matrix 

(I + D + D4, 1 + D 3  + D4, 1 + D + D4). ( 5 )  

It was shown [9] that in its adjoint-obvious realization, the physical 
states of a syndrome former shadow the trellis states of a minimum 
dual encoder, so that the syndrome former can be used as a state-track 
as well. 

Starting from any state, we want to find an wdimensional vector 
such that r:r t (r)  is a valid input of the syndrome former. This means 
that taking ez t ( z )  as an input, and starting from this particular state, 
the syndrome former produces n - 1 zeros and transfers to another 
state. 

For example, if the deleting map of (3) is used, and the syndrome 
former in Fig. 4 starts at the state (0001), we want to find a three- 
dimensional binary vector a = (a l ,  ug, as) such that e z t ( a )  = 
(a la20  0 0 ~ )  is a valid input of the syndrome former. Since the 
rightmost cell is equal to I, a1 + a2 must be equal to one in order 
to produce a zero output. We may choose a1 = 1. a2 = 0. After 
(a laa0)  is fed into the syndrome former, its state transfers to (1001). 
Clearly, 03 must be equal to one to produce a zero output and 
the syndrome former transfers to the state (1101). Thus one of the 
choices of a is ( I O I ) ,  which causes the syndrome former transfers 
from state (0001) to state (1101) via the intermediate state (1001). 
This intermediate state is of no interest to us since it shadows an 
intermediate state of the punctured convolutional code rather than a 
“true” trellis state. 

The general principle is formulated in the following lemma. 
Lemma 2: For any state of the syndrome former of the dual of an 

antipodal rate l / b  convolutional code , there exist two n-dimensional 
vectors, say x, x’, such that when the syndrome former starts from 
this state, the input ez t (x )  [ext(x’)]  causes the syndrome former to 
transfer to another state with the all-zero output. Any one of the two 
vectors can be found in no more than n ( u  + I) binary operations. 

Prooj? At each time instant, an n-dimensional vector is fed into 
the syndrome former. By the antipodal property, any input bit can 
immediately affect the output. In order to get a zero output, the 
binary sum of the input n-dimensional vector at any instant must 
be equal to the content of the rightmost cell of the shift register. 
For any n = (al, a2, . . . , a,,), of an n-dimensional vector, e z t ( a )  
can be fed into the syndrome former in (n  - 1) time instants. The 
output of the syndrome former at the first time instant is equal to 
the sum of the content of the rightmost cell of the shift register and 
al +az ,  Thus there are only two possible choices for ( a l ,  a2). At the 
remaining time instants, the output is the sum of n ,  and the content of 
the rightmost cell of the shift register. Thus a, (i  > 2) and the next 
state are completely determined by the initial state, and ( a l ,  ug) .  

At the first time instant, in no more than 2(v+1) binary operations, 
we can find the next states since there are at most two nonzero input 
bits. For the remaining time instant, there is at most one nonzero input 
bit. Thus the state transition can he found in v + 1 binary operations. 
In total, no more than 

?(I/  + 1) + (n  - 2 ) ( u  + 1) = n(7/ + 1) 

binary operations are required to find e r t ( a )  and the next state. U 
Therefore, from the all-zero state, in no more than 

~ i ( i /  + 1)* binary operations we can find a sequence of n- 
dimensional vectors (zl: xg ,  . . . ,  zu+l) such that z1 # 0 and 
[ e s t ( s l ) .  e n t ( x 2 ) .  . . . , ez:t(z,+l)] is a valid input of the syndrome 
former. Assume that the syndrome former is at state S, after ez t ( z , )  
(1 5 i 5 v + 1) has been fed into the syndrome former. Since 
S, ’s are wdimensional vectors, the equation 

U+l 

b,S, = 0 
2=1 

must have nontrivial solutions, where b,’s are binary digits. Let 
(b:.  . . . . b,+, ) be such a solution. 

Since 

[ex t ( x1 ) ,  ez t ( zz ) ,  . . . , c x t ( x , + ~ ) ]  

is a valid input sequence of the syndrome former with state transitions 
(0. SI. . . ’ .  Sull). the sequence 

[(O. . . . .  0. ez:t(xl), ’ ” :  ez t ( z , ) ]  (1 5 i 5 v +  I) 

is also valid input sequence with state transitions (0, . ‘ . )  0, 
S1. . . . S, ). From the linearity of the syndrome former, the input 
sequence 

U+l 

b : [ ~ .  . . . , 0, ez t ( z l ) ,  . . . , ezt (x , ) ]  (7) 
i=1 

is also a valid input sequence with state transitions 

U + l  

Cb:(O,.-, 0 ,  SI, . . ’ ,  S%). 
i=1 

By the definition of b:’s, we know that this state sequence ends up 
at the all-zero state. Therefore, (7) is actually a codeword of the dual 
of the original rate l / b  code. In view of Lemma 1, this implies that 

is a nonzero codeword of the dual of the punctured rate (n  - 
l)/n code. We can represent this codeword in n polynomials, say 
[c l (D) .  “ . .  c n ( D ) ] .  If deg(c,(D))  < 7) for all i or the degree 
of the greatest common divisor of c z ( D )  is no less than 1, the 
overall constraint length of the minimum encoder of the dual of the 
punctured convolutional code, thus that of the minimum encoder of 
the punctured convolutional code itself, is less than 7). From [6], this 
means that it is catastrophic. 

We summarize the algorithm as follows. 

111. THE ALGORITHM 
1) Initialize the adjoint-obvious realization [9] of GT as the all- 

2) Find a sequence of n-dimensional vectors ( X I ,  x2, . . . , xU+l)  
zero state. 

such that z1 # 0 and 

[er-t(ri), e z t ( z z ) ,  . . . , e z t ( ~ + i ) ]  




