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Abstract—1It is known that both Viterbi and sequential decoding of
convolutional codes can be greatly simplified by employing punctured
convolutional codes, which are obtained by periodically deleting a part
of the bits of a low-rate convolutional code. Even if the original low-rate
convolutional code is noncatastrophic, some deleting maps may result
in rate (n — 1)/n catastrophic punctured encoders. An algorithm is
presented to identify such encoders when the original rate 1/b encoder
is antipodal. The major part of the algorithm solves a linear equation
of v + 1 variables, where v is the constraint length of the original rate
1/b code.

Index Terms—Convolutional codes, catastrophic encoders, puncturing,
snydrome former.

I.  INTRODUCTION

Both Viterbi decoding and sequential decoding of high-rate con-
volutional codes are greatly simplified by employing the class of
punctured convolutional codes, which are obtained by periodically
deleting a part of the bits of a low-rate code [1]-[4]. The simple
structure of the low-rate code can be utilized to encode and decode
the high-rate code.

Good punctured convolutional codes are generally obtained by
computer searches. During the searching procedure, catastrophic
encoders, which result in infinite number of decoded errors from finite
channel errors, must be eliminated. This appears to be a nontrivial
problem since some deleting maps may result in catastrophic encoders
even if the original code is noncatastrophic.

For example, consider the rate 1/2 code with generator matrix

(14 D*, 14+ D+ D?. (1)
This is a2 minimum encoder with constraint length 2. Its trellis diagram
is shown in Fig. 1. By periodically deleting the last bit of every
other branches as shown in Fig. 2, a rate 2/3 punctured convolutional
encoder can be obtained. Note that the state transitions

01 — 10 —— 01

give an all-zero output. This simply means that the punctured
convolutional encoder is catastrophic [5]!

Good punctured convolutional codes are found by examining a
great deal of punctured encoders. Therefore, in order to speed up
searching procedures, an efficient algorithm to eliminate catastrophic
encoders is highly desirable.
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Fig. 1. Trellis diagram of (1).

An algorithm was previously proposed by Hole [S] when the
punctured encoder is obtained from a rate 1/b, b < n antipodal
encoder. A rate 1/b encoder of constraint length v is called antipodal
if each generator polynomial has degree v and the constant term of
each generator polynomial is equal to one.

Hole’s algorithm searches for a zero-weight cycle in the punctured
diagram of the original encoder. Although his algorithm is quite
efficient for codes with short constraint length, its complexity grows
exponentially with the constraint length of the original encoder. Thus
it cannot be applied to punctured encoders with large constraint
length, for instance, to those punctured codes for sequential decoding
{31

In this work, we propose an algorithm to eliminate catastrophic
encoders of rate (n —1)/n punctured codes when the original encoder
is antipodal. The algorithm is computationally efficient for both large
and small constraint lengths.

From [6], we know that a punctured convolutional encoder ob-
tained from an antipodal encoder is noncatastrophic if and only if
it is minimum. The algorithm to be presented first finds a nonzero
codeword of the dual of the punctured rate (n — 1)/n code. Since
the dual code is a rate 1/n code, its minimum encoder can be easily
found from any nonzero codeword. Thus the overall constraint length
of a minimum encoder of the dual code is determined. The constraint
length of a minimum encoder is always equal to that of the minimum
encoder of its dual [7]. In this way, the minimality of the punctured
encoder, thus the catastrophic property, is determined.

We first review. some standard definitions on punctured convolu-
tional codes. We assume that a rate (n—1)/n punctured convolutional
code is obtained by puncturing a rate 1/b code with a b x (n — 1)
deleting matrix whose first column contains two 1’s and the remainder
of the columns contains one 1 each and all the remaining elements
are zero. A 0 in the deleting matrix indicates that the corresponding
coded bit is to be deleted. The columns of the deleting matrix are
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Fig. 2. A catastrophic punctured encoder from the antipodal encoder of (1).

applied to the output of the original rate 1/b successively. When the
last column of the deleting matrix is reached, the deleting matrix is
used once again. For instance, the deleting matrix of Fig. 2 is

11
1 0/
In this way, a rate (n — 1)/n time-invariant convolutional code

is obtained. The original rate 1/b code is defined by b generator
polynomials

@

G(D)=14g]D+ - +g,_,D""'+D" (1<j<b)

where gl’ is a binary digit and v is the constraint length of the code.

II. THE ALGORITHM

The major part of the algorithm looks for a nonzero finite-weight
codeword of the dual of the punctured rate (n — 1)/n code. We
shall show that this can be done by using only the original rate 1/b
encoder and the deleting matrix.

Given a b(n — 1)-dimensional binary vector «, an n-dimensional
binary vector pun(x) can be obtained by applying the deleting matrix
to & column by column.

For example, for the deleting matrix

1
1 3
0

- O O

and a 3 x 2 = 6-dimensional vector z = (101 011), pun(x) can
be obtained as follows:

z =(101011) — (10z zzl1) — (101)

=pun(x) (C))

G,

where “z” indicates that the corresponding bit is deleted.

& {p}-p—{p}-p—

Fig. 3. The syndrome former of the dual code of (I).

Given an n-dimensional vector z, y = ext(z) is defined as a
b(n — 1)-dimensional vector such that pun(y) = = and the deleted
bits of y are equal to zero. For example, for the deleting matrix of (3)

@ =(101) — (100 001)

= ext(z).

These definitions can be extended to a sequence of vectors in a
straightforward way. For @ = (---, &o, ®1, -+, %k, - - -), Where ;
is an n-dimensional vector, ext(z) is defined as

[--, ext(zo), ext(zr), - -+, ext(xr), -]
Similarly, for a sequence y = (- +, yo, Y1, ***s Yk, * -) with com-
ponents over the b(n — 1)-dimensional binary vector space, pun(y)
is defined as

[' Tt p“'n(yﬂ)v pun(yl)’ Y pun(yk)? o ]

The following lemma reveals the relationship of the dual of the
punctured convolutional code with the dual of the original rate 1/b
code. It is actually an analog of a theorem in [8].

Lemma 1: A finite-weight sequence z of n-dimensional vectors is
in the dual of the punctured convolutional code if and only if ext(z)
is in the dual of the original rate 1/b code.

Proof: By definition, the componentwise inner product x &
pun(e) is equal to zero for any c in the original rate 1/b code. Clearly

z O pun(c) = ext(z) © c.
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Fig. 4. Syndrome former of the dual code of (5).

Thus ext(x) & cis equal to zero for any codeword ¢ in the original
rate 1/b code. Hence, ext(x) is in the dual of the original code. [

Let G be a minimum encoder of the original rate 1/b code with
syndrome former H” and G” be the syndrome former of the code
generated by H. The syndrome former GT can be realized in an
adjoint-obvious realization [9], involving a shift register of length v.
the constraint length of the original minimum encoder. Fig. 3 gives
the syndrome former of the dual of the code generated by (1) in an
adjoint-obvious realization, and Fig. 4 illustrates an adjoint-obvious
realization of the transpose of the generator matrix

(1+D+D* 1+ D+ D* 1+ D+ D*%. ©

It was shown [9] that in its adjoint-obvious realization, the physical
states of a syndrome former shadow the trellis states of a minimum
dual encoder, so that the syndrome former can be used as a state-track
as well.

Starting from any state, we want to find an n-dimensional vector
such that ext(x) is a valid input of the syndrome former. This means
that taking ext(x) as an input, and starting from this particular state,
the syndrome former produces n — 1 zeros and transfers to another
state.

For example, if the deleting map of (3) is used, and the syndrome
former in Fig. 4 starts at the state (0001), we want to find a three-
dimensional binary vector ¢ = (a1, a2, az) such that ext(a) =
(a1a20 00as) is a valid input of the syndrome former. Since the
rightmost cell is equal to 1, a; + a2 must be equal to one in order
to produce a zero output. We may choose a1 = 1. az = 0. After
(a1a20) is fed into the syndrome former, its state transfers to (1001).
Clearly, a3 must be equal to one to produce a zero output and
the syndrome former transfers to the state (1101). Thus one of the
choices of a is (101), which causes the syndrome former transfers
from state (0001) to state (1101) via the intermediate state (1001).
This intermediate state is of no interest to us since it shadows an
intermediate state of the punctured convolutional code rather than a
“true” trellis state.

The general principle is formulated in the following lemma.

Lemma 2: For any state of the syndrome former of the dual of an
antipodal rate 1/b convolutional code , there exist two n-dimensional
vectors, say , ', such that when the syndrome former starts from
this state, the input ext(z) [ext(z')] causes the syndrome former to
transfer to another state with the all-zero output. Any one of the two
vectors can be found in no more than n(v + 1) binary operations.

Proof: At each time instant, an n-dimensional vector is fed into
the syndrome former. By the antipodal property, any input bit can
immediately affect the output. In order to get a zero output, the
binary sum of the input n-dimensional vector at any instant must
be equal to the content of the rightmost cell of the shift register.
For any a = (a1, az, -+, as), of an n-dimensional vector, ext(a)
can be fed into the syndrome former in (n — 1) time instants. The
output of the syndrome former at the first time instant is equal to
the sum of the content of the rightmost cell of the shift register and
a1 +as, Thus there are only two possible choices for (a1, a2). At the
remaining time instants, the output is the sum of a; and the content of
the rightmost cell of the shift register. Thus a; (i > 2) and the next
state are completely determined by the initial state, and (a1, a2).
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At the first time instant, in no more than 2(v+1) binary operations,
we can find the next states since there are at most two nonzero input
bits. For the remaining time instant, there is at most one nonzero input
bit. Thus the state transition can be found in v + 1 binary operations.
In total, no more than

2+ 1)+ (n-2)v+1)=nr+1)

binary operations are required to find ext(a) and the next state. [J

Therefore, from the all-zero - state, in no more than
n(v + 1)* binary operations we can find a sequence of n-
dimensional vectors (z1, @2, «-+, y41) such that ; # 0 and
lext(x1). ext(xs2). -, ext(zy41)] is a valid input of the syndrome
former. Assume that the syndrome former is at state S; after ext(x;)
(1 €< i < v+ 1) has been fed into the syndrome former. Since
S:’s are v-dimensional vectors, the equation

v41

Z b:Si =0
=1

must have nontrivial solutions, where b;’s are binary digits. Let
(b7.---. b,41) be such a solution.
Since

©

lext(z1), ext(z2), -+, ext{@vsr)]

is a valid input sequence of the syndrome former with state transitions

(0. S1.--+. Sya1). the sequence

[(0.-++. 0. ext(w1), - -, ext(wi)] (1< < w+1)
is also valid input sequence with state transitions (0, ---, 0,
Si. -+, Si). From the linearity of the syndrome former, the input
sequence

v+1

Z b:[0, -+, 0, ext(zyr), -« -, ext(z:)]

=1

O]

is also a valid input sequence with state transitions

v+1

Zb;“(o,...,(),sb...

=1

, Si).

By the definition of b 's, we know that this state sequence ends up
at the all-zero state. Therefore, (7) is actually a codeword of the dual
of the original rate 1/b code. In view of Lemma 1, this implies that

v+1

ij(o’...’o’ Ty, e, T)
i=1

is a nonzero codeword of the dual of the punctured rate (n -
1)/n code. We can represent this codeword in n polynomials, say
[e1(D). -+, cn(D)]. If deg(ci(D)) < v for all 7 or the degree
of the greatest common divisor of c;(D) is no less than 1, the
overall constraint length of the minimum encoder of the dual of the
punctured convolutional code, thus that of the minimum encoder of
the punctured convolutional code itself, is less than v. From [6], this
means that it is catastrophic.
We summarize the algorithm as follows.

III. THE ALGORITHM

1) Initialize the adjoint-obvious realization [9] of GT as the all-
Zero state.

Find a sequence of n-dimensional vectors (z1, x2, * -+
such that z; # 0 and

2) 5 xv-{-l)

[emt($1>> ext(x2)> B E:Ct(ml/"‘l)]
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is a valid input sequence of the syndrome former with state
transitions (0, S1, S2, *++, Sut1).
3) Find a nontrivial solution (b3, - -+, b5,;) of thé equation

v+1

Z b:S; = 0.
=1

4) Calculate the sum
v+1

y_zzbr(oa"'v
=1

5) Represent y il n polynomials.

6) If all the degrees of the n polynomials are less than » or the
degree of their greatest common divisor is larger than one, the
punctured convolutional encoder is catastrophic.

END /

0, 21, -+, @),

Example 1: Consider 'the rate 2/3 punctured convolutional code

obtained from (5) with deleting matrix (3). The following sequence
can be easily found by the procedure described in the proof of Lemma
2

[ext(111) ext(100) ext(001) ext(000) ext(001)].
"This is a valid input of the syndrome former realized in Fig, 4 when

it starts from the all-zero state. The corresponding state transitions
- (omitting the intermediate states) are

(0000) —» (1011) — (0110)
—(1000) — (0010) — (1001).
Clearly, the equation
b1(1011) + b2(0110) + b3 (1000) + b4(0010) + b5(1001) = 0
has the nontrivial solution (10011). Therefore, the sum

000 000 000 000 111
+ 000 111 100 001 000
+ 111 100 001 000 001

= 111 011 101 001 110

is a nonzero codeword of the dual of the rate 2/3 punctured code.
In terms of polynomials, this codeword is

(111) + (011)D + (101)D* + (001) D® + (110)D* .
=(1+D*+D* 1+D+D* 14D+ D?+D?.

Note that 1 + D + D? 4+ D® = (14 D)® and none of the first and
the second polynomial can be divided by (1 + D). Thus there is no
nontrivial common divisor among the three polynomials. This proves
that the rate 2/3 punctured encoder is not catastrophic.

Example 2: This example considers the rate 2/3 punctuied code
obtained from (1) with deleting matrix (2). The syndrome former
is presented in Fig. 3. Clearly, the sequence [ext(111) ext(001)]
is a valid input sequence for the all-zero state with state transitions
00 — 10 — 10. Thus -

(111 001) + (000 111) = (111 110)

is a nonzero codeword of the dual code of the punctured code. The
polynormal representation of the codeword is '

(111) 4 (110)D = (1+ D, 1+ D, 1).

The highest degree of the polynomials is less than 2 so that the
punctured encoder is catastrophic.

In order to get good codes, the constraint length of the original
encoder v should not be less than (n — 1). Otherwise, the minimum

1013 -

distance of the punctured convolutional code will be equal to one.
Therefore, the complexity of the algorithm is dominated by that
of solving the linear equation of (6), which requires O(v*) binary
operations when Gaussian elimination is used. This compares very
favorably with that of [5], which requires O(n2") binary operations.
As mentioned in [5], We can also find a (n — 1) x n polynomial
encoder for the purctured convolutional code, which has the same
encoding mapping as the punctured encoder. Then the classical
technique [10] can be applied. Namely, all the determinants of distinct
(n —1) by (n — 1) submairix of the generator are calculated. If the
greatest common divisor of these determinants is not of the form D*
for some 7 > 0, the encoder is catastrophic, The current approach
is advantageous since the catastrophic property can be determined
directly from the generator matrix of the original encoder.
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