
Vol.105(1) March 2014 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 13

REED-SOLOMON CODE SYMBOL AVOIDANCE

T. Shongwe∗ and A. J. Han Vinck†

∗ Department of Electrical and Electronic Engineering Science, University of Johannesburg, P.O. Box
524, Auckland Park, 2006, Johannesburg, South Africa E-mail: tshongwe@uj.ac.za
† University of Duisburg-Essen, Institute for Experimental Mathematics, Ellernstr. 29, 45326 Essen,
Germany E-mail: vinck@iem.uni-due.de

Abstract: A Reed-Solomon code construction that avoids or excludes particular symbols in a linear
Reed-Solomon code is presented. The resulting code, from our symbol avoidance construction, has
the same or better error-correcting capabilities compared to the original Reed-Solomon code, but
with reduced efficiency in terms of rate. The codebook of the new code is a subset of the original
Reed-Solomon code and the code may no longer be linear. We also present computer search results for
the bound on the number of symbols that can be avoided, and we make an attempt to find an expression
for the bound. Such a code, by symbol avoidance, can be well suited to a number of applications,
some of which include markers for synchronization, frequency hopping signatures, and pulse position
modulation.

Key words: Reed-Solomon codes, Subcodes.

1. INTRODUCTION

In the work presented by Solomon [1] on alphabet codes

and fields of computation, he showed the following. Given

an alphabet (Q) and a field of computation (F) which is

prime or power of a prime, where the size of Q is less than

that of F , it is possible to form a code over Q from another

code over F with the field of computation of the encoding

procedure being F . The field F is defined as the field of

encoding because that is where the encoding process takes

place and the resulting code being over Q. It was also

shown in [1] that the price to pay for this modification

in the code is reduction in efficiency in the code over Q,

when comparing it to the corresponding code over F . A

fitting example of a code over the field F was taken as an

(n, k, d) Reed-Solomon (RS) code, which has well defined

encoding and decoding operations, and is known to have

good error-correcting capabilities. In the (n, k, d) RS code,

n is the length, k is the dimension and d is the minimum

Hamming distance of the code. The reader who wants

to get acquainted with the principles of Reed-Solomon

encoding is referred to [2] and [3]. Solomon [1] used the

example of the RS code over F (F is normally a Galois

field–GF) to show that from the RS code, a code over

alphabet Q can be derived which is “almost” a RS code.

The motivation for the work by Solomon [1] was the fact

that not all alphabets we encounter in systems are of the

same size as the field F in which most codes are defined

over. For example, the decimal number system with the

alphabet {0,1, . . . ,9}, can have GF(11) as the field of

computation for the encoding, and the English alphabet

with 26 letters, can have GF(33) or GF(29) as the field

of computation for the encoding. This idea can therefore

be seen as reducing the size of the field F to form codes

over a smaller alphabet Q, or avoiding using some of the

symbols of the field F in the alphabet Q. Solomon [4] did

another work, related to his previous work in [1], where

he introduced non-linear, non-binary cyclic group codes.

These codes were associated with GF(2m) such that they

were of length 2m−1, but had (m− j)-bit symbols instead

of the usual m-bit symbols, for m and j positive integers.

Further work, in which Solomon was one of the authors,

was done on subspace subcodes of Reed-Solomon codes

in [5]. The work in [5] presented RS codes that were

subsets of parent RS codes, and the main contribution

was coming up with a formula for the dimension for such

codes. The work in [5] was limited to RS codes over

GF(2m). Recently, Urivskiy [6] published work on subset

subcodes of linear codes. The subcodes mentioned in [6]

were over a set which was a subset of GF(q), where q is

power of a prime. This idea was similar to the idea in [1].

However, the focus of the work in [6] was not specifically

on RS codes, it was on linear block codes and finding

bounds on the cardinality of the subcodes.

In this paper we take the idea in [1] further; we present

an encoding procedure by which new codes can be formed

over an alphabet that is smaller than the size of the field

of computation. We call this procedure symbol avoidance

because it allows for the avoidance of particular symbols in

the new code. Our symbol avoidance procedure is a more

generalised case of the construction in [1]. We will also

attempt to give an expression for a bound on the number of

symbols that can be avoided for each code and show why

it may not be possible to get a good estimate of the bound.

The codes resulting from our symbol avoidance procedure

of a RS code may have the same distance properties as the

original RS code or better and may be non-linear.

The applications to symbol avoidance include those

mentioned in [1] and the following. Frame synchro-

nization: this involves using the avoided symbols for

synchronization to mark the start/end of a frame, or as pilot

symbols. Frequency hopping signatures and pulse position

modulation: in multiple access communications where

Vol.105(1) March 2014SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS14

each user is given a unique signature to communicate,

it may be desired to avoid particular symbols from

occurring in the signatures in order to avoid or minimise

conflicts/collision among users.

2. SYMBOL AVOIDANCE

Let us define a linear RS code as (n, k, d)W over GF(q),

where n is the length, k is the dimension, d is the minimum

Hamming distance and q is the size of the field which is

power of a prime. From the linear RS code (n, k, d)W we

produce a new code (n, k′, d′)W ′, of length n, dimension

k′ and minimum Hamming distance d′, over an alphabet of

size q′. We call the operation by which W ′ is produced

from W , symbol avoidance. This operation is given in

simplified form as

(n, k, d)W →







Symbol

Avoidance

Operation







→ (n, k′, d′)W ′,

where d′ ≥ d, q′ < q, k′ < k, and (n, k′, d′)W ′ may

be non-linear. q′ = q − |A|, where A is a set of

elements/symbols to be avoided in (n, k′, d′)W ′. Next, we

explain the symbol avoidance operation in detail.

The conventional systematic generator matrix of the RS

code (n, k d)W , G = [Ik|Pn−k] with the symbols taken from

a Galois field GF(q), is decomposed into two parts. The

first part of G, which is composed of k′ rows of G, will be

denoted Gk′ . The second part of G, which is composed of

r rows of G such that k = k′+ r, will be denoted Gr.

G =

[

Ik′ 0k′

r | Pk′

n−k

0r
k′

Ir | Pr
n−k

]

,

where Gk′ = [Ik′ 0k′

r |P
k′

n−k], Gr = [0r
k′

Ir|P
r
n−k] and

Pk′

n−k =









Pk′

11 Pk′

21 . . . Pk′

1(n−k)
...

...
...

Pk′

k′1
Pk′

k′2
. . . Pk′

k′(n−k)









, (1)

Pr
n−k =







Pr
11 Pr

21 . . . Pr
1(n−k)

...
...

...

Pr
r1 Pr

r2 . . . Pr
r(n−k)






. (2)

Gk′ is used to encode a k′-tuple (M = m1m2 . . .mk′ , where

mi ∈ GF(q)), and this results into a codeword C = MGk′ .

Gr encodes an r-tuple (V = v1v2 . . .vr, where vi ∈ GF(q)),

resulting into what we shall call a control vector R =V Gr.

The difference between C and R will be in their usage,

otherwise they are both results of RS encoding. The

control vectors (collection of the vectors R) are used to

control the presence/absence of a particular symbol(s) in

each codeword C, as will be demonstrated shortly. For a

q-ary linear block code with a systematic generator matrix,

undesired symbols in the codeword, due to the identity part,

can be avoided by simply not including those symbols in

the message to be encoded. However, for the parity part

of the generator, a different method to avoid undesired

symbols needs to be applied. It is therefore the main

task of this paper to show that we can avoid undesired

symbols in a Reed-Solomon code while maintaining or

improving its minimum Hamming distance even though

the new code may be non-linear. Using control vectors,

we control which symbols to avoid in the parity part of the

RS code. C is the RS codeword and R is a control vector to

be used on C, in case C has an undesired symbol.

We now focus on the parity parts of C and R. We denote

by PC
1 ,P

C
2 , . . .P

C
n−k and PR

1 ,P
R
2 , . . .P

R
n−k the parity symbols

for C and R, respectively. Using (1), each parity symbol

of a codeword, PC
i , becomes PC

i = m1Pk′

1i + . . .+mk′P
k′

k′i
,

for 1 ≤ i ≤ n− k. Using (2), each parity symbol of a

control vector, PR
j , becomes PR

j = v1Pr
1 j + . . .+ vrP

r
r j, for

1 ≤ j ≤ n− k. Let us define a set A =
{

a1,a2, . . . ,a|A|
}

,

which is a set of symbols taken from GF(q), where |.| here

indicates the cardinality of a set. The symbols in set A are

the symbols we want to avoid in all codewords that resulted

from the encoding by Gk′ . If any PC
i ∈ A then we ought to

eliminate/avoid that PC
i using a corresponding PR

j , where

j = i. This is done by adding the corresponding parity parts

of C and R such that the resulting parity symbols in the new

codeword, Pi (= PC
i +PR

i), do not have any of the symbols

in A. This procedure can be expressed mathematically as

Pi 6= ax, or PC
i +PR

i 6= ax, for 1≤ x≤ |A| and 1≤ i≤ n−k.

Depending on their suitability in a sentence, the words

eliminate and avoid will be used interchangeably since

they convey the same message.

The next example illustrates the symbol avoidance

procedure.

Example 1 For this example, we take an (n = 7, k = 3)

RS code over GF(23) with the generator G in (3). The field

GF(23) is generated by a primitive polynomial, p(I) = I3+
I +1.

G =





1 0 0 | 6 1 6 7

0 1 0 | 4 1 5 5

0 0 1 | 3 1 2 3



 . (3)

Then by choosing r = 1, we have k′ = 2,

Gk′ =

[

1 0 0 | 6 1 6 7

0 1 0 | 4 1 5 5

]

(4)

and

Gr =
[

0 0 1 | 3 1 2 3
]

. (5)

Let 7 be the symbol to avoid in codewords encoded by Gk′

in (4), hence A = {7}.

Vol.105(1) March 2014 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 15

The Gr in (5) gives the following control vectors we can

use when we encounter a codeword with symbol 7,























0 0 0 | 0 0 0 0

0 0 1 | 3 1 2 3

0 0 2 | 6 2 4 6

0 0 3 | 5 3 6 5

0 0 4 | 7 4 3 7

0 0 5 | 4 5 1 4

0 0 6 | 1 6 7 1

0 0 7 | 2 7 5 2























. (6)

The last control vector, [0 0 7 | 2 7 5 2], is included for

completeness, otherwise it cannot be used to eliminate

symbol 7 since it has 7 in its information part. To illustrate

the elimination of symbol 7, we pick one codeword with

the symbol 7 (in the parity part) from the list of codewords

produced by Gk′ , and that codeword is C = [0 3 0 | 7 3 4 4].
From C, we have PC

1 = 7, PC
2 = 3, PC

3 = 4 and PC
4 = 4.

Taking the control vector to use as R = [0 0 1 | 3 1 2 3]
from (6), we have PR

1 = 3, PR
2 = 1, PR

3 = 2 and PR
4 =

3. Adding the corresponding parity symbols, we have

P1 = PC
1 +PR

1 = 4, P2 = PC
2 +PR

2 = 2, P3 = PC
3 +PR

3 = 6

and P4 = PC
4 + PR

4 = 7. The new codeword has P1 = 4,

P2 = 2, P3 = 6 and P4 = 7, which still contains symbol 7,

hence R = [0 0 1 | 3 1 2 3] is not a suitable control vector.

We repeat this procedure with every control vector in (6)

until we find one that is suitable, and in this case it is

R = [0 0 3 | 5 3 6 5], which gives P1 = 2, P2 = 0, P3 = 2

and P4 = 1. It can also be verified that R = [0 0 5 | 4 5 1 4],
[0 0 6 | 1 6 7 1] and [0 0 2 | 6 2 4 6] are all suitable control

vector.

Table 1: Different representations of the elements of

GF(23) generated by the primitive polynomial

p(I) = I3 + I +1, where α is a primitive element of

GF(23).
Elements Binary Polynomial Decimal representation

of GF(23) representation representation of the binary

0 000 0

1 001 1 1

α 010 α 2

α
2 100 α

2 4

α
3 011 α+1 3

α
4 110 α

2 +α 6

α
5 111 α

2 +α+1 7

α
6 101 α

2 +1 5

Remark: It is common practice to represent the elements of

GF(q) by the powers of some primitive element, say α. For

ease of presentation, we represented the elements of GF(q)

in decimal format in this example. Throughout this paper,

we use the decimal representation to represent the elements

of GF(q). The operations are still done the conventional

way using the primitive element. As an example, the

relationship between the powers of α and their decimal

equivalents is shown in Table 1, where the elements of

GF(23) are generated by a primitive polynomial p(I) =
I3 + I +1. �

Note that the key operation of the symbol avoidance

procedure, we just demonstrated with in Example 1, is

about adding two codewords of the original RS code W

to form a new codeword without the symbols in A. This

new codeword then belongs to W ′ together with all other

codewords without the symbols in A. Since W is a linear

code, then it always holds that W ′ ⊆W . According to the

definition of linear codes, W ′ can be non-linear, but its

minimum Hamming distance can be the same as that of

W or even greater.

2.1 Table Format Representation

Having shown in Example 1 that some control vectors

are not suitable for symbol avoidance for a particular

codeword, we now want to look at the number of such

control vectors. To do this we take a look at the

r-tuples that generate these unsuitable control vectors. The

list of all possible combinations of v1v2 . . .vr (r-tuples)

generating the unsuitable control vectors given ax and PC
i ,

is tabulated. Remember that the situation PC
i +PR

i = ax or

PR
i = ax−PC

i should be avoided, which is a representation

of a list of PR
i that should be avoided. Again, remembering

that PR
j = v1Pr

1 j+ . . .+vrP
r
r j, then PR

i = v1Pr
1i+ . . .+vrP

r
ri =

ax − PC
i . Since ax and PC

i are given, the task is to find

a list of all possible r-tuples (v1v2 . . .vr) for which PR
i =

ax−PC
i is satisfied. This will give us all the r-tuples to be

avoided for each codeword, given set A. Each r-tuple, to be

avoided, multiplied by Gr corresponds to a control vector

that is not suitable for symbol avoidance.

At this point we want to stress the following. All the

possible r-tuples when multiplied by Gr, give a list of

available control vectors. Among the available control

vectors, there are those that are suitable and those that are

unsuitable for symbol avoidance. This means that some

r-tuples generate control vectors not suitable for symbol

avoidance (r-tuples satisfying PR
i = ax − PC

i), and hence

have to be avoided. The remainder of the r-tuples generate

suitable control vectors (r-tuples satisfying PR
i 6= ax−PC

i).

We will pay more attention to the r-tuples satisfying PR
i =

ax−PC
i (r-tuples to be avoided), as they indicate to us when

symbol avoidance is not possible. It will be more clear later

why these r-tuples satisfying PR
i = ax−PC

i are important.

Using Example 1, a list of all the possible combinations of

v1v2 . . .vr satisfying each ax−PC
i is found and tabulated as

shown in Table 2. The field of computation is GF(23) as

before, and since the field is an extension of a binary field

where addition and subtraction mean the same thing, then

ax−PC
i is the same as ax +PC

i . Since r = 1 and |A|= 1,

v1Pr
1i = a1 +PC

i . (7)

Then for C = [0 3 0 | 7 3 4 4] and a1 = 7, for each of the

(n−k= 4) parity symbols, the equations to solve according

to (7) are listed as follows.

Vol.105(1) March 2014SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS16

3v1 = 7+7

v1 = 0. (8)

v1 = 7+3

v1 = 4. (9)

2v1 = 7+4

v1 = 4. (10)

3v1 = 7+4

v1 = 1. (11)

The solution of each equation gives the r-tuple (one

symbol in this case) to be avoided for each corresponding

parity symbol in the codeword, given set A. In this

particular example, we have only v1 = 0 or 4 or 1 to be

avoided, which means only three control vectors cannot be

used. We will refer to the r-tuple(s) to be avoided for each

codeword, given set A, simply as r-tuple to be avoided.

The results of equations (8)–(11) are summarised in Table

2.

Table 2: Table listing all r-tuples to be avoided.

PC
1 = 7 PC

2 = 3 PC
3 = 4 PC

4 = 4

a1 = 7 a1 = 7 a1 = 7 a1 = 7

v1 v1 v1 v1

0 4 4 1

We shall use this table format (Table 2) as it makes analysis

of results, for larger numbers of r-tuples to be avoided,

easier. The next example will demonstrate this. Using this

table format will help in an attempt to derive an intuitive

bound on |A|, as will be shown later on.

Example 2 Using the same RS code in Example 1, but

now having r = 2, A = {5,6,7}, |A| = 3 and codeword,

C = [0 0 4 | 7 4 3 7]. With r = 2, we have k′ = 1,

Gk′ =
[

0 0 1 | 3 1 2 3
]

and

Gr =

[

1 0 0 | 6 1 6 7

0 1 0 | 4 1 5 5

]

.

Note: Here we intentionally set the last row of G in (3) to

Gk′ and the remaining rows of G to Gr, to show that it does

not matter which rows of G are assigned to Gk′ and Gr.

For each PC
i and each ax, the equation for all possible

combinations of v1 and v2 to be avoided is given by

v1Pr
1i + v2Pr

2i = ax +PC
i . The results of all r-tuples to be

avoided are given in Table 3.

Table 3: Table listing all r-tuples to be avoided, for

n− k = 4, r = 2 and A = {5,6,7}.

6 0
1 1
3 2
4 3
7 4
0 5
2 6
5 7

PC
3
= 3

v1 v2v1 v2v1 v2 v1 v2

|A|(n−k) = 3×4 = 12

v1 v2 v1 v2v1 v2v1 v2v1 v2v1 v2v1 v2 v1 v2

a1 =

6

PC
1
= 7 PC

4
= 7PC

2
= 4

3 0
4 1
6 2
1 3
2 4
5 5
7 6
0 7

1 0
0 1
3 2
2 3
5 4
4 5
7 6
6 7

2 0
3 1
0 2
1 3
6 4
7 5
4 6
5 7

3 0
2 1
1 2
0 3
7 4
6 5
5 6
4 7

1 0
5 1
2 2
6 3
7 4
3 5
4 6
0 7

4 0
0 1
7 2
3 3
2 4
6 5
1 6
5 7

7 0
3 1
4 2
0 3
1 4
5 5
2 6
6 7

3 0
1 1
7 2
5 3
0 4
2 5
4 6
6 7

4 0
6 1
0 2
2 3
7 4
5 5
3 6
1 7

0 0
2 1
4 2
6 3
3 4
1 5
7 6
5 7

0 0
7 1
5 2
2 3
1 4
6 5
4 6
3 7

a1 =

5

a1 =

6

a1 =

7

a1 =

5

a1 =

6

a1 =

7

a1 =

5

a1 =

6

a1 =

7

a1 =

5

a1 =

7

q
r
−
1
=

8

It can be seen in Table 3 that the total number of the

r-tuples to be avoided is the product of the following:

• the number of symbols in set A: |A|,

• the number of parity symbols in the RS code: n− k,

• and the number of unique r-tuples with symbols from

GF(q): qr−1.

This results in the expression, |A|(n− k)qr−1. �

2.2 Bound

The previous subsection addressed the matter of counting

the r-tuples to be avoided, given a symbol(s) to be avoided

(set A) and a codeword of the RS code. An interesting

question to be answered is, what is the limit to the number

of symbols that can be avoided given a RS code when

given r? An answer or an attempt to provide an answer

to this question involves estimating an upper bound on

|A|. We have shown that the number of r-tuples (or

number of control vectors) to be avoided given ax ∈ A,

is |A|(n− k)qr−1. We also know that the control vectors

generated by the combinations of v1v2 . . .vr when given q

is qr. However, with the condition that |A| symbols are

to be avoided, only (q− |A|) symbols will be available

to generate control vectors from sequences of length r.

The number of available control vectors is then, (q−|A|)r,

and the number of control vectors that are not suitable for

symbol avoidance (generated by the r-tuples to be avoided)

is |A|(n− k)qr−1. It stands to reason that for successful

avoidance of symbols, the control vectors not suitable for

symbol avoidance should be less than the total number of

available control vectors. This leads to

Vol.105(1) March 2014 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 17

|A|(n− k)qr−1
< (q−|A|)r

, (12)

as a sufficient condition for symbol avoidance.

We know that given a linear RS code (n, k d)W and r, we

can apply the symbol avoidance operation on W such that

the resulting code is (n, k′ d′)W ′, where k′ = k− r and

d′ ≥ d. We now attempt to estimate an upper bound on

|A| (the number of symbols that can be avoided) using the

condition in (12) as a guideline.

A close observation of Equation (12) shows that term qr−1

on the LHS counts all the r-tuples to be avoided even

those having symbols from set A (see Table 4), while the

RHS has already eliminated all control vectors produced

by symbols in set A. This requires an adjustment of

qr−1, which takes into account the fact that the r-tuples

to be avoided which have symbols from set A should not

be counted. An adjustment in (12) results in the LHS

becoming |A|(n− k)(q−|A|)r−1, where we subtracted |A|
from q to yield (q−|A|)r−1.

For brevity, let X = |A|(n− k) and Y = (q− |A|) in (12).

It should be noted that the value of X is limited by qr−1

because there are exactly qr−1 unique combinations of

v1v2 . . .vr, after which there are repetitions.

Even with the adjustment in (12), of qr−1 to (q−|A|)r−1 ,

there are still two problematic cases not taken into account.

1. Not all the r-tuples to be avoided, which have symbols

from set A, are always included in the adjustment of

qr−1 to (q−|A|)r−1. There still remains an unknown

number of r-tuples to be avoided which have symbols

from set A. We call this unknown number of the

r-tuples to be avoided, the quantity λ, where 0≤ λ≤
|A|X .

2. There is an unknown number of r-tuples to be avoided

that are repeated. The adjustment in (12) still assumes

that all r-tuples to be avoided are unique, in the entire

“space” XY r−1. If there are repetitions, this “space”

will definitely be reduced. To quantify the number of

repetitions we define a quantity β, which gives us the

number of repetitions.

It is, however, difficult, if not impossible, to precisely know

the λ and β quantities. These quantities are not uniform

across all codewords of a particular code. Moreover, these

quantities will have to be used together taking into account

overlaps. By overlaps we mean that an r-tuple(s) to be

avoided can contain symbols from set A (adding to λ) and

also be a repetition (adding to β).

Considering λ and β, the expression of the upper bound on

|A| is

|A|(n− k)(q−|A|)r−1− γ < (q−|A|)r
. (13)

The term on the LHS in (13), γ (= λ+ β), gives the sum

of the quantities explained in cases 1 and 2, assuming no

overlaps, 0≤ γ < XY r−1.

Using Table 3 in Example 2, we present a pictorial

explanation of the steps involved in arriving at Equation

(13) (see Table 4). The table shows the three adjustments to

(12) as described above. Firstly, a horizontal line is drawn

to cut off the r-tuples that are precisely known to contain

symbols in A, resulting to (q−|A|)r−1 = 5 rows. Next, we

mark the remaining r-tuples containing symbols from set A

with circles, and their total number is the quantity λ = 18.

Finally, ignoring the r-tuples marked with circles, we mark

repeated r-tuples with rectangles, and their total number is

the quantity β = 18.

Table 4: Table listing all r-tuples to be avoided, for

n− k = 4, r = 2 and A = {5,6,7}. λ = 18 and β = 18,

resulting in γ = 36.

6 0
1 1
3 2
4 3
7 4
0 5
2 6
5 7

PC
3
= 3

v1 v2v1 v2v1 v2 v1 v2

|A|(n−k) = 3×4 = 12

v1 v2 v1 v2v1 v2v1 v2v1 v2v1 v2v1 v2 v1 v2

a1 =

6

PC
1
= 7 PC

4
= 7PC

2
= 4

3 0
4 1
6 2
1 3
2 4
5 5
7 6
0 7

1 0
0 1
3 2
2 3
5 4
4 5
7 6
6 7

2 0
3 1
0 2
1 3
6 4
7 5
4 6
5 7

3 0
2 1
1 2
0 3
7 4
6 5
5 6
4 7

1 0
5 1
2 2
6 3
7 4
3 5
4 6
0 7

4 0
0 1
7 2
3 3
2 4
6 5
1 6
5 7

7 0
3 1
4 2
0 3
1 4
5 5
2 6
6 7

3 0
1 1
7 2
5 3
0 4
2 5
4 6
6 7

4 0
6 1
0 2
2 3
7 4
5 5
3 6
1 7

0 0
2 1
4 2
6 3
3 4
1 5
7 6
5 7

0 0
7 1
5 2
2 3
1 4
6 5
4 6
3 7

a1 =

5

a1 =

6

a1 =

7

a1 =

5

a1 =

6

a1 =

7

a1 =

5

a1 =

6

a1 =

7

a1 =

5

a1 =

7

(q
−
|A
|)
r
−
1
=

5

q
r
−
1
=

8

As it can be seen, Table 2 shows what goes on with just

one codeword in which we want to avoid symbols 5, 6 and

7. Each codeword of a code, that has undesired symbols,

when investigated this way will have its own value of γ,

which may not be the same as that of another codeword.

This presents a great difficulty in estimating the bound. To

determine the bound in (13), one has to find the minimum

value of γ among the codewords investigated.

3. ANALYSIS OF SIMULATION RESULTS

By performing an exhaustive computer search for the

bound on |A| in relation to r for several RS codes, we

obtained the results in Tables 5, 6 and 7. The results

show the limit to possible number of symbols that can be

avoided, |A|.

Since the set A is a subset of GF(q) with cardinality |A|,
where |A| is the number of symbols to be avoided, there

are
(

q

|A|

)

possible sets with this cardinality. In Tables 5, 6

and 7 we list the bounds on |A|, for the cases when all the
(

q

|A|

)

sets reach the same upper bound.

From the Tables 5, 6 and 7, we learn the following. For

k ≤ (n− k), we can avoid up to n symbols when r =
k− 1 (remember that k = r + k′, then r = k− 1 means

k′ = 1). However, avoiding n symbols will leave only one

codeword in the codebook of the RS code, which is not

Vol.105(1) March 2014SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS18

a meaningful code. So we shall limit the avoidance of

symbols to n− 1, which means only a minimum of two

symbols will be remaining in the alphabet since n = q−1.

Since the results show that up to n symbols can be avoided

for r = k− 1, it is obvious that n− 1 symbols can also be

avoided.

Table 5: The maximum number of symbols |A| that can be

avoided for each r and k for RS codes over GF(7).

Symbol avoidance is possible for all the
(

q

|A|

)

sets.

(n − k) = 4 2

|A| ≤ 6

3k = 42

r = 2

r = 1

3

|A| ≤ 6

|A| ≤ 2

|A| ≤ 6

|A| ≤ 2

Table 6: The maximum number of symbols |A| that can be

avoided for each r and k for RS codes over GF(11).

Symbol avoidance is possible for all the
(

q

|A|

)

sets.

5(n − k) = 8 6

|A| ≤ 10

3k = 4 5 62

r = 2

r = 3

r = 4

r = 1

7

|A| ≤ 1

|A| ≤ 3

|A| ≤ 1

|A| ≤ 4

|A| ≤ 2

|A| ≤ 4

|A| ≤ 5

|A| ≤ 1

4

|A| ≤ 5|A| ≤ 10

|A| ≤ 10 |A| ≤ 10

|A| ≤ 10

4. DECODING

We now know that the code (n, k′, d′)W ′ over GF(q′)

is produced by the symbol avoidance operation from the

linear RS code (n, k, d)W over GF(q). The decoding

algorithm of the RS code W is known and well defined.

The code W ′ is easily decoded using the decoding

algorithm of the code W , but with some “minor added

operations” which enhance the performance of W ′. To

describe these minor added operations, let D ∈ W ′, and

D̃ be a received noise corrupted codeword version of D.

We assume additive noise which changes one symbol into

another within the GF(q). Note that D̃ can have undesired

symbols due to noise corruption in the channel.

Decoding steps of D̃:

1. If the received codeword D̃ has undesired symbols,

the undesired symbols are marked as erasures and

then minimum distance decoding is performed.

2. If the minimum distance decoding results in a

codeword not in W ′, an error is detected and the

codeword is decoded to the nearest codeword in W ′.

Table 7: The maximum number of symbols |A| that can be

avoided for each r and k for RS codes over GF(13).

Symbol avoidance is possible for all the
(

q

|A|

)

sets.

7(n − k) = 10 68

|A| ≤ 12

3k = 4 5 62

r = 5

r = 2

r = 3

r = 4

r = 1

9

|A| ≤ 12

|A| ≤ 1

|A| ≤ 3

|A| ≤ 1

|A| ≤ 3

|A| ≤ 1

|A| ≤ 4

|A| ≤ 5|A| ≤ 12 |A| ≤ 5

|A| ≤ 7|A| ≤ 12

|A| ≤ 12

|A| ≤ 2

The code W ′ is highly likely to have better performance

than the original RS code W because of one or a

combination of the following:

• d′ ≥ d.

• In some cases, the weight enumerator of W ′ is

improved compared to that of W . This is because

some codewords of W are excluded in W ′.

5. CONCLUSION

A procedure for avoiding symbols in a Reed-Solomon

code was presented. The procedure created a new

Reed-Solomon code (W ′) from an original Reed-Solomon

code (W), but linearity cannot be guaranteed in the new

code. An analysis on how to obtain an upper bound

on the number of symbols that can be avoided in the

new Reed-Solomon code was presented. Unfortunately,

a final analytic expression for the upper bound was not

found. The expression we came up with could only serve

as guidelines towards the upper bound. We resorted to

computer searches and found numerous results for the

upper bound on the number of symbols that can be avoided

in W ′. A decoding procedure for the code W ′ was

described.

REFERENCES

[1] G. Solomon, “A note on alphabet codes and fields of

computation,” Information and Control, vol. 25, no. 4,

pp. 395–398, Aug. 1974.

[2] B. Sklar, Digital Communications: Fundamentals and

Applications. Prentice Hall Inc., 1988.

[3] S. Lin and D. J. Costello Jr., Error control coding:

Fundamentals and Applications. Prentice Hall Inc.,

1983.

[4] G. Solomon, “Non-linear, non-binary cyclic group

codes,” in Proceedings of the 1993 IEEE International

Vol.105(1) March 2014 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 19

Symposium on Information Theory, San Antonio, TX,

USA, 1993, pp. 192–192.

[5] M. Hattori, R. J. McEliece, and G. Solomon,

“Subspace subcodes of Reed-Solomon codes,” IEEE

Transactions on Information Theory, vol. 44, no. 5, pp.

1861–1880, 1998.

[6] A. Urivskiy, “On subset subcodes of linear codes,” in

Problems of Redundancy in Information and Control

Systems (RED), 2012 XIII International Symposium

on, Moscow, Russia, 2012, pp. 89–92.

