Vol.105(1) March 2014

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

REED-SOLOMON CODE SYMBOL AVOIDANCE

T. Shongwe* and A. J. Han Vinck"

* Department of Electrical and Electronic Engineering Science, University of Johannesburg, P.O. Box
524, Auckland Park, 2006, Johannesburg, South Africa E-mail: tshongwe @uj.ac.za

¥ University of Duisburg-Essen, Institute for Experimental Mathematics, Ellernstr. 29, 45326 Essen,
Germany E-mail: vinck@iem.uni-due.de

Abstract: A Reed-Solomon code construction that avoids or excludes particular symbols in a linear
Reed-Solomon code is presented. The resulting code, from our symbol avoidance construction, has
the same or better error-correcting capabilities compared to the original Reed-Solomon code, but
with reduced efficiency in terms of rate. The codebook of the new code is a subset of the original
Reed-Solomon code and the code may no longer be linear. We also present computer search results for
the bound on the number of symbols that can be avoided, and we make an attempt to find an expression
for the bound. Such a code, by symbol avoidance, can be well suited to a number of applications,
some of which include markers for synchronization, frequency hopping signatures, and pulse position

modulation.

Key words: Reed-Solomon codes, Subcodes.

1. INTRODUCTION

In the work presented by Solomon [1] on alphabet codes
and fields of computation, he showed the following. Given
an alphabet (Q) and a field of computation (F) which is
prime or power of a prime, where the size of Q is less than
that of F, it is possible to form a code over Q from another
code over F with the field of computation of the encoding
procedure being F. The field F is defined as the field of
encoding because that is where the encoding process takes
place and the resulting code being over Q. It was also
shown in [1] that the price to pay for this modification
in the code is reduction in efficiency in the code over Q,
when comparing it to the corresponding code over F. A
fitting example of a code over the field F' was taken as an
(n, k, d) Reed-Solomon (RS) code, which has well defined
encoding and decoding operations, and is known to have
good error-correcting capabilities. In the (n, k, d) RS code,
n is the length, k is the dimension and d is the minimum
Hamming distance of the code. The reader who wants
to get acquainted with the principles of Reed-Solomon
encoding is referred to [2] and [3]. Solomon [1] used the
example of the RS code over F (F is normally a Galois
field—GF) to show that from the RS code, a code over
alphabet Q can be derived which is “almost” a RS code.

The motivation for the work by Solomon [1] was the fact
that not all alphabets we encounter in systems are of the
same size as the field F in which most codes are defined
over. For example, the decimal number system with the
alphabet {0,1,...,9}, can have GF(11) as the field of
computation for the encoding, and the English alphabet
with 26 letters, can have GF(3%) or GF(29) as the field
of computation for the encoding. This idea can therefore
be seen as reducing the size of the field F' to form codes
over a smaller alphabet Q, or avoiding using some of the
symbols of the field F in the alphabet Q. Solomon [4] did
another work, related to his previous work in [1], where

he introduced non-linear, non-binary cyclic group codes.
These codes were associated with GF(2™) such that they
were of length 2™ — 1, but had (m — j)-bit symbols instead
of the usual m-bit symbols, for m and j positive integers.
Further work, in which Solomon was one of the authors,
was done on subspace subcodes of Reed-Solomon codes
in [5]. The work in [5] presented RS codes that were
subsets of parent RS codes, and the main contribution
was coming up with a formula for the dimension for such
codes. The work in [5] was limited to RS codes over
GF(2™). Recently, Urivskiy [6] published work on subset
subcodes of linear codes. The subcodes mentioned in [6]
were over a set which was a subset of GF(g), where ¢ is
power of a prime. This idea was similar to the idea in [1].
However, the focus of the work in [6] was not specifically
on RS codes, it was on linear block codes and finding
bounds on the cardinality of the subcodes.

In this paper we take the idea in [1] further; we present
an encoding procedure by which new codes can be formed
over an alphabet that is smaller than the size of the field
of computation. We call this procedure symbol avoidance
because it allows for the avoidance of particular symbols in
the new code. Our symbol avoidance procedure is a more
generalised case of the construction in [1]. We will also
attempt to give an expression for a bound on the number of
symbols that can be avoided for each code and show why
it may not be possible to get a good estimate of the bound.
The codes resulting from our symbol avoidance procedure
of a RS code may have the same distance properties as the
original RS code or better and may be non-linear.

The applications to symbol avoidance include those
mentioned in [1] and the following. Frame synchro-
nization: this involves using the avoided symbols for
synchronization to mark the start/end of a frame, or as pilot
symbols. Frequency hopping signatures and pulse position
modulation: in multiple access communications where

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

each user is given a unique signature to communicate,
it may be desired to avoid particular symbols from
occurring in the signatures in order to avoid or minimise
conflicts/collision among users.

2. SYMBOL AVOIDANCE

Let us define a linear RS code as (n, k, d)W over GF(g),
where n is the length, k is the dimension, d is the minimum
Hamming distance and ¢ is the size of the field which is
power of a prime. From the linear RS code (n, k, /)W we
produce a new code (n, k', d')W', of length n, dimension
k' and minimum Hamming distance d’, over an alphabet of
size ¢'. We call the operation by which W’ is produced
from W, symbol avoidance. This operation is given in
simplified form as

Symbol
Avoidance
Operation

(n, k,)W — — (n, k', &YW,

where d' > d, ¢ < q, K <k, and (n, kK, d)W' may
be non-linear. ¢ = g — |JA|, where A is a set of
elements/symbols to be avoided in (n, k', d")W’. Next, we
explain the symbol avoidance operation in detail.

The conventional systematic generator matrix of the RS
code (n, k)W, G = [It|P,—] with the symbols taken from
a Galois field GF(g), is decomposed into two parts. The
first part of G, which is composed of k' rows of G, will be
denoted GX'. The second part of G, which is composed of
r rows of G such that k = k' + r, will be denoted G".

G= [Ik’ 0f

| P, f—k]
o 1)

| Prk

where G¥ = [I, OF IP,]f/,k], G" = [0y, I|P,_,] and

4 4 k'
P P ... P!

(n—k)
Pla=| S O
Py PE, P,’;,’(H)
Pl Py Plr(n—k)
Pog=1]: ¢ R @)
Py P, ... Prr(n—k)

G¥ is used to encode a k'-tuple (M = mym;...my, where
m; € GF(g)), and this results into a codeword C = MG
G" encodes an r-tuple (V = v|v,...v,, where v; € GF(g)),
resulting into what we shall call a control vector R=VG".
The difference between C and R will be in their usage,
otherwise they are both results of RS encoding. The
control vectors (collection of the vectors R) are used to
control the presence/absence of a particular symbol(s) in

each codeword C, as will be demonstrated shortly. For a
g-ary linear block code with a systematic generator matrix,
undesired symbols in the codeword, due to the identity part,
can be avoided by simply not including those symbols in
the message to be encoded. However, for the parity part
of the generator, a different method to avoid undesired
symbols needs to be applied. It is therefore the main
task of this paper to show that we can avoid undesired
symbols in a Reed-Solomon code while maintaining or
improving its minimum Hamming distance even though
the new code may be non-linear. Using control vectors,
we control which symbols to avoid in the parity part of the
RS code. C is the RS codeword and R is a control vector to
be used on C, in case C has an undesired symbol.

We now focus on the parity parts of C and R. We denote
by P{,PS,...PC , and PR PR ...PR, the parity symbols
for C and R, respectively. Using (1), each parity symbol
of a codeword, P, becomes PC = m Pl + ...+ myPl.,
for 1 <i<n—k Using (2), each parity symbol of a
control vector, PJR, becomes PJR =P +...+vP], for
1 < j<n—k Letusdefine aset A= {aj,az,...,a)},
which is a set of symbols taken from GF(q), where |.| here
indicates the cardinality of a set. The symbols in set A are
the symbols we want to avoid in all codewords that resulted
from the encoding by G¥. If any Pl-C € A then we ought to
eliminate/avoid that PiC using a corresponding PJR, where
j =1. This is done by adding the corresponding parity parts
of C and R such that the resulting parity symbols in the new
codeword, P; (= Pl-C + PiR), do not have any of the symbols
in A. This procedure can be expressed mathematically as
P; # ay, orPiC—i—Pl-R #ay, forl <x<|Aland 1 <i<n—k.
Depending on their suitability in a sentence, the words
eliminate and avoid will be used interchangeably since
they convey the same message.

The next example illustrates the symbol avoidance
procedure.

Example 1 For this example, we take an (n =77, k = 3)
RS code over GF(23) with the generator G in (3). The field
GF(23) is generated by a primitive polynomial, p(I) = I° +
I+1.

100|616 7
G=lo 10 1] 4155 3)
0 0 1 | 31 2 3
Then by choosing r = 1, we have k' = 2,
v [t oo 6167
C=lo 104155 “
and
G=[0 01 |3 12 3], 5)

Let 7 be the symbol to avoid in codewords encoded by G¥
in (4), hence A = {7}.

Vol.105(1) March 2014

Vol.105(1) March 2014

The G" in (5) gives the following control vectors we can
use when we encounter a codeword with symbol 7,

00010000
001 3123
00216246
00315365
004 |7 437 ©)
005 | 451 4
006 | 1671
007 275 2

The last control vector, [007 |27 5 2], is included for
completeness, otherwise it cannot be used to eliminate
symbol 7 since it has 7 in its information part. To illustrate
the elimination of symbol 1, we pick one codeword with
the symbol 7 (in the parity part) from the list of codewords
produced by G¥, and that codeword is C=1[030|7344].
From C, wehavePIC:7, P2C=3, P3C:4andP4C=4.
Taking the control vector to use as R=1[001|312 3]
from (6), we have Pf =3, P§ =1, P§ =2 and Pf =
3. Adding the corresponding parity symbols, we have
Pl=PC+PR=4 P,=P{+P}=2 Ps=P{+PF=6
and Py = P4C + Pf ="7. The new codeword has Py = 4,
P, =2, Py =6 and Py =7, which still contains symbol 7,
hence R=1[001|3 12 3] is not a suitable control vector.
We repeat this procedure with every control vector in (6)
until we find one that is suitable, and in this case it is
R=1[0031]5365], which gives Py =2, P, =0, P; =2
and Py = 1. It can also be verified that R=1[005]4514],
006|167 1] and [002|624 6] are all suitable control
vector.

Table 1: Different representations of the elements of
GF(2?) generated by the primitive polynomial
p(I) = I> +1+1, where a. is a primitive element of
GF(23).

Elements Binary Polynomial |Decimal representation
of GF(23)|representation|representation of the binary
0 000 0
1 001 1 1
a 010 a 2
o? 100 o? 4
o 011 o+l 3
o’ 110 o +o 6
o 111 o?+o+1 7
al 101 o +1 5

Remark: It is common practice to represent the elements of
GF(q) by the powers of some primitive element, say . For
ease of presentation, we represented the elements of GF(q)
in decimal format in this example. Throughout this paper,
we use the decimal representation to represent the elements
of GF(q). The operations are still done the conventional
way using the primitive element. As an example, the
relationship between the powers of o and their decimal
equivalents is shown in Table 1, where the elements of
GF(23) are generated by a primitive polynomial p(I) =
P+l+1. 1

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

Note that the key operation of the symbol avoidance
procedure, we just demonstrated with in Example 1, is
about adding two codewords of the original RS code W
to form a new codeword without the symbols in A. This
new codeword then belongs to W’ together with all other
codewords without the symbols in A. Since W is a linear
code, then it always holds that W/ C W. According to the
definition of linear codes, W’ can be non-linear, but its
minimum Hamming distance can be the same as that of
W or even greater.

2.1 Table Format Representation

Having shown in Example 1 that some control vectors
are not suitable for symbol avoidance for a particular
codeword, we now want to look at the number of such
control vectors. To do this we take a look at the
r-tuples that generate these unsuitable control vectors. The
list of all possible combinations of vivs...v, (r-tuples)
generating the unsuitable control vectors given a, and PI-C,
is tabulated. Remember that the situation P€ + PR = a, or
PiR =a,— PiC should be avoided, which is a representation
of a list of PX that should be avoided. Again, remembering
that PR = vi P[;+...+v, P, then PR = v P, +...+v,P; =
ay fPiC. Since a, and Plc are given, the task is to find
a list of all possible r-tuples (viv3...v,) for which PR =
ay — PiC is satisfied. This will give us all the r-tuples to be
avoided for each codeword, given set A. Each r-tuple, to be
avoided, multiplied by G” corresponds to a control vector
that is not suitable for symbol avoidance.

At this point we want to stress the following. All the
possible r-tuples when multiplied by G”, give a list of
available control vectors. Among the available control
vectors, there are those that are suitable and those that are
unsuitable for symbol avoidance. This means that some
r-tuples generate control vectors not suitable for symbol
avoidance (r-tuples satisfying PR = a, — PX), and hence
have to be avoided. The remainder of the r-tuples generate
suitable control vectors (r-tuples satisfying PiR +a,— Pic).
We will pay more attention to the r-tuples satisfying Pl-R =
a; — Pic (r-tuples to be avoided), as they indicate to us when
symbol avoidance is not possible. It will be more clear later
why these r-tuples satisfying PR = a, — Pl-C are important.

Using Example 1, a list of all the possible combinations of
viva...v, satisfying each a, — PiC is found and tabulated as
shown in Table 2. The field of computation is GF(2°) as
before, and since the field is an extension of a binary field
where addition and subtraction mean the same thing, then
ay — PE is the same as a, + PC. Since r =1 and |A| = 1,

VP, =a; +PE. (7

Then for C=1[030|7344] and a; =7, for each of the
(n—k =4) parity symbols, the equations to solve according
to (7) are listed as follows.

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

3vi = 747

vi = 0. (3)
vi = 743

Vi = 4. (9)
2vi = T+4

vi = 4. (10)
3vi = T+4

vi = 1. (11)

The solution of each equation gives the r-tuple (one
symbol in this case) to be avoided for each corresponding
parity symbol in the codeword, given set A. In this
particular example, we have only vi = 0 or 4 or 1 to be
avoided, which means only three control vectors cannot be
used. We will refer to the r-tuple(s) to be avoided for each
codeword, given set A, simply as r-tuple to be avoided.
The results of equations (8)—(11) are summarised in Table
2.

Table 2: Table listing all r-tuples to be avoided.
PC=17 P$=3 P{=4 PC =4
a1:7 a1:7 a1:7 a1:7

We shall use this table format (Table 2) as it makes analysis
of results, for larger numbers of r-tuples to be avoided,
easier. The next example will demonstrate this. Using this
table format will help in an attempt to derive an intuitive
bound on |A|, as will be shown later on.

Example 2 Using the same RS code in Example 1, but
now having r =2, A ={5,6,7}, |A| = 3 and codeword,
C=1[004|7437]. Withr =2, we have k' =1,

G“=[0 01 [31 2 3

and

1006167

ro__
G_OIO 4 1 5 5|°

Note: Here we intentionally set the last row of G in (3) to

’ .. .

G* and the remaining rows of G to G', to show that it does
. . /

not matter which rows of G are assigned to G* and G'.

For each Pl-c and each ay, the equation for all possible
combinations of vi and vy to be avoided is given by
VP +va Py = ay —i—PiC. The results of all r-tuples to be
avoided are given in Table 3.

Table 3: Table listing all r-tuples to be avoided, for
n—k=4,r=2and A ={5,6,7}.

PE=17 Pf =4 Pf=3 Pe =1
am=la=|lag=la=|a=|lag=|a=|a=|a= |a=|a=|a=
5 6 7 5 6 7 5 6 7 5 6 7
B R e e e R e RN TN
6o[30joo[10[20[30[10[40[T0[30[40[00
114171013 121(51/01(31[11/61|21
w| [32]62(52(32(02[12(22(72(42|72/02[42
Mljasfisi23(23|13[03(63|33(03(53|23|63
Ll 7424145 4(64|74|74[24]14]04|74|34
05[(55(65(45/75/65/35(65(55(25/55|15
26(76(46|76[46/56|46[16|26(46/36|76
(57107137675 7/4707]57]67]67]17|57
le |
I |Al(n—k) = 3x4 =12 |

It can be seen in Table 3 that the total number of the
r-tuples to be avoided is the product of the following:

o the number of symbols in set A: |A|,

e the number of parity symbols in the RS code: n—k,

e and the number of unique r-tuples with symbols from

GF(q): qr’l.

Al(n—k)g~'. m

This results in the expression,

2.2 Bound

The previous subsection addressed the matter of counting
the r-tuples to be avoided, given a symbol(s) to be avoided
(set A) and a codeword of the RS code. An interesting
question to be answered is, what is the limit to the number
of symbols that can be avoided given a RS code when
given r? An answer or an attempt to provide an answer
to this question involves estimating an upper bound on
|A|. We have shown that the number of r-tuples (or
number of control vectors) to be avoided given a, € A,
is |A|(n—k)g"~!. We also know that the control vectors
generated by the combinations of v{v,...v, when given g
is ¢". However, with the condition that |A| symbols are
to be avoided, only (g — |A]) symbols will be available
to generate control vectors from sequences of length r.
The number of available control vectors is then, (g — |A])",
and the number of control vectors that are not suitable for
symbol avoidance (generated by the r-tuples to be avoided)
is |A|(n —k)g"~'. Tt stands to reason that for successful
avoidance of symbols, the control vectors not suitable for
symbol avoidance should be less than the total number of
available control vectors. This leads to

Vol.105(1) March 2014

Vol.105(1) March 2014

Al(n—k)g" < (g—A])", (12)

as a sufficient condition for symbol avoidance.

We know that given a linear RS code (n, k d)W and r, we
can apply the symbol avoidance operation on W such that
the resulting code is (n, k' d)W’, where k¥’ = k —r and
d' > d. We now attempt to estimate an upper bound on
|A| (the number of symbols that can be avoided) using the
condition in (12) as a guideline.

A close observation of Equation (12) shows that term ¢"~!
on the LHS counts all the r-tuples to be avoided even
those having symbols from set A (see Table 4), while the
RHS has already eliminated all control vectors produced
by symbols in set A. This requires an adjustment of
¢!, which takes into account the fact that the r-tuples
to be avoided which have symbols from set A should not
be counted. An adjustment in (12) results in the LHS
becoming |A|(n—k)(g — |A])"~", where we subtracted |A]
from g to yield (g — |A[)"~".

For brevity, let X = |A|(n —k) and Y = (¢ — |A]) in (12).
It should be noted that the value of X is limited by ¢"~!
because there are exactly ¢~ ! unique combinations of
ViV ...V, after which there are repetitions.

Even with the adjustment in (12), of ¢"~! to (¢ — |A])"~",
there are still two problematic cases not taken into account.

1. Not all the r-tuples to be avoided, which have symbols
from set A, are always included in the adjustment of
g 'to (g—|A|)"". There still remains an unknown
number of r-tuples to be avoided which have symbols
from set A. We call this unknown number of the
r-tuples to be avoided, the quantity A, where 0 < A <
|A|X.

2. There is an unknown number of r-tuples to be avoided
that are repeated. The adjustment in (12) still assumes
that all r-tuples to be avoided are unique, in the entire
“space” XY'~!. If there are repetitions, this “space”
will definitely be reduced. To quantify the number of
repetitions we define a quantity B, which gives us the
number of repetitions.

It is, however, difficult, if not impossible, to precisely know
the A and P quantities. These quantities are not uniform
across all codewords of a particular code. Moreover, these
quantities will have to be used together taking into account
overlaps. By overlaps we mean that an r-tuple(s) to be
avoided can contain symbols from set A (adding to A) and
also be a repetition (adding to).

Considering A and (3, the expression of the upper bound on
|A] is

Al(n—k)(g— A" =y < (¢—IA])". (13)

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

The term on the LHS in (13), ¥ (= A + B), gives the sum
of the quantities explained in cases 1 and 2, assuming no
overlaps, 0 < y< XY" !

Using Table 3 in Example 2, we present a pictorial
explanation of the steps involved in arriving at Equation
(13) (see Table 4). The table shows the three adjustments to
(12) as described above. Firstly, a horizontal line is drawn
to cut off the r-tuples that are precisely known to contain
symbols in A, resulting to (¢ — |A|)"~! = 5 rows. Next, we
mark the remaining r-tuples containing symbols from set A
with circles, and their total number is the quantity A = 18.
Finally, ignoring the r-tuples marked with circles, we mark
repeated r-tuples with rectangles, and their total number is
the quantity f = 18.

Table 4: Table listing all r-tuples to be avoided, for
n—k=4,r=2andA = {5,6,7}. A =18 and f = 18,
resulting in y = 36.

Pe=17 Pf =4 P =3 P =1

G=|la=la=|la=|ag=|la=a=|a=0=0=|a=|a=

5 6 7 5 6 7 5 6 7 5 6 7
N N e e A R R R P R I R

3000102040 -

1141013121 7
o |32(6 262 B30 2|1 2|22|¢ |4 2| |
I |a3|T3 273 23|13 |03 |6.3(373 036 323|6 3| | T
L 1e 24146969000 AZAT D0 A3 ¢S

05/55(65|/45/7565|35(65(55|25|55/15

267 6(46(76/46[56|46[16[26|46|36|76

5700737(67|57/47/07|57(67|67|17|57

le

b

[Al(n—Fk) =3x4 =12

As it can be seen, Table 2 shows what goes on with just
one codeword in which we want to avoid symbols 5, 6 and
7. Each codeword of a code, that has undesired symbols,
when investigated this way will have its own value of 7,
which may not be the same as that of another codeword.
This presents a great difficulty in estimating the bound. To
determine the bound in (13), one has to find the minimum
value of Y among the codewords investigated.

3. ANALYSIS OF SIMULATION RESULTS

By performing an exhaustive computer search for the
bound on |A| in relation to r for several RS codes, we
obtained the results in Tables 5, 6 and 7. The results
show the limit to possible number of symbols that can be
avoided, |A].

Since the set A is a subset of GF(g) with cardinality |A],
where |A| is the number of symbols to be avoided, there
are (‘Z‘) possible sets with this cardinality. In Tables 5, 6

and 7 we list the bounds on |A|, for the cases when all the
(IZ\) sets reach the same upper bound.

From the Tables 5, 6 and 7, we learn the following. For
k < (n—k), we can avoid up to n symbols when r =
k — 1 (remember that k = r + k', then r = k — 1 means
k' = 1). However, avoiding n symbols will leave only one
codeword in the codebook of the RS code, which is not

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

a meaningful code. So we shall limit the avoidance of
symbols to n — 1, which means only a minimum of two
symbols will be remaining in the alphabet since n = g — 1.
Since the results show that up to n symbols can be avoided
for r = k—1, it is obvious that n — 1 symbols can also be

Table 7: The maximum number of symbols |A| that can be
avoided for each r and k for RS codes over GF(13).
Symbol avoidance is possible for all the (IZ\) sets.

Vol.105(1) March 2014

. k= 2 3 4 5 6
avoided. L __L___1L___
(n — k) = 10 9 8 7 6
Table 5:. The maximum number of symbols |A| that can be w1 liai<iz] jai<2 |1ar<1 [1ar<1 |14 <1
avoided for each r and k for RS codes over GF(7).

Symbol avoidance is possible for all the (IZ\) sets. r=2 |Al <12]]A| <38 | |AI<3 | A <4

k = 2 3 4 =3 [A]l <12 |A] <5 | |[Al <5

- - - - - - - L - - - L - - _ r=4 Al < 12| |A| <7

(n — k) = 4 3 2 r=5 |4l < 12

r=1 |A] < 6 |Al <2 | [A] <2

The code W’ is highly likely to have better performance

r =29 |A] < 6 |A] < 6 than the original RS code W because of one or a
combination of the following:

Table 6: The maximum number of symbols |A| that can be
avoided for each r and k for RS codes over GF(11).
Symbol avoidance is possible for all the (IZ\) sets.

k = 2 3 4 5 6
PR I - N
r=1 |lAl<10| Al <1 |]AI<1 |4 <1 |]A]<2
=2 Al <10| |Al <3 | |A] <4 | |A] <4
=3 Al < 10| |A] <5 | |[A] <5
r=4 |[A] <10 | |A] < 10

4. DECODING

We now know that the code (n, k', d")W’ over GF(q)
is produced by the symbol avoidance operation from the
linear RS code (n, k, d)W over GF(q). The decoding
algorithm of the RS code W is known and well defined.
The code W’ is easily decoded using the decoding
algorithm of the code W, but with some “minor added
operations” which enhance the performance of W'. To
describe these minor added operations, let D € W', and
D be a received noise corrupted codeword version of D.
We assume additive noise which changes one symbol into
another within the GF(g). Note that D can have undesired
symbols due to noise corruption in the channel.

Decoding steps of D:

1. If the received codeword D has undesired symbols,
the undesired symbols are marked as erasures and
then minimum distance decoding is performed.

2. If the minimum distance decoding results in a
codeword not in W', an error is detected and the
codeword is decoded to the nearest codeword in W'.

o d >d.

e In some cases, the weight enumerator of W' is
improved compared to that of W. This is because
some codewords of W are excluded in W'.

5. CONCLUSION

A procedure for avoiding symbols in a Reed-Solomon
code was presented. The procedure created a new
Reed-Solomon code (W') from an original Reed-Solomon
code (W), but linearity cannot be guaranteed in the new
code. An analysis on how to obtain an upper bound
on the number of symbols that can be avoided in the
new Reed-Solomon code was presented. Unfortunately,
a final analytic expression for the upper bound was not
found. The expression we came up with could only serve
as guidelines towards the upper bound. We resorted to
computer searches and found numerous results for the
upper bound on the number of symbols that can be avoided
in W. A decoding procedure for the code W' was
described.

REFERENCES

[1] G. Solomon, “A note on alphabet codes and fields of
computation,” Information and Control, vol. 25, no. 4,
pp- 395-398, Aug. 1974.

[2] B. Sklar, Digital Communications: Fundamentals and
Applications. Prentice Hall Inc., 1988.

[3] S. Lin and D. J. Costello Jr., Error control coding:

Fundamentals and Applications. Prentice Hall Inc.,
1983.

[4] G. Solomon, “Non-linear, non-binary cyclic group
codes,” in Proceedings of the 1993 IEEE International

Vol.105(1) March 2014 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

(5]

(6]

Symposium on Information Theory, San Antonio, TX,
USA, 1993, pp. 192-192.

M. Hattori, R. J. McEliece, and G. Solomon,
“Subspace subcodes of Reed-Solomon codes,” IEEE

Transactions on Information Theory, vol. 44, no. 5, pp.
1861-1880, 1998.

A. Urivskiy, “On subset subcodes of linear codes,” in
Problems of Redundancy in Information and Control
Systems (RED), 2012 XIII International Symposium
on, Moscow, Russia, 2012, pp. 89-92.

