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Interference in M -FSK Systems
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Abstract—Narrowband interference can cause undetected
errors when )M -FSK data is encoded with an algebraic code
containing the all-c codewords. This is due to the fact that the
narrowband interferer will cause the output of the A/-FSK
demodulator to correspond to one of the all-c codewords. One
possible solution is to use a coset code of a code containing the rep-
etition code. The choice of the coset leader should be such that the
resulting coset code has minimum same-symbol weight. We give
a general construction for generating coset codes with minimum
same-symbol weight and present results where an optimal coset
code for an (n, %) Reed-Solomon code is applied in an }/-FSK
environment with narrowband interference. From the results it is
evident that the optimal coset codes outperform linear codes when
narrowband interference is present.

Index Terms—Coset codes, minimum same-symbol weight,
Reed-Solomon codes.

1. INTRODUCTION

N many communication channels narrowband noise
O compromises the integrity of the data transmitted over
the channel (see [1] and [2]). One such an environment is the
Power Lines Communications (PLC) channel. In the presence
of narrowband noise, algebraic codes which contain the all-e
codewords in conjunction with M-FSK modulation suffers
from undetectable errors.

In [3], a method was described to detect and correct the
presence of narrowband noise in M-FSK systems by uti-
lizing certain Reed-Solomon codes and coset Reed-Solomon
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codes. In this paper we give a general algebraic construc-
tion for coset codes that perform optimally in the presence
of narrowband interference. We also apply the construction
to an (n, k) Reed-Solomon code and simulate and compare
the performance of the constructed coset code with normal
Reed-Solomon codes in the presence of narrowband noise and
additive white Gaussian noise. The optimal coset codes out-
perform Reed-Solomon codes when narrowband interference
is present due to errors which the Reed-Solomon codes cannot
detect.

The remainder of this paper is structured as follows. Section II
provides a brief overview on the effect of narrowband noise
on M-FSK modulated transmission. In Section III, we give a
construction for finding the optimal coset code of an algebraic
code. Section IV discusses how encoding and decoding can be
achieved. In Section V, the results are presented and we con-
clude in Section VI.

II. M-FSK AND NARROW-BAND NOISE

We refer the reader to [4], [5], and [6] for the normal AWGN
channel for M-FSK modulation. We use the same one-to-one
mapping from the field GF(2™) onto the M = 2™ distinct
frequencies of the M-FSK modulator as is done in [4] and [5].

In essence, noncoherent M -FSK detection chooses from a set
of M frequencies the one with the highest energy present at a
sampling instance T, assuming that the desired frequency was
transmitted with energy Es. Furthermore, the SNR for such a
system is given as SNR = Eg /Ny (refer to [6]). Practically
noncoherent M -FSK detection is implemented by using a bank
of 2M correlators, with a quadrature pair for each frequency.
For each quadrature pair the output is added together using the
square law to produce a metric for the corresponding frequency
candidate. The most likely transmitted symbol for sampling in-
stance 7' is determined based on these M metrics. For normal
envelope detection, the symbol corresponding to the metric with
the highest value is chosen as the candidate [6, p. 258].

The Viterbi threshold ratio test detector [7] performs a rudi-
mentary form of soft-decision detection. As such, for sampling
instance 7', the output S is given as

_ SJ"/
s {3

where S; € GF(2™) is the symbol corresponding to the trans-
mitted frequency f;. For sampling instance 7', m is the largest
metric (corresponding to frequency f;) and mg is the second

my X A > mo
otherwise
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largest metric. The threshold 0 < A < 1 is decided on before
transmission. If the inequality 721 X A > ms is not satisfied, the
output is flagged as an erasure ().

Let Exr denote the energy detected at the demodulator due
to a narrowband noise source. If Er exceeds F s, the demod-
ulator will have a symbol that is “always on”. This poses a
problem, since the all-e vector (that is, the vector with all its
entries equal to e, where e € GF(2™)) is a valid codeword for
most linear codes. Therefore, the presence of narrowband noise
disturbances will result in undetected errors.

Thus, some modifications should be made to the detectors or
the coding scheme in order to detect the presence of narrowband
noise. We consider the use of a coset algebraic code, i.e., adapt
the coding scheme to exclude the all-e vectors and thereby de-
tect the presence of narrowband noise.

As we have seen, when coding to detect narrowband interfer-
ence, the all-e codewords should be avoided. Choi [8] observed
that a coset code of a binary BCH code is comma-free and used
these codes to achieve synchronization. With comma-free codes
the all-e vector (e € GF(2™)) cannot be in the code, otherwise
the definition of comma-freedom will be violated. Due to the
strict constraints imposed by comma freedom, the coset codes
constructed by Choi cannot achieve high rates. However, these
stringent conditions do not have to be met when coding for nar-
rowband noise. As such we can use coset codes which do not
impact the rate of the code.

We next consider the notion of optimal coset codes. In order
to define an optimal coset code, we introduce the following two
definitions.

Definition 1 (Same-Symbol Weight of a Codeword): The
same-symbol weight of a codeword c is the maximum number
of times any element of GF(2™) appears in c.

Definition 2 (Same-Symbol Weight of a Code): The
same-symbol weight of a code C'is the maximum same-symbol
weight of the codewords in C.

As an example, the same-symbol weight of the all-zero code-
word of an (n, k) RS code is equal to n. Also, the same-symbol
weight of the all-e codeword (e € GF(2™)) is equal to n. Thus,
the same-symbol weight of an (n, k) RS codebook containing
the all-e codewords is equal to n.

The fewer times any given symbol e appears in a valid code-
word, the more errors are necessary for the word to be received
as an all-e word. Therefore minimum same-symbol weight leads
to minimum probability of an all-e word being received. In this
sense a code with minimum same-symbol weight will be op-
timal.

III. CONSTRUCTING COSET CODES WITH MINIMUM
SAME-SYMBOL WEIGHT

In what follows is a general construction of optimal coset
algebraic codes.

Proposition 1: Let Cy, C7 and Cs be linear codes of length
n defined over some field such that Cy C C7 C Cs. Let Cy
be the repetition code (i.e., the 1-D code consisting of the all-e
codewords), and let dim(Cs) = 1 + dim(C4). Let d; and da
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denote the minimum Hamming weights of codewords in C and
C, respectively, and suppose do < dq. If x € Cy \ C4, then
ssw(z + C1) = n — da, that is, the same-symbol weight of the
coset  + C1 is n — do.
Proof: Since z ¢ C1, it follows from the dimensions that
x and C span all of Cs. Hence, if y is a word in C'5 of minimal
weight ds, then we can write y = ax + y;, where a is in the
alphabet field and y; € Ci.If a = 0, then y € Cy, which
is impossible, since wt(y) = do and no word in C has weight
less than d;. Thus, a # 0, sowe can write a ™'y = z4+a" 'y, €
x + C1. Since wt(a~ty) = wt(y) = da, it follows that a =1y is
a word in z 4+ C7 that contains n — ds entries equal to 0. Thus,
ssw(z + C1) > n — dy. On the other hand, suppose w is a word
in z+ C of maximal same-symbol weight say k, and suppose w
contains k entries equal to the symbol ¢ from the alphabet field.
Then wt(w — (¢, ¢,...,c)) =n—k,andw— (¢, ¢,...,c) € Cy
since Cy C C7 C Cs. Thus, n — k > d by definition of ds, so
k < n — ds, that is, ssw(z + C1) < n — dy, which completes
the proof. ]
In a systematic (n,k) code C, every message word (of
length k) is a substring of its encoded word (of length n). The
all-e words of length k are valid message words (since all
(2™)* words are possible), and are substrings of their encoded
words, which therefore have same-symbol weight at least k.
Thus, ssw(C') > k. The same inequality applies to a non-sys-
tematic code having the same codebook as C. (For example,
Reed-Solomon codes based on a polynomial g(z), whether
systematic or nonsystematic, have the same codebook, namely
the set of all polynomials divisible by g(z).)

IV. ENCODING AND DECODING FOR NARROW-BAND NOISE

The construction of Section III can be applied to many al-
gebraic codes including Reed-Solomon codes and Hermitian
codes. Encoding the coset-code is accomplished by adding the
codeword x after the information m(z) is encoded with the
encoder of C; (which can be systematic or non-systematic).
Any choice for z will suffice, as long as the coset-encoder and
coset-decoder agrees on the same z. A choice for x is to use
the generator polynomial g2(z) of Cs. Fig. 1 shows a block di-
agram of non-systematic algebraic encoding for C; [Fig. 1(a)]
and how coset encoding is achieved [Fig. 1(b)].

Fig. 2 outlines the general demodulation and decoding pro-
cedure. The demodulator records the set of M metrics for each
timeslot Ts,,Ts,,...,Ts, , and stores the metrics in a M x
n matrix D. Note that the matrix D is constructed in such a
way that the stored metrics corresponds to a single received
vector r(z) of length n, i.e., the metrics contained in column D;,
recorded at timeslot T’s,, determines the ith coefficient of r(z).
The first step is to determine whether a narrowband interferer
was present during the transmission of 7(z). This is achieved
by noting for each frequency w, the number of times the metrics
D, ;,i=1{0,1,...,n—1} exceeds ;- Es for some 1 < 1.Let
the frequency w,,, be the frequency with the maximum number
of times the metrics D, ; exceeds u- Es, and let x be the count
(i.e., the number of times D, , ; exceeds i - Eg).

Narrowband interference is assumed to be present if y > T,
where
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m(2)g1(z)

92(2)

m(z)g1(z) + g2(2)

(b)

Fig. 1. Encoding. (a) Algebraic encoding. (b) Algebraic coset encoding.

o \‘n + ssw(Cq + gz(z))J . )

2

If narrowband interference is detected, the frequency of the nar-
rowband interferer is assumed to be w,,. Subsequently, we set
the metrics Dy, ;,4 = {0,1,...,n — 1} equal to zero, in order
to cancel the narrowband interferer.

After this step, normal M -FSK demodulation follows, where
the appropriate rule (envelope detection, Viterbi threshold ratio
test, etc) is applied to column D; in order to determine the ith co-
efficient of 7(z). Note that when x < 7, the matrix D is passed
on unaltered to the demodulation process. The demodulator pro-
duces the polynomial r(z) = e(z)+xz(z)+c(z). After the coset
header z(z2) has been subtracted, any decoder for Cy can be used
to perform decoding.

Error correction capabilities of the coset code (x 4+ C) is the
same as for the code C', i.e., the coset code can correct any com-
bination of d; > 2¢+e¢ errors (¢) and erasures (). However, due
to narrowband interference, another error mechanism acts on the
transmitted codeword. If the codeword ¢ € (z + C) is trans-
mitted with symbol ) € GF(2™) occurring ¢ < ssw(z + C)
times in ¢ and the narrowband interferer corresponds to the fre-
quency mapped to ), £ errors or erasures will be introduced. The
errors are introduced when the entries of the row corresponding
to 1 of the matrix D is set to zero. Whether errors or erasures
are introduced, depends on the detector being used for demod-
ulation.

V. RESULTS

We now demonstrate Proposition 1 by way of an example. Let
the alphabet field be GF(23) generated by the primitive element
« such that o® = o+ 1. Let C be the (7, 4) RS code generated

Received Signals

l

Narrow-band
Detection

Yes

y

Set NBI metrics No
equal to zero

M-FSK
> Demodulation

Subtract coset header|
and
RS decoding

!

Decoded data

Fig. 2. Combined demodulation and decoding for narrowband interference.

by g1(2) = (2 — o) (z — a?)(z — o). Similarly, C5 is the (7,
5) RS code generated by g2(z) = (2 — a')(z — @?). Suppose a
certain message polynomial is encoded (systematically or other-
wise) as the code polynomial ¢ (z) = a®+alz+alz?2+a®23+
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Fig. 3. Modified M -FSK detection using a (15, 3) coset Reed-Solomon code and En = 4Es.

a*z*+a'2%4+af2% in Cy. This could be transmitted directly, but
since ssw(C4) = n = 7, it would not be possible to detect nar-
rowband interference. Instead, we use the coset code g>(z) 4+ C
(which has ssw = 4), and we therefore add g2 (z), and transmit
c1(2)+92(2) = a*+a?z+a322 +a® 23 +atzt +al 25 +ab25.

If narrowband interference corresponding to the frequency of
o’ occurs, then after M-FSK demodulation the received poly-
nomial will be @/(1 4+ z + 22 + .-+ + 2™) which is not in
g2(z) + C1, so the narrowband interferer has been detected.
This is the important property of the coset code. The received
polynomial is again demodulated, ignoring the frequency cor-
responding to a’.

Now the received polynomial is of the form ¢ (z) + g2(2) +
e(z), where e(z) is a possible error polynomial due to other
noise processes, for example if e(z) = az®, c¢1(2) + g2(z) +
e(z) = a4+ a2z + a®2? + o823 + atzt + a2’ + ab2C.

We now subtract go(z) to obtain ¢ (2) + e(z) = a® + otz +
atz? + a®2% + a*zt + a2’ 4+ o825, This can now be de-
coded with any decoder, for example the Massey-Berlekamp al-
gorithm, to obtain ¢;(z).

The performance of the coset Reed-Solomon codes was in-
vestigated using the narrowband noise channel discussed in [3]

using two M-FSK demodulator techniques, namely envelope
detection [6] and the Viterbi threshold ratio test [7].

In Figs. 3 and 4 we simulate a 16-FSK channel where, in
addition to AWGN noise, a narrowband disturbance is present
with probability p = 0.1, duration § x n, 6 < 10 and energy
FExn = 4 X Eg. The narrowband detection threshold 4 is set
to 0.5. (Fig. 3 is for a (15, 3) coset RS code and Fig. 4 is for
a (15, 9) coset RS code.) Theoretical performance when only
AWGN noise is present (“Theoretical”) is calculated using the
approach in [6] and is benchmarked against a simulation where
only AWGN noise is present with no coding performed (‘Enve-
lope detection: uncoded—AWGN’). The graph ‘Envelope de-
tection: uncoded’ depicts the performance of the communica-
tion system when no coding is performed in the presence of
narrowband interference. The graphs “Envelope detection: coset
code” and “VRTT detection: coset code, A = 0.85” depict
the performance of a communication system deploying enve-
lope detection in conjunction with the proposed coset coding
method and a communication system deploying the Viterbi ratio
threshold test (A = 0.85) in conjunction with the proposed coset
coding method, respectively. The graphs “Envelope detection:
perfect knowledge” and “VRTT detection: perfect knowledge,
A = 0.85” both depict the performance of a communication
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Fig. 4. Modified M -FSK detection using a (15, 9) coset Reed-Solomon code and Enr = 4E5.

system where the detector receives perfect knowledge of the po-
sitions of symbols in error due to narrowband interference for
the respective detector schemes. The graphs “Envelope detec-
tion: RS code” and “VRTT detection: RS code, A = 0.85” de-
pict the performance of systems where normal Reed-Solomon
coding is used.

As can be seen, the presence of narrowband interference
causes a catastrophic failure when normal Reed-Solomon
coding is used (depicted by ‘Envelope detection: RS code’ and
‘VRTT detection: RS code, A = 0.85"). It is evident from the
figures that when the proposed coset coding scheme is deployed,
it greatly improves the system’s performance in the presence
of narrowband interference. Almost the same performance is
realised with the modified detection scheme in the presence
of narrowband interference as when only AWGN noise was
present, i.e., a performance increase of almost 101log; f dB is
achieved (which relates to 7 dB for the (15, 3) code and 2.2 dB
for the (15, 9) code) due to the reduced code rate. Furthermore,
the proposed scheme yields similar performance compared to
the systems which have perfect knowledge of the positions of
symbols affected by narrowband interference. (More complex
narrowband detection schemes might improve the performance
to match that of the perfect knowledge schemes.) In the sim-

ulations, a clear error floor is noticeable for high code rate
systems, even at high signal-to-noise ratios. This can be at-
tributed to the fact that the power level of the narrowband noise
remains constant—even when the SNR increases—and that
the proposed scheme introduces additional errors or erasures
when the frequency of the narrowband interferer coincides
with the frequency of one or more transmitted symbols. Since
the SSW of a codeword is equal or less than n — d5, and for
a Reed-Solomon code d.,;, = n — k + 1, we have that when
k < n/3 we have d1 /2 > n — dy and no error floor occurs. For
the (15, 3) code dnin = 13 and the same-symbol weight is 3.
For the (15, 9) code the d,,;, = 7 and the same-symbol weight
is 8. Hence, for the (15, 9) code we expect an error floor, at a
level depending on the value of p and §.

Fig. 5 consider the effect of various values for £/5/ on the pro-
posed narrowband detection scheme’s performance for both the
envelope detector the Viterbi ratio threshold test detector when
a (15, 3) Reed-Solomon code is used. From Fig. 5 it is evident
that the value of Es has no significant effect on the proposed
scheme’s performance. Furthermore, the Viterbi ratio threshold
test detector yields a better performance than the envelope de-
tector. This can be attributed to the fact that the envelope de-
tector introduces errors, whereas the Viterbi detector introduces
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Fig. 5. Performance of modified envelope detection and modified Viterbi ratio threshold detection for different values of E -, (15, 3) code.

erasures whenever a codeword element agrees with the narrow-
band noise position.

VI. CONCLUSION

We gave a construction method for finding coset leaders re-
sulting in coset codes with the minimum same-symbol weight.
We also showed that the minimum same-symbol weight can be
calculated as n—ds. The coset codes outperform the linear codes
from which they are constructed when used with M/ -FSK modu-
lation in an environment where narrowband interference occurs.
This point has been illustrated by simulations.
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