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Fig. 3. A minimal realization of the systematic rafé = 2/4 binary
encoder.

Convolutional Encoder State Estimation

convolutional encoder hagn.. = 8 which meets the Griesmer
bound.
Furthermore, in [12] Benedettet al. reported a 16-stat® = 1/2
convolutional code oveZ, with generator
/ _ 2 2 Abstract—To estimate the convolutional encoder state from received
G(D)=(1+D+D" 243D +2D7) ®) data, one may use the inverse to the encodé. However, channel errors
. 2 ey . . make this method unreliable. We propose a method that uses the received
Fhat .achle\{e$lF;_7 free = 16. This code has:(12) = 289 and, hence, data in the following way. We calculate the syndrome, and after a specific
is slightly inferior to (3). number of received syndrome values equal to zero, we expect that the
Recently, Calderbankt al. [13] used “unwrapping” of their tail- corresponding received data is also error-free. The received data is then
biting representation of thg24, 12, 8) extended Golay code to used to build the inverse and give an estimate for the encoder state. The

construct a most interesting 16-state convolutional code aith = method can be used in situations where knowledge of the encoder state
. helps the decoding process or for synchronization purposes. We analyze

8. Their GCC _(Gol.ay cpnvolutional .code) can be encpded bY {Re performance of the described method with respect to state estimation
rate R = 4/8 time-invariant convolutional encoder or with a rateerror probability and the average time it takes before we can estimate
R = 1/2 time-varying, periodt convolutional encoder; see also [14].the encoder state with a certain desired reliability.

A. J. Han Vinck, Senior Member, IEEE
Petr Dolezal, and Young-Gil Kim

Index Terms—Convolutional codes, state recovery.
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that by linearity counter
- R1 | SR
(Ba(D), Ro(D)) + H' g a2 ready-to-read §’
= (C1(D) +m (D), Co(D) +na(D)) + H” N :
= (ni(D), n2(D))x H" R, 1§
=Z(D) (1) g1
and (N
(R1(D), Ry(D))*G™!

= (CL(D) +n1(D), Co(D) + na(D)) x G~

=[CL (D), C2(D)] * G~ + (n1(D), na(D)) =« G *
= X(D)+ (n1(D), na(D)) + G~ 1
= X'(D). ) d d,

@)

The encher S_tate at t'me S, is defined a_'s the COEltent of theFig. 1. (1) Syndrome former and (2) inverse forming circuit with
encoder shift register realization and follows directly fr&D). For  “state-tracker”S".
a constraint lengthm, R = 1/2 encoder in the obvious realization,
the state
Ill. PERFORMANCE ANALYSIS

Si= (X1, Xicoy ooy Xitm). In this section we determine the estimation error probability.
The estimation error probability will be shown to depend on the
The input X; and S, together determine the staf.. Hence, if tlme-tlo-deC|S|on.('.I'TD.) and the S|gnal-t0-n0|s§ ratio on the channel.

'Ij'th? time-to-decision interval equals a certain specified number of

the channel is noiseless for a certain period, one can use the inveS sequent zeros in the svndrome former outout sequence after a
output to reconstruct the encoder state. Forney [1] indicated already?>¢d y ulp d
drome value equal to one appeared. As indicated above, we set

this possibility in his fundamental paper on algebraic structure . .
'S POSSILILy In IS u pap g ! uctu e TTD equal tod + m + m' + i. The reason for taking this

convolutional codes. However, we consider the problem how on th will be clear from the derivation of the estimation error
construct an implementation of a state estimator that uses the inve?s% - - -
ability. As a channel we assume the hard decision additive

with high reliability when the channel is noisy. We give a systerﬁro. . . . .

description in Section Il. We introduce a certain delay, or so-callé’éﬁhlte Gau_s_s,lan noise .(AWGN) che_mnel_, or binary §ymm¢trlc channel

time to decision (TTD) before we give an estimate output. The del jth transition prOb?b'“typ' For h'.gh S|gnal-tp_-n0|_se ratio (.SNR)’

TTD will be shown to be the key to a reliable estimate. In Section | R= 10 IOg(,ES/M)’ the transition pr.Obab”.'ty) Is proportional

we consider the encoder estimation error probability depending 9, exp (—E./No). In_the code_d situation with _raté% - k/n."

the TTD. Of course, there is a tradeoff between reliability and delay™* = RE,, whereE, is the available energy per information bit.

Section IV gives simulation results that confirm the analysis. Definition: An estimation error occurs whenever the “state-
tracker” output or encoder state estimateat timet +m +m' +d+

1+ is not equal to the actual encoder state at tiri@n +m'+ 1 +1.
Il. SYSTEM DESCRIPTION

We first concentrate on the estimation error probability. Since all
operations in the receiver are linear, we may assume transmission of
all-zero codeword.

We describe a “state-tracking” method fBr= 1/2 convolutional
codes. The principle can be extended to gen&ak %/n codes.
The state estimator to be used is given in Fig. 1. The received binzg??

sequence paifR: (D), R.(D)) is multiplied by H” as in (1). The  Qpservation: From Figs. 1 and 2, we observe that the content of
resulting syndrome sequence enters a counter. After a number of 2 state-tracker at time+ d + m + m’ 4+ 1 + i is determined by
syndrome values, the counter gives a ready-to-t§adignal. The the noise input pairs at time

incoming sequence pair is delayed by a tilhdefore entering the

inverse forming circuitz~' as given in (2). The delay plays a key t+1l4it+2+i- t+m+m +i.
role in the determination of’. The register following the invertor
has lengthm and contains» symbols of the estimaté’. Hence, Since we consider transmission of the all-zero codeword, the

the content of the register is used as a “state-tracker.” Of course, @éscription only has to consider the channel noise digits. Aet

have to specify the basic operations of the decision mechanism todesote the abstract state of the syndrome former at#jragdn, the

used as a state tracker. corresponding input pair of noise digits. The syndrome former output,
After receiving a syndrome value equal to one, the counter is resethe adjoint obvious realization, at tiniés denoted as;. Suppose

to zero. After receivingl+m+m'+i,¢ > 0, syndrome values equal thatZ; = 1. In addition, the followingi +m +m'+i values ofZ;,1,

to zero, the signal ready-to-re&d is given. We thus can formulate z, ., -- -, Zit dem+m'+i are assumed to be zero. According to the

the following decision rule. decision rule, the state-tracker then gives an estimate for the encoder

) , .
Decision Rule: The content of the “state-tracker” at tinae- d + state at timef + m + m . +1+ ' For any syndrome former state
H:+1 we can construct input pains;+1, nsyz2, - -

m+m’+1+iis given as an estimate for the encoder state at tiné%ch that the corresponding syndrome outputs ar’é]:+(j§,tygzietg Since
t+m+m' +1+iif d+m + m' +i subsequent values of the P gsy P q :

syndrome are equal to zero (ready-to-redsignal). every abstract syndrome fc_)rmer state corresponds uniquely with an
encoder state, the above inputs must be a code sequence segment
In the following section we analyze the performance of the decisidhat follows a path through the encoder state diagram starting at the
rule. corresponding encoder state. We need the following definition.
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Fig. 2. Invertor with state-tracker and corresponding inputsifoe 0.
d=2 m=2 mw=1 i=1 In Figs. 3 and 4, we use a trellis representation of code sequences
W7 w6 S 4 43 2 w1 time < as paths through the trelll_s for am = 2_encoder. Dashed I_|nes
00 correspond to an encoder inputand solid lines to an encoder input
| | 0. On the horizontal axis we have the time and on the vertical axis
© we have the possible encoder states in the trellis representation. As
an example, we take the simple encoder with= 2, m' = 1,d = 2,
and:{ = 1. Fig. 3 shows examples of syndrome-former inputs that
01 do not cause estimation errors. For instance, there is an event from
state(10) at timet + 1 passing statél1) at time¢ + 2 and ending in
11 state(00) at timet + 4. In Fig. 4 we illustrate both classes of error
events in the encoder trellis diagram.
Trellis state The first class of error events immediately gives the importance

of the delayd. If we take a small value off, some light-weighted
error events may cause errors in the state-tracker. Valuddarfjer
thanm are not expected to improve the estimation error probability

Definition: A code sequence segment generated by an encodensiderably. This will be illustrated in the simulation results. From
input that leads to the all-zero encoder state and stays in the all-zgte two classes of error events, we may upperbound the estimation
state is said to end in the all-zero state. error probability by

Fig. 3. lllustration of a set of events that do not cause estimation errors.

Now, consider only those code sequence segments as input to P. < P(E\) + P(E,). €)
the syndrome former that reach the all-zero state at or before time
t+m~+m’+1+i and do not leave the all-zero state in the time intervafor the classZ;, the Hamming weight of the error segments of length
t+m'+14itot+m+m'+14i. As a consequence, for these inputs¢ +1, d+ 2, - -+, can be found from the encoder state diagram. The
the state-tracker content at time- m +m' 4+ 1+ 4 d must contain probability that a particular code sequence segment of lesgthr,
the all-zero state. This observation leads to the following theoremz > 0 with Hamming weighty occurs is given by

Theorem: Noise inputs that correspond to code sequence segments P(d+a) = p¥ (1 — p)*tdt=)—v, 4)

ending in the zero state in the time intervéd + m’ + 1 + i )
to t + m +m' + 1+ i) do not cause estimation errors at timel "€ maximum value of (4) occurs when= 1 andy assumes the

t+d+m+m' +1+1i. lowest value for a particular value of [3]. We also conclude that
Proof: Any code sequence segment ending in the all-zero stéle= ™ 1S @ reasonable choice, since for valuesdof> m, the

in the defined time interval must have at leasencoder inputs equal Minimum distance of the code is the dominant factor. The minimum
to zero at timet + m + m’ + 1 + i. value fory can be used to approximate (4) as

All other syndrome former inputs that lead to the zero syndrome
outputs, but are not equivalent to a code sequence segment that ends
in the zero encoder state in the time interval from m’ + 1 +:¢ where D,y is the minimum weight of an error segment of length
tot+ m+m'+1+: may cause a nonzero state-tracker content dt+- 1 for the classF;. From (3) and (4), it can be concluded that for
timet+ m +m' +d+ 1+ i and thus causes an estimation errota givend, a rapid growth in the Hamming weight for code segments
The syndrome former inputs that may cause errors in the state-trackglengthd + 1, d + 2, - - -, is important for events in the clags; .
thus contain the following remaining classes of error events. Hence, here the distance profile [2], [3] is shown to be again an

—E;: Error events equal to code sequences that start from the @hportant measure in the performance of convolutional decoding.
zero state at time+1, t+2, .-+, t+m+m’+i, thatdo notend in  For the classE,, the minimum-weight error segment of length
the zero state in the intervél + m’ +1+itot+m+m'+1+i). m+m'+ 1+ can be found by searching the encoder state diagram
Note that these error events must have a length of atdeadtpairs, in backward direction. From inspection of the code properties of
whend < m. Ford > m, the minimum length of the error event isthe particular code in use, one finds that this event is of much less
m + 1. Here, the variablel is the key parameter. importance than the event;. However, in general, we have to

—E,: Error events equal to code sequence segments that stamfirm this by code inspection. The influence of the class can be
from a particular encoder state at time- 1, but do not end in the controlled by the variable.
all-zero state in the interval +m’ + 1 +itot +m +m' +1+1i). We also analyze the mean time to decision (MTTD), defined as the
These error events have a minimum lengthmof m' + 1 + i. average time it takes before we observe a specified nhumber of zero

log P(d+ 1) 2 Dyyqlogp 5)
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Fig. 4. lllustration of a set of error events that cause estimation errors.
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Fig. 6. The average number of received input pairs needed to reach the TTD.

Fig. 5. Estimation error probability as a function of TED 10 + d.

1.0E-2]
syndrome-former outputs. After receiving a syndrome value equal to T
one, we wait ford + m + m' + 4 zero outputs before we make a Pe .
. Lo . 1.0E-3 &
decision. The question is how long do we have to wait before we have L
d+m+m'+i zero outputs. We give an upper bound for MTTD. The TID = 10
average time it takes foif — m consecutive syndrome outputs equal 1.0E~ -
to zero to occur is less than or equal to the average time it takes to
receivej noise digit input pairs equal to zero, since more (including 1 0E-3 TTD"T}_?
nonzero) error events may cause a sequence of syndrome values equal TTD =18~ .
to zero. LetE(j) denote the average time it takes befpmoise pairs NM
equal to zero occur. We can thus upperbound the MTTD as 1.0E-6, I i i I |
MTTD < E(d+m+m' +i+m) 3 4 5 6 7 5 SNR [dB]

where
E()={1-p) ™ -1}/{t-(1-p*} j21 (6)
For small values o

Fig. 7. Estimation error probability as a function of SNR, TEDd + 10.

the estimation error probabilityyg P. has a slope depending on the

E()=j+i’p. (7) signal-to-noise ratio, and decreases linearly withFor B = 1/2,
In the next section we present simulation results for the MTTIHE know that the column (_jistance function roughly grows Iinearly
and P.. \_Nlth thg length of the considered codeword segment: and thus with
increasingd. For the standard code, the column distance grows
as2,3,3,4,4,4,4,5,5,---. Given the hard decision channel error
IV. M EASUREMENTS probabilities for SNR= 3, 5, and 7 dB, the derivatives in Fig. 5 are

In this section we present the simulation results for the state tracke.3, —0.45, and —0.7, respectively. We conclude from Fig. 5 that
ing method. As a reference code we use the standard nonsystematicP. = 0.3 TTD = log p. Hence, Fig. 5 is in agreement with (5).
constraint lengtté encoder with connection polynomialg:, g-) = We conclude that the described method can be used to improve the
(744, 554) and degred inverse(d;, d2) = (76, 12). After receiving reliability of the state-tracking method for convolutional codes.

TTD syndrome values equal to zero, we estimate the encoder statdn Fig. 6 we give the average number of received channel output
After estimation, we start again with a randomly selected new encodgstirs before we have TTD syndrome values equal to zero, with the
state. Simulations were carried out for SNRLO log(E,/No) equal SNR as a parameter.

to 3, 5, and 7 dB, respectively. Fig. 5 gives the fraction of false From Fig. 6 we see that theg (MTTD) increases linearly with
state estimates as a function of TED d + 10. The logarithm of 4 and has a slope that depends on the signal-to-noise ratio, see
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also (7). The results foP. as a function of the SNR and TTD Critical Lengths of Error Events in Convolutional Codes
as a parameter are given in Fig. 7. From the simulation results it

follows that TTD> 20 does not give significant improvements since Jorn Justesen and Jakob Dahl Andersen

a saturation effect occurs for TTD 20. We observe that introducing
a delayd = 6 already gives a gain of more than 3 dB at an error
probability of 10, For larger values of, the expected performancegated exponent, the length becomes nonzero for low error probabilities.

is determined by the free distance of the code, see (4). This result applies to typical long codes, but it may also be useful for
Remarks: The described procedure gives a reliable state estimawedeling error events in specific codes.

if Syﬁlc!ent syndrome values equal to Zer9 are recelved.. Instead 0fndex Terms—Burst lengths, convolutional codes, critical length, en-
estimating encoder states, we can also estimate encoder inputs. TBeg®le analysis.

estimates can then be used in decoding algorithms like that of Fano or

the M -algorithm. We are presently investigating these applications.

Abstract—f the calculation of the critical length is based on the expur-

I. INTRODUCTION

In the analysis of concatenated codes and other systems combining
V. CONCLUSIONS convolutional codes with multiplexing or other stages of coding it is

We have shown how to use the inverge! as a reliable encoder important to know the distribution of error events after decoding of
state-tracker. The estimation error probability strongly depends Bif convolutional code. For a specific code this distribution can be
the introduced decision delayand the SNR. The method has a vergimulated or calculated from the weight generating function of the
low complexity and can be used to support decoding algorithnfzode and the properties of the channel [1]. However, it is of interest
like the Fano sequential decoding algorithm or thE-algorithm, t0 compare these results to general properties of error patterns by
where the presence or knowledge of the encoder state in the decodiigsidering the performance of average codes of sufficiently large
process can be expected to improve performance of the decoding. &g8Straint length.
showed the relation between the estimation error probability and thelhe analysis of error-correcting codes through the error exponents
column distance function. We also bounded the mean time to decisf6h randomly chosen codes is a classical technique in information
(MTTD) as an average for the time it takes before we observe tH€ory [2]. Following this tradition, Forney [3] introduced the concept
desired TTD= d + m + m’ + i zero syndrome outputs. of the critical length for long convolutional codes as the length of the

error events that dominate the lower bound on error probability. This

analysis, which also appears in Viterbi and Omura’s text [1], indicates
ACKNOWLEDGMENT that for rates belowR, the critical length is zero. However, for typical

binary codes, the critical length is determined by the length of the

The authors wish to thank Adriaan van Wijngaarden for his suppaffinimum-weight codewords, and consequently it is greater than zero.
during the stay of the second author in Essen. For higher rates, the error events are longer, and the bound on error
probability is known to be tight.

In Section Il, we discuss the derivation of error exponents for
convolutional codes, and make some comments on the relationship
[1] G. D. Forney, Jr., “Convolutional codes |: Algebraic structurlSEE between distances and error exponents. In Section Ill, the correction

Trans. Inform. Theoryvol. IT-16, pp. 720-738, Nov. 1970. to the critical length is presented, and in Section IV the critical length
[2] R. Joh?nnesson, “Robustly optimal rate one-half binary convolutiongd gerived as a function of the signal-to-noise ratio. In Section V
) ;?dlif]' IaEnEdE gr.ancsésl?;ﬁggrrgre(():rg/r?tlr'oll-r-czoléi?mzl: 4§j;3:§]’ejntizslz7n% the exponential decrease in probability for long burst is analyzed
Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983. and finally, in Section VI, the results of the asymptotic analysis are
compared to simulated and calculated results for a specific code with
moderate memory.
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Il. ERROR EXPONENTS FORBLOCK
CobESs AND CONVOLUTIONAL CODES

For simplicity we shall discuss only the performance on the binary-
symmetric channel (BSC) and the additive white Gaussian noise
channel (AWGN). For long codes, the error probability of block
codes and convolutional codes is upper-bounded in terms of the error
exponents. Usually the exponents are derived for general memoryless
channels and later specialized to BSC and other simple cases. This
approach may obscure the arguments. However, we shall not give a
simplified derivation but rather give a few comments interpreting the
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