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Fig. 3. A minimal realization of the systematic rateR = 2=4 binary
encoder.

convolutional encoder hasdfree = 8 which meets the Griesmer
bound.

Furthermore, in [12] Benedettoet al. reported a 16-stateR = 1=2
convolutional code over 4 with generator

G(D) = (1 +D +D2 2 + 3D+ 2D2) (8)

that achievesd2E; free = 16: This code hasn(12) = 289 and, hence,
is slightly inferior to (3).

Recently, Calderbanket al. [13] used “unwrapping” of their tail-
biting representation of the(24; 12; 8) extended Golay code to
construct a most interesting 16-state convolutional code withdfree =
8. Their GCC (Golay convolutional code) can be encoded by a
rate R = 4=8 time-invariant convolutional encoder or with a rate
R = 1=2 time-varying, period4 convolutional encoder; see also [14].

ACKNOWLEDGMENT

We are grateful to R. Garello and his colleagues for drawing our
attention to [10]–[12].

REFERENCES

[1] J. A. Heller, “Short constraint length convolutional codes,” Jet Propul-
sion Lab., California Inst. Technol., Pasadena,Space Programs Summary
37-54, vol. 3, pp. 171–177, 1968.

[2] J. H. Griesmer, “A bound for error-correcting codes,”IBM J. Res.
Develop., vol. 4, pp. 532–542, 1960.

[3] G. D. Forney, Jr., N. J. A. Sloane, and M. D. Trott, “The Nord-
strom–Robinson Code is the binary image of the octacode,”DIMACS,
Ser. Discrete Math. Theor. Comput. Sci., vol. 14, pp. 19–26, 1993.

[4] A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane,
and P. Sol´e, “The 4-linearity of Kerdock, Preparata, Goethals, and
related codes,”IEEE Trans. Inform. Theory, vol. 40, pp. 301–319, Jan.
1994.

[5] C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding: Turbo-codes,”IEEE Trans. Commun., vol. 44, pp. 1261–1271,
Oct. 1996.

[6] R. Johannesson, Z.-X. Wan, and E. Wittenmark, “Some structural
properties of convolutional codes over rings,”IEEE Trans. Inform.
Theory,vol. 44, pp. 839–845, Mar. 1998.

[7] G. D. Forney, Jr., “Convolutional codes I: Algebraic structure,”IEEE
Trans. Inform. Theory, vol. IT-16, pp. 720–738, Nov. 1970.

[8] L.-N. Lee, “Short unit-memory byte-oriented binary convolutional codes
having maximal free distance,”IEEE Trans. Inform. Theory, vol. IT-22,
pp. 349–352, May 1976.

[9] R. Garello, private communication, Dec. 1, 1997.
[10] S. Benedetto, R. Garello, M. Mondin, and G. Montorsi, “Geometrically

uniform partitions ofL � MPSK constellations and related binary
codes,”IEEE Trans. Inform. Theory, vol. 39, pp. 1773–1798, Nov. 1993.

[11] S. Benedetto, R. Garello, and M. Mondin, “Group trellis codes over
multidimensional unbalanced PSK and their optimality,”IEEE Trans.
Commun., vol. 43, pp. 2922–2932, Dec. 1995.

[12] S. Benedetto, R. Garello, M. Mondin, and G. Montorsi, “Geometrically
uniform TCM codes over groups based onL � MPSK constellations,”
IEEE Trans. Inform. Theory, vol. 40, pp. 137–152, Jan. 1994.

[13] A. R. Calderbank, G. D. Forney, Jr., and A. Vardy, “Minimal tail-
biting trellises: The Golay code and more,”IEEE Trans. Inform. Theory,
submitted for publication.

[14] , “Classification of the 16-state tail-biting representations of the
binary Golay code,” inCodes, Curves, and Signals: Common Threads
in Communications, A. Vardy, Ed. Boston, MA: Kluwer, 1998.

Convolutional Encoder State Estimation

A. J. Han Vinck,Senior Member, IEEE,
Petr Dolezal, and Young-Gil Kim

Abstract—To estimate the convolutional encoder state from received
data, one may use the inverse to the encoderG. However, channel errors
make this method unreliable. We propose a method that uses the received
data in the following way. We calculate the syndrome, and after a specific
number of received syndrome values equal to zero, we expect that the
corresponding received data is also error-free. The received data is then
used to build the inverse and give an estimate for the encoder state. The
method can be used in situations where knowledge of the encoder state
helps the decoding process or for synchronization purposes. We analyze
the performance of the described method with respect to state estimation
error probability and the average time it takes before we can estimate
the encoder state with a certain desired reliability.

Index Terms—Convolutional codes, state recovery.

I. INTRODUCTION

A general convolutional encoder is specified by itsk�n generator
matrix G. For minimal encoders, we can derive the delay-free
right inverse G�1 and the syndrome formerHT , see [1]. We
concentrate on rateR = 1=2, or k = 1 and n = 2 convolutional
encoders, with a standard constraint length6 encoder as a working
example. Nonsystematic, noncatastrophic encoders are described by
the pair of binary polynomials(g1; g2). Generally, one assumes
that both polynomials have zero delay and maximum degree or
constraint lengthm. The inverse consists of two polynomials,d1
and d2 such that g1d1 + g2d2 = 1, where all operations are
modulo 2. The realization of the inverse is called invertor. The
syndrome former is the pair(g2; g1)T . Using the delay operatorD
notation, the encoder input sequence, the encoder output sequence
pair and the received channel output sequence pair are given by
X(D); (C1(D); C2(D)) = X(D) � G; and (R1(D); R2(D));
respectively. The received sequence

(R1(D); R2(D)) = (C1(D) + n1(D); C2(D) + n2(D))

whereni(D), i = 1; 2 is the channel error sequence that results from
a hard-decision detection and a+ denotes modulo two addition. Note
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that by linearity

(R1(D); R2(D)) �HT

= (C1(D) + n1(D); C2(D) + n2(D)) �HT

= (n1(D); n2(D)) �HT

= Z(D) (1)

and

(R1(D); R2(D)) �G�1

= (C1(D) + n1(D); C2(D) + n2(D)) �G�1

= [C1(D); C2(D)] �G�1 + (n1(D); n2(D)) �G�1

= X(D) + (n1(D); n2(D)) �G�1

= X0(D): (2)

The encoder state at timet, St, is defined as the content of the
encoder shift register realization and follows directly fromX(D). For
a constraint lengthm, R = 1=2 encoder in the obvious realization,
the state

St = (Xt�1; Xt�2; � � � ; Xt�m):

The inputXt and St together determine the stateSt+1. Hence, if
the channel is noiseless for a certain period, one can use the invertor
output to reconstruct the encoder state. Forney [1] indicated already
this possibility in his fundamental paper on algebraic structure of
convolutional codes. However, we consider the problem how to
construct an implementation of a state estimator that uses the inverse
with high reliability when the channel is noisy. We give a system
description in Section II. We introduce a certain delay, or so-called
time to decision (TTD) before we give an estimate output. The delay
TTD will be shown to be the key to a reliable estimate. In Section III
we consider the encoder estimation error probability depending on
the TTD. Of course, there is a tradeoff between reliability and delay.
Section IV gives simulation results that confirm the analysis.

II. SYSTEM DESCRIPTION

We describe a “state-tracking” method forR = 1=2 convolutional
codes. The principle can be extended to generalR = k=n codes.
The state estimator to be used is given in Fig. 1. The received binary
sequence pair(R1(D); R2(D)) is multiplied byHT as in (1). The
resulting syndrome sequence enters a counter. After a number of zero
syndrome values, the counter gives a ready-to-readS0 signal. The
incoming sequence pair is delayed by a timed before entering the
inverse forming circuitG�1 as given in (2). The delayd plays a key
role in the determination ofS0. The register following the invertor
has lengthm and containsm symbols of the estimateS0. Hence,
the content of the register is used as a “state-tracker.” Of course, we
have to specify the basic operations of the decision mechanism to be
used as a state tracker.

After receiving a syndrome value equal to one, the counter is reset
to zero. After receivingd+m+m0+i, i � 0, syndrome values equal
to zero, the signal ready-to-readS0 is given. We thus can formulate
the following decision rule.

Decision Rule: The content of the “state-tracker” at timet+ d+
m+m0 + 1+ i is given as an estimate for the encoder state at time
t + m + m0 + 1 + i if d + m + m0 + i subsequent values of the
syndrome are equal to zero (ready-to-readS0 signal).

In the following section we analyze the performance of the decision
rule.

Fig. 1. (1) Syndrome former and (2) inverse forming circuit with
“state-tracker”S0.

III. PERFORMANCE ANALYSIS

In this section we determine the estimation error probability.
The estimation error probability will be shown to depend on the
time-to-decision (TTD) and the signal-to-noise ratio on the channel.
The time-to-decision interval equals a certain specified number of
subsequent zeros in the syndrome former output sequence after a
syndrome value equal to one appeared. As indicated above, we set
the TTD equal tod + m + m0 + i. The reason for taking this
length will be clear from the derivation of the estimation error
probability. As a channel we assume the hard decision additive
white Gaussian noise (AWGN) channel, or binary symmetric channel
with transition probabilityp. For high signal-to-noise ratio (SNR),
SNR = 10 log(Es=N0), the transition probabilityp is proportional
to exp (�Es=N0). In the coded situation with rateR = k=n,
Es = REb, whereEb is the available energy per information bit.

Definition: An estimation error occurs whenever the “state-
tracker” output or encoder state estimateS0 at timet+m+m0+d+
1+i is not equal to the actual encoder state at timet+m+m0+1+i.

We first concentrate on the estimation error probability. Since all
operations in the receiver are linear, we may assume transmission of
the all-zero codeword.

Observation: From Figs. 1 and 2, we observe that the content of
the state-tracker at timet + d +m +m0 + 1 + i is determined by
the noise input pairs at time

t+ 1+ i; t+ 2 + i; � � � ; t+m+m0 + i:

Since we consider transmission of the all-zero codeword, the
description only has to consider the channel noise digits. LetHt

denote the abstract state of the syndrome former at timet, andnt the
corresponding input pair of noise digits. The syndrome former output,
in the adjoint obvious realization, at timet is denoted asZt. Suppose
thatZt = 1. In addition, the followingd+m+m0+i values ofZt+1;
Zt+2; � � � ; Zt+d+m+m +i are assumed to be zero. According to the
decision rule, the state-tracker then gives an estimate for the encoder
state at timet + m + m0 + 1 + i. For any syndrome former state
Ht+1 we can construct input pairsnt+1; nt+2; � � � ; nt+m+m +i+d

such that the corresponding syndrome outputs are equal to zero. Since
every abstract syndrome former state corresponds uniquely with an
encoder state, the above inputs must be a code sequence segment
that follows a path through the encoder state diagram starting at the
corresponding encoder state. We need the following definition.
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Fig. 2. Invertor with state-tracker and corresponding inputs fori = 0.

Fig. 3. Illustration of a set of events that do not cause estimation errors.

Definition: A code sequence segment generated by an encoder
input that leads to the all-zero encoder state and stays in the all-zero
state is said to end in the all-zero state.

Now, consider only those code sequence segments as input to
the syndrome former that reach the all-zero state at or before time
t+m+m0+1+i and do not leave the all-zero state in the time interval
t+m0+1+i to t+m+m0+1+i. As a consequence, for these inputs,
the state-tracker content at timet+m+m0 +1+ i+ d must contain
the all-zero state. This observation leads to the following theorem.

Theorem: Noise inputs that correspond to code sequence segments
ending in the zero state in the time interval(t + m0 + 1 + i

to t + m + m0 + 1 + i) do not cause estimation errors at time
t + d + m + m0 + 1 + i.

Proof: Any code sequence segment ending in the all-zero state
in the defined time interval must have at leastm encoder inputs equal
to zero at timet + m + m0 + 1 + i.

All other syndrome former inputs that lead to the zero syndrome
outputs, but are not equivalent to a code sequence segment that ends
in the zero encoder state in the time interval fromt + m0 + 1 + i

to t+m+m0 + 1+ i may cause a nonzero state-tracker content at
time t +m +m0 + d + 1 + i and thus causes an estimation error.
The syndrome former inputs that may cause errors in the state-tracker
thus contain the following remaining classes of error events.
�E1: Error events equal to code sequences that start from the all-

zero state at timet+1; t+2; � � � ; t+m+m0+ i; that do not end in
the zero state in the interval(t+m0 +1+ i to t+m+m0 +1+ i).
Note that these error events must have a length of at leastd+1 pairs,
whend � m. For d > m, the minimum length of the error event is
m + 1. Here, the variabled is the key parameter.
�E2: Error events equal to code sequence segments that start

from a particular encoder state at timet + 1, but do not end in the
all-zero state in the interval(t+m0 + 1+ i to t+m+m0 + 1+ i).
These error events have a minimum length ofm+m0 + 1 + i.

In Figs. 3 and 4, we use a trellis representation of code sequences
as paths through the trellis for anm = 2 encoder. Dashed lines
correspond to an encoder input1 and solid lines to an encoder input
0. On the horizontal axis we have the time and on the vertical axis
we have the possible encoder states in the trellis representation. As
an example, we take the simple encoder withm = 2, m0 = 1, d = 2,
and i = 1. Fig. 3 shows examples of syndrome-former inputs that
do not cause estimation errors. For instance, there is an event from
state(10) at timet+1 passing state(11) at timet+2 and ending in
state(00) at time t+ 4. In Fig. 4 we illustrate both classes of error
events in the encoder trellis diagram.

The first class of error events immediately gives the importance
of the delayd. If we take a small value ofd, some light-weighted
error events may cause errors in the state-tracker. Values ofd larger
thanm are not expected to improve the estimation error probability
considerably. This will be illustrated in the simulation results. From
the two classes of error events, we may upperbound the estimation
error probability by

Pe � P (E1) + P (E2): (3)

For the classE1, the Hamming weight of the error segments of length
d+1; d+2; � � � ; can be found from the encoder state diagram. The
probability that a particular code sequence segment of lengthd+ x,
x > 0 with Hamming weighty occurs is given by

P (d+ x) = p
y(1� p)2(d+x)�y

: (4)

The maximum value of (4) occurs whenx = 1 and y assumes the
lowest value for a particular value ofd [3]. We also conclude that
d = m is a reasonable choice, since for values ofd > m, the
minimum distance of the code is the dominant factor. The minimum
value for y can be used to approximate (4) as

logP (d+ 1) �= Dd+1 log p (5)

whereDd+1 is the minimum weight of an error segment of length
d+1 for the classE1. From (3) and (4), it can be concluded that for
a givend, a rapid growth in the Hamming weight for code segments
of lengthd+ 1; d+ 2; � � � ; is important for events in the classE1.
Hence, here the distance profile [2], [3] is shown to be again an
important measure in the performance of convolutional decoding.

For the classE2, the minimum-weight error segment of length
m+m0+1+ i can be found by searching the encoder state diagram
in backward direction. From inspection of the code properties of
the particular code in use, one finds that this event is of much less
importance than the eventE1. However, in general, we have to
confirm this by code inspection. The influence of the class can be
controlled by the variablei.

We also analyze the mean time to decision (MTTD), defined as the
average time it takes before we observe a specified number of zero
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Fig. 4. Illustration of a set of error events that cause estimation errors.

Fig. 5. Estimation error probability as a function of TTD= 10 + d.

syndrome-former outputs. After receiving a syndrome value equal to
one, we wait ford + m + m0 + i zero outputs before we make a
decision. The question is how long do we have to wait before we have
d+m+m0+i zero outputs. We give an upper bound for MTTD. The
average time it takes forj �m consecutive syndrome outputs equal
to zero to occur is less than or equal to the average time it takes to
receivej noise digit input pairs equal to zero, since more (including
nonzero) error events may cause a sequence of syndrome values equal
to zero. LetE(j) denote the average time it takes beforej noise pairs
equal to zero occur. We can thus upperbound the MTTD as

MTTD � E(d+m+m0 + i+m)

where

E(j) = f(1� p)�2j � 1g=f1� (1� p)2g; j � 1: (6)

For small values ofp

E(j) � j + j2p: (7)

In the next section we present simulation results for the MTTD
and Pe.

IV. M EASUREMENTS

In this section we present the simulation results for the state track-
ing method. As a reference code we use the standard nonsystematic
constraint length6 encoder with connection polynomials(g1; g2) =
(744; 554) and degree4 inverse(d1; d2) = (76; 12). After receiving
TTD syndrome values equal to zero, we estimate the encoder state.
After estimation, we start again with a randomly selected new encoder
state. Simulations were carried out for SNR= 10 log(Eb=N0) equal
to 3, 5, and 7 dB, respectively. Fig. 5 gives the fraction of false
state estimates as a function of TTD= d + 10. The logarithm of

Fig. 6. The average number of received input pairs needed to reach the TTD.

Fig. 7. Estimation error probability as a function of SNR, TDD= d+ 10.

the estimation error probabilitylog Pe has a slope depending on the
signal-to-noise ratio, and decreases linearly withd. For R = 1=2,
we know that the column distance function roughly grows linearly
with the length of the considered codeword segment, and thus with
increasingd. For the standard code, the column distance grows
as 2; 3; 3; 4; 4; 4; 4; 5; 5; � � �. Given the hard decision channel error
probabilities for SNR= 3, 5, and 7 dB, the derivatives in Fig. 5 are
�0:3; �0:45; and�0:7; respectively. We conclude from Fig. 5 that
log Pe

�= 0:3TTD � log p. Hence, Fig. 5 is in agreement with (5).
We conclude that the described method can be used to improve the
reliability of the state-tracking method for convolutional codes.

In Fig. 6 we give the average number of received channel output
pairs before we have TTD syndrome values equal to zero, with the
SNR as a parameter.

From Fig. 6 we see that thelog (MTTD) increases linearly with
d and has a slope that depends on the signal-to-noise ratio, see
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also (7). The results forPe as a function of the SNR and TTD
as a parameter are given in Fig. 7. From the simulation results it
follows that TTD� 20 does not give significant improvements since
a saturation effect occurs for TTD� 20. We observe that introducing
a delayd = 6 already gives a gain of more than 3 dB at an error
probability of10�4. For larger values ofd, the expected performance
is determined by the free distance of the code, see (4).

Remarks: The described procedure gives a reliable state estimate
if sufficient syndrome values equal to zero are received. Instead of
estimating encoder states, we can also estimate encoder inputs. These
estimates can then be used in decoding algorithms like that of Fano or
theM -algorithm. We are presently investigating these applications.

V. CONCLUSIONS

We have shown how to use the inverseG�1 as a reliable encoder
state-tracker. The estimation error probability strongly depends on
the introduced decision delayd and the SNR. The method has a very
low complexity and can be used to support decoding algorithms,
like the Fano sequential decoding algorithm or theM -algorithm,
where the presence or knowledge of the encoder state in the decoding
process can be expected to improve performance of the decoding. We
showed the relation between the estimation error probability and the
column distance function. We also bounded the mean time to decision
(MTTD) as an average for the time it takes before we observe the
desired TTD= d+m+m

0
+ i zero syndrome outputs.
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Critical Lengths of Error Events in Convolutional Codes

Jørn Justesen and Jakob Dahl Andersen

Abstract—If the calculation of the critical length is based on the expur-
gated exponent, the length becomes nonzero for low error probabilities.
This result applies to typical long codes, but it may also be useful for
modeling error events in specific codes.

Index Terms—Burst lengths, convolutional codes, critical length, en-
semble analysis.

I. INTRODUCTION

In the analysis of concatenated codes and other systems combining
convolutional codes with multiplexing or other stages of coding it is
important to know the distribution of error events after decoding of
the convolutional code. For a specific code this distribution can be
simulated or calculated from the weight generating function of the
code and the properties of the channel [1]. However, it is of interest
to compare these results to general properties of error patterns by
considering the performance of average codes of sufficiently large
constraint length.

The analysis of error-correcting codes through the error exponents
for randomly chosen codes is a classical technique in information
theory [2]. Following this tradition, Forney [3] introduced the concept
of the critical length for long convolutional codes as the length of the
error events that dominate the lower bound on error probability. This
analysis, which also appears in Viterbi and Omura’s text [1], indicates
that for rates belowR0 the critical length is zero. However, for typical
binary codes, the critical length is determined by the length of the
minimum-weight codewords, and consequently it is greater than zero.
For higher rates, the error events are longer, and the bound on error
probability is known to be tight.

In Section II, we discuss the derivation of error exponents for
convolutional codes, and make some comments on the relationship
between distances and error exponents. In Section III, the correction
to the critical length is presented, and in Section IV the critical length
is derived as a function of the signal-to-noise ratio. In Section V
the exponential decrease in probability for long burst is analyzed
and finally, in Section VI, the results of the asymptotic analysis are
compared to simulated and calculated results for a specific code with
moderate memory.

II. ERROR EXPONENTS FORBLOCK

CODES AND CONVOLUTIONAL CODES

For simplicity we shall discuss only the performance on the binary-
symmetric channel (BSC) and the additive white Gaussian noise
channel (AWGN). For long codes, the error probability of block
codes and convolutional codes is upper-bounded in terms of the error
exponents. Usually the exponents are derived for general memoryless
channels and later specialized to BSC and other simple cases. This
approach may obscure the arguments. However, we shall not give a
simplified derivation but rather give a few comments interpreting the
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