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Codes over the Ring of Integers Modulo m*
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SUMMARY We discuss the concept of coding over the ring
of integers modulo m. This method of coding finds its origin in
the early work by Varshamov and Tenengolz[1]. We first give a
definition of the codes followed by some general properties. We
derive specific code constructions and show computer-search re-
sults. We conclude with applications in 8-phase modulation and
peak-shift correction in magnetic recording systems[2].
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1. Introduction

In coding literature, one mainly deals with binary ori-
ented codes. However, in a number of applications,
it is natural to represent symbols by integers. We
mention the areas of coded modulation and magnetic
recording. Motived by the early work of Varshamov
and Tenengolz[1] and the results from Levenshtein and
Vinck [2], we develop the concept of integer codes, 1C,
for channels with input alphabet {0,1,...,m — 1} and
output alphabet Z,, where Z,, is the ring of integers
modulo m. In coded modulation, as for instance in 8-
phase modulation, one can represent the symbols in the
signal constellation by the integers 0,1,...,7. In mag-
netic recording, symbols are phrases of runlength lim-
ited sequences. For a (d, k) = (1,3) sequence, phrases
have lengths 2, 3, 4, respectively. It is thus natural to
use integers for the symbol representation.

Definition 1: Let m,M,N € N, H € ZM*N and
d € ZM. Then the IC is defined by

{acz : ol = d}, M

where H can be seen as the check matrix for the IC.

Without loss of generality, we may assume that d = 0.
It is easy to show that any code with d + 0 can be
transformed into a code with d = 0, by subtracting one
codeword from all others. The code with d = O thus
has the maximum number of codewords. Furthermore,
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we are also able to transform codewords with d = 0 to
codewords with d # 0. Hence, all codes have the same
number of codewords for the specific H. The following
theorem is important for the enumeration of the number
of different codes.
Theorem 1: If the greatest common divisor (ged) of
the M x M subdeterminants of H is equal to a unit in
Zm, then H defines m™ different codes of equal size
miN—M,
Proof: The proof follows from the fact that, under the
given condition, for any vector d € ZM we can always
construct a vector a € ZY such that aH” = d occurs.
O

Let N = 1. If the ged of the M x M subdetermi-
nants of H is equal to b is not a unit in Z,,, then we
have m/b different codes each of size bmN 1. Here, the
division m /b is equal to the smallest integer ¢ < m such
that be = 0 (mod m). For nontrivial codes all com-
ponents of H must be different. Therefore, N < m/b.
Example: Let m =10, M =1, and gecd =6 (5 x 6 =
30 = 0 (mod 10)). The units are 3 (3 x7 =21 =1
(mod 10)), 7 and 9 (9 x 9 = 81 = 1 (mod 10)). We
have 5 codes with d = 6,2, 8,4 and 0, respectively.

In the rest of the paper we only consider matrices H
according to Theorem 1. In our search for good codes,
we can eliminate a number of candidate matrices H by
using the following definition.

Definition 2: Let C; and Cs be IC codes with check
matrices H and G of the same dimensions and over the
same ring Z,,. We say that C; and Cy are equivalent if

e the rows of G are given by a permutation of the
rows of H and are possibly multiplied with a unit
of Z,,,

e the columns of G are given by a permutation of the
columns of H and are possibly multiplied with —1.

Example: For N = 4, m = 394, H = (1,3,9,16) is
equivalent to G = (—1,—3,12,17) because G can be
obtained from H by multiplying H with 17.

Channel errors are additive and have integer values
in thesete € {—t,—t+1,...,t—1,t}. When we trans-
mit a symbol ¢, we assume that we receive 7 = c+ ¢
(mod m) and the error is e = 7 —c¢ (mod m). We
furthermore assume that ¢ < m/2. For the error vector
e = (e1,ea,...,6e,), we denote weight (e) as the number
of non-zero components.
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Definition 3: Let C be an IC with check matrix H and
d = 0. Then the syndrome S of a received word r € ZX¥
is defined by

S=rHT = eHT. ()

Definition 4: An IC is called s-error correcting with
size of error t if all errors e = (ey,eq,...,ex) with
weight (e) < s and e; € {—¢,—t+1,...,t—1,t} for all
i, can be corrected.

To be able to correct these errors, all syndromes
have to be different. Therefore,

mM > ; (JD (2)". (3)

We call an IC perfect when (3) is an equality. It is easy
to check that two equivalent codes have the same s and
t.

Example: Fors=1,t=1, M =2, and N =4, we
can make a perfect code over Z; with

01 1 1
H:(1012>'

Example: Fors=1,¢t =2, M =2, and N = 6, we
can make a perfect code over Z5 with
01 2 3 4 1

H = ( 111110 ) '

In a practical situation, we have to limit the set
of possible input (code) symbols. The channel output
space is defined by the modulo m operation. Suppose
that we restrict the code symbols for an IC to the alpha-
bet {0,1,...,m'—1}, where m’ < m. At the receiver we
still perform the modulo m operations on the received
symbols. From (1) it follows that there is a maximum of
mM possible different codes, one for every d. Now, not
all codes have the same cardinality, since there is no
guaranteed one-to-one mapping between the different
codes. Since there are (m/)" different input sequences,
there must exist a code with at least (m/)Y /m? code-

words. The usual definition for code efficiency or rate
R gives

N-M M m'’
2— _1 ’ — .
N R <m> | “

Note that when m' = m, the code rate R = (N—M) /M.
From (4) it follows that we have to choose m as close to
m/' as possible, in order to maximize the expected code
rate.

Remark: If the channel input and output are numbers
modulo m’, we have to choose m = m/. This situation
occurs for instance in coded 8-phase modulation, where
the input and output alphabet is {0,1,...,7}. A chan-
nel error causing the detection of a 7 instead of a trans-
mitted symbol 0 is an error e = —1 (mod 8). Taking
m =9 would result in an error e = -2 (mod 9).
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In the next section we give some coding construc-
tions for s = 1 and s = 2, followed by results from
a computer search. The last section deals with some
applications.

2. Code Constructions

In this section we give some code constructions. We
first recall some of the results from [2], where the main
focus was on the construction of perfect codes for s = 1.
Theorem 2: The vector of integers H = (1,2,...,N) is
the check matrix for a perfect IC with s =1 and t =1
over Z,, form = 2N 4+ 1.

Proof: The proof follows immediately from consider-
ing all possible values ==h,. |
Theorem 3: A perfect IC with s = 1, ¢t = 2 and
m = 4N + 1 exists iff

ged (2% — 14N +1) =1,
forany £=0,1,...,N —1.

Proof: See[2]. O

Theorem 4: The vector of integers H = (h; = 2i — 1,
i=1,...,N) is the check matrix for an IC with s = 1
and t = 2 over Z,, for m = 4N + 2.
Proof: The proof follows immediately from consider-
ing all possible values +h; and +(2h3). O
We now give a general construction for the specific
case where t = (p —1)/2, and p is a prime. It is known
that in the M -dimensional vector space .7-"15” there exist a
one-dimensional subspaces and (p™ —1)/(p—1) projec-
tive vectors the first nonzero coordinates of which are
equal to 1 which generate these one-dimensional sub-
spaces. We denote the set of these vectors by Hé\/[ . We'
then have:
Theorem 5: Let ¢t = (p—1)/2, where p is a prime and
N = (p™ —1)/(p—1), then HM forms the check matrix
for a perfect IC with parameters m = p, M, N.
Proof: See[2]. O
Note: In [2] it is indicated that for the conditions of
Theorem 4, a perfect IC exists for m = p™ as well.

Example: Lett=3,p=7 M =2 and N = 8. The
check matrix
» (1 1 111110
H7_<01234561>'

The corresponding vector H = (1,8, 15,22, 29, 36,43, 7)
forms the check matrix for a perfect IC for m = 49.

Ulrich Tamm [3], gave a necessary condition for
the existence of a perfect code for s = 1, ¢ = 3 and
t = 4. He also gives some examples for ¢ = 3 codes
using ZGN+1-

For s > 1, the situation is much more difficult than
for s = 1. Suppose that H = (hy, ha,...,hy), s = 2,
and t = 1. For the possible 2N? + 1 syndrome values
to be different, m™ > 2N?2 4 1.
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Example: Take M =1, N =3,s=2andt=1. For
H = (2,5,6) the following syndrome values +{2,5,6,
1,4,3,7,8,11} are different modulo 20. It can be shown
that no perfect code for m = 19 exists.

Example: Take M =1, N =3,s=2and ¢t = 3. The
smallest m for which H matrix exists with these param-
eters is 200 and H = (4,25,28). The lower bound for
m = 127 follows from (3).

Theorem 6: [4] For the check matrix H = (hq,ho,
..., hy) of a perfect IC code with M = 1 and s = 2,
the following must hold:

1) Yidj£iZA € {~t,...,t} (Ah; = (2t + 1)h;).
2) ViV & iVA € {—t,...,t} (h; £ Ah;).

Proof: If the condition 1) in Theorem 6 is not fulfilled,
then the syndromes +(t+ 1)h; do not occur. Condition
2) is obvious. O
Example: Using the conditions from Theorem 6, one
can verify that for M =1, N =4,s =2, and ¢t = 1,
m > 33. For these parameters, the first value of m for
which an IC exists is m = 39.
Theorem 7: The code defined by H = (1,2t + 1,...,
(2t +1)N~1) over Z,,, where m = (2t + 1)V, is N error
correcting with error size ¢.
Proof: Follows from comparing two error vectors of
correctable weight. O

The codes defined in Theorem 7 are perfect.
Example: The code specified by H = (1,7) is perfect
fors=2,t=3, N=2, M =1, and m = 49.
Example: The code specified by H = (1,3,9) cor-
rects a maximum of s = 3 errors for t = 1 and m =
27. The 26 nonzero different syndromes are +(1,3,9,
2,6,4,10,12,8,13,5,7,11).

We now describe a property for the components of
H that can be used in developing search programs for
good codes. We define A4 as the number of h; with d|h;
and d|m.
Theorem 8:

S
3 (‘4.0‘) @< 2. (5)
L d ‘
=0

Proof: The number of possible different syndromes
divisible by d is m/d. In (5) we count only those syn-
drome values that are connected with error events. U
Example: Let m =35, N =4, s =2,t=1. Then, for

e d=5 —»2A2+1<7, and thus A5 =0 or A5 = L.
e d=7 — 2A2+1 <5, and thus Ay =0 or Ay = 1.

3. Computer Search Results

In this section we show some computer search results.
We give the optimum codes, specified by H, i.e. smallest
m for a specific N and the indicated parameters.
Example: The optimum code for s =2,t =4, N =3,
M =1, and m = 403 is specified by
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Table 1 Search Results fors=2,t=1,and M = 1.
N H m 2N? 4+ 1
2 (1,3 9 9
3 (2,56 20 19
4 (1,3,9,14) 39 33
5 (1, 3,11, 20, 27) 60 51
6 (1,3, 8,18, 31, 45) 96 73
7 (1,3, 8,21, 31, 46, 58) 130 99
8 (1,9, 13, 16,40, 6, 51,74) 168 129

Table 2 Search Results fors=2,¢=2, and M = 1.

N H m 8N2—4N+1
2 (1,5) 25 25
3 (3,13,13) 78 61
4 (1,8, 38, 64) 171 113
5 (1, 6,55,101, 127) 287 181
Table 3 Search Results fors=2,¢t=1, and M = 2.
N H m  2NZF1
4 3 4
3 ( 4 5 5 ) 6 >4
6 1 2 6
4 ( 5 6 6 6 ) 7 > 5
5 7 8 1 5
> ( 77 7 8 8 ) ? > 7
H=(1,38, 196).

Example: The optimum code for s = 2,¢t =2, N = 3,
M =2, and m = 13 is specified by

5 2 1
H—<1 1 1)'

The lower bound for m is 8.
Example: The optimum code for s = 3, ¢t =1, M =2,
N =4, and m = 9 is specified by

i=(12a4)
The lower bound for m is 8.
4. Applications
4.1 Peak-Shift Correcting Codes

The first application can be found in [2], where
Levenshtein and Vinck define Peak-Shift correcting
codes for magnetic recording systems. In high-density
magnetic recording systems, runlength-limited (RLL)
sequences are used to increase density and control self
clocking[5]. The read-out mechanism detects changes
in magnetization and thus from the RLL sequence we
can derive a so called (d, k)-sequence, where d + 1 and
k+1 correspond to the minimum and maximum length
of the RLL substrings, respectively. A (d, k)-sequence
is represented by consecutive zero-symbol runs of length
i,d < i < k, between pairs of one symbols. Read-out
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circuitry imperfection and clock jittering may cause mis-

detection of magnetization transitions and is supposed

to result in peak-shifts left or right in the (d, k¥)-sequence.
A peak-shift error correcting code is defined as

N
C = {a : Zaiwi =0, where o; € Z,,/

=1

and w; € Zm}. (6)

A peak-shift increases «; and decreases ;. with a
value < t, or vice versa. A peak-shift at position 4
of size j gives as a syndrome value

g — :I:j(wl — wi+1) if
| Hjwn if

i=1,2,...,N—1,
i=N.
N

Now, let

N
Wi = E hj’
j=t

where h; is a component from the check matrix H for
an IC with s = 1, M = 1, maximum error size ¢. Note
that

i=1,2,...,N,

hi:wi—wﬂ_l for izl,...,N—l,

hN = WwpN.

We thus constructed a single peak-shift error correcting
code, since all syndromes in (7) are different.

4.2 Coded Modulation

In 8-phase modulation, we may number the transmitted
symbols from O to 7, see Fig. 1. In an IC of length N,
we transmit a series of IV signals, where each signal cor-
responds to an integer from the signal constellation. At
the receiver, we first map the received analogue signals
back to integers and do the decoding operation. Since
the transmitted and received symbols are from the set
of integers modulo 8, we also have to do the decoding
over the set of integers modulo 8. This reduces the set
of possible codeword lengths. For instance, for m = 8,
t=3,s=1,weneed M =2 and N < 11. No code for
M =1 exists with these parameters.

For the standard 8-phase modulation, one uses a
mapping from 4 symbols uncoded to 8 symbols coded,
or a rate 2/3 encoding. As an alternative, we give an
example of an R = 2/3 code correcting a single error
of maximum size 3 below. The code is specified by the
check matrix

01 1 3 2 3
H:(IO 11 32)'
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5 e 3
T4
Fig. 1  Constellation for 8-phase modulation.
Table 4 Syndrome Former Outputs.
error error value

position | 1 2 3 -1 -2 -3
10 20 30 70 60 50
01 02 03 07 06 05
11 22 33 77 66 55
57
32 64 16 56 24 72
23 46 61 65 42 27

N R W R —
—
(%)
b
[=)}
W
—
~J
W
(=N
N

For a codeword ¢ = (ci,ca,¢3,c4,c5,¢6), where
ci € {0,1,2,3,4,5,6,7}, the syndrome former outputs
S = cH" = (0,0) (mod 8). Furthermore, note that
H defines a systematic encoding procedure. A code-
word consists of 4 information symbols and two sym-
bols in the first positions that can be used to satisfy
the equations as given by H. The minimum squared
Euclidean distance[6] is 6 — 3v/2 which gives an equiv-
alent asymptotic coding gain of 2.44 dB over the additive
white Gaussian noise channel.

If we use an error vector e = (e1, ea, €3, €4, €5, €5),
where ¢; € {0, 1,2,3,—1, —2, —3}, the syndrome former
outputs § = (¢ + e)HY = eH” are different for all
single error patterns of maximum size 3, and are thus
correctable. For completeness, we include all possible
syndrome former outputs for the given H, in Table 4.

Another code with s = 1, t = 1, is defined by
H = (1,2,3). For this systematic code the rate R = 2/3,
and the minimum squared Euclidean distance is 4 — \/5,
which gives an equivalent asymptotic coding gain of
4.13dB. Another example is the code of length N = 3,
specified by

01 2
H:<1 o3>'

The R = 1/3 systematic code has parameters s = 1,
t=3;s=3,t=1. Hence, it corrects up to 3 errors of
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maximum size 1 and 1 error of maximum size 3. The
minimum squared Euclidean distance is 6. The equiva-
lent asymptotic coding gain is 4.7dB. A future research
topic is the development of good codes and estimation
of the performance in a communication environment.

4.3 Synchronization Error Correcting Codes

Another original application of integer codes is the cor-
rection of synchronization (sync) errors caused by in-
serting a new symbol into a codeword or deleting a
symbol from a codeword.

In the literature there are many works on correcting
sync errors[7]-[10]. Levenshtein[7] proposed binary
codes capable of correcting s or fewer deletions of ones
(zeros) in a word. In the same paper he also showed
that the Varshamov and Tenengloz code[1] which was
originally proposed for correcting asymmetric substitu-
tion errors of 1 — 0 (or 0 — 1) is capable of correct-
ing single insertion or deletion in a codeword, where
the boundary between two consecutive codewords is as-
sumed to be detected correctly even if those codewords
are affected by sync errors. Without this assumption,
Calabi and Hartnett[9] gave binary block codes that
are capable of correcting, in every ¢ = 3 consecutive
words, either one substitution error in each one of, at
the most, t —2 words, or one synchronization error (but
not both).

In the specific case we assume that frames are of
variable length and that beginning and end of frames
can be detected without error. This can be achieved by
appropriate use of markers. Of course, it is important to
consider the case that markers may be affected by sync
errors. We discussed such a problem in [10],[11] as an
extention of the work in [8].

We give a new example of a fixed-lengh binary code
that corrects a single inversion, or an insertion/deletion
error in codewords. The code obtained is defined as in
(6) with parameters N =n =0 (mod 3), m =n+1,
m' =2, and w; =4 (i = 1,...,n). Besides, we need
an additional condition on the number of ones in code-
words:

Theorem 9: The code C' with binary codewords of
fixed length n =0 (mod 3), for which

Zixi:O (mod n + 1) and Zmizo (mod 3)

i=1 i=1

corrects a single inversion error or a single insertion/
deletion error.

Proof: The length condition can be used to detect an
insertion or deletion error. If no length change occurs,
but condition 1 is violated, we detect an inversion er-
ror. The second condition can be used to distinguish
between a 0 — 1 or a 1 — 0 inversion. The first condi-
tion then gives the final solution for the position. For
an insertion or deletion error, we can use the second
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condition to solve the value of the insertion or deletion.
Again, we use the first condition to solve the position.
The method is very similar to the codes described by
Varshamov and Tenengolz[1]. O
Remark: In general, codes of the above type with car-
dinality
271
IC| 2 z——==
3(n+1)

can be shown to exist.

Example: Let n = 6. The following code, with the 4
codewords

000000 111111 001011 110100,
for which

6 6
Zimi =0 (mod 7); ZSC.L =0 (mod 3)
i=1 i=1

corrects a single inversion error or a single deletion/
insertion error. The lower bound for the number of
codewords is 3.
The above codes can be made systematic in the fol-
lowing way.
e To satisfy the first condition, we use the values of
z; at positions 1,2,4,8, ..., 2"

e To satisfy the second condition, we use the posi-
tions h, 4, §, k such that h+i=j5+k=n+1 and
h %1+ j % k. Note that
% T; T = 0000
— N =0and #1's=0
TRz ) = 0011

(mod 3)

— Y =n+1and #1's =2 (mod 3)
zpriT;Tr = 1111
— Y =2n+2and #1's =1 (mod 3).

In [12], Kabatjanskii, Vinck and van Wijngaarden

give examples and extensions of the above codes to be
used in systems where bit-stuffing errors occur. For
synchronization purposes one often uses the marker
011...1. Bit-stuffing is used to avoid the pattern
011...1 in the data stream. It is known that in these
systems already single inversion errors may cause un-
detectable error patterns for any CRC code with odd
minimum distance. The IC do not have this disadvan-
tage.
Comment: During the first INTAS meeting in
Armenia, September 1996, Martirossian [ 13], discussed
a class of codes for the amplitude and phase modu-
lated channel. This class of codes matched the classes
described in [2]. He further found an expression for
computing the cardinalities of codes defined by congru-~
encies. Similar results for ¢ = 3 and 4 were obtained
by Akihiro Munemasa[14]. He derived necessary and
sufficient conditions for the existence of perfect codes in
finite abelian groups.
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5. Conclusion

We discuss the application of codes over the ring of inte-
gers modulo m. We give bounds on the code size, code
properties, code constructions, computer results and ap-
plications. It can be concluded that the concept of IC is
interesting in the area where messages are represented by
integers as in coded modulation and magnetic record-
ing.
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