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DC-Free Binary Convolutional Coding

Tadashi Wadayam&lember, IEEEand A. J. Han VinckSenior Member, IEEE

Abstract—A novel DC-free binary convolutional coding scheme are commonly utilized in practical communication systems as a
is presented. The proposed scheme achieves the DC-free codingrucial part of an error control system. One of the advantages of
and error-correcting capability simultaneously. The scheme has a 1ha compination is that it enables us to exploit efficient soft-de-

simple cascaded structure of the running digital sum (RDS) con- . . . . . . .
trol encoder and the conventional convolutional encoder. A given cision decoding algorithms such as the Viterbi algorithm. In

sequence becomes DC-free if and only if the absolute RDS valuegeneral, soft-decision decoding gives additional coding gains
of the sequence is bounded by a constant for any time instant. The compared with hard-decision decoding. However, the combi-
RDS control encoder generates a sequence which gives the convonation is not so straightforward from the earlier works. The
lutional-coded sequence with a bounded RDS value. The structure trellis coding techniques [7]-[9] are based on the signal con-
allows us to exploit efficient soft-decision decoding which attains . . . .
additional coding gains compared with hard-decision decoding stellation expr_:lnslon. Thus, we cannot directly apply the ideas
over an additive white Gaussian noise (AWGN) channel. Bounds t0 the power-limited channel cases. On the other hand, most of
on the RDS value are explicitly established for the proposed the known DC-free block codes with the error correcting ca-
scheme. By using the bounds, we have performed computer pability are based on nonlinear codes such as balanced codes.
searches for finding good RDS control encoders. The proposed 156 codes may not have a simple trellis structure which sup-

scheme provides wide varieties of reasonable tradeoffs between . . .
the coding gain, the RDS constraint, and decoding complexity. For ports the efficient soft-decision decoding. In [2], a DC-free code

example, a 64-state DC-free coding scheme with the overall rate generated by a finite-state machine with coding té and
6/16 and the minimum free distance10 has been obtained. This minimum free distancé is presented. Although the code itself
scheme satisfies a bounded RDS constraint (fror+-18 to +18)  has excellent properties, a generalization of the code construc-
andG|t ylehlds a (Izonfldergbly high asymptotic coding gain (over an tion to other code parameters seems to be difficult.
AWGN channel) of 5.7 dB. There are several works on DC-free error-correcting codes
Index Terms—Additive encoding, convolutional code, DC-free pased on convolutional codes. Deng, Li, and Herro [10] pre-
coding. sented a DC-free error-correcting convolutional coding tech-
nique. In their method, the all*s vector in the generator matrix
l. INTRODUCTION of a convolutional code is exploited to control the running digital
HE DC-f ding is widel loved in digital sum (RDS) of encoded sequences. Nasiri-Kenari and Rushforth
. t ree C% |rt19 IS widely erpgé));e ’|,n Igita tzor:;gll] investigated DC-free subcodes of convolutional codes. Re-
munication and storage areas. -iree” means tha Sntly, Chiu [12] showed DC-free error-correcting codes based

coded sequence has no DC spectral component. A DC-freeO _rconvolutional codes. In Chiu’'s scheme, a codeword of a

D_C-suppressed goding Is essent?al in some baseband trans%ﬁ'\/olutional codes with a small RDS value is chosen with
sion and magnetic/optical recording systems. Eﬂe Viterbi algorithm. These methods seem promising and fur-

. Fc()jr a r(;Oﬁelgss _clzharl;nel, rrr:any DC;‘refe coggs fiav; beenb St investigation on binary DC-free coding schemes with a
vised and the details about them can be foun .|n[ ! num Shple trellis structure, or equivalently, with small decoding
of intensive researches on DC-free codes with an additio mplexity is hoped for

error-correcting capability [2]-[6] have been reported as we “In this paper, we present a novel DC-free convolutional

For bandwidth-limited channels, trellis coding techniques Wit@oding scheme with an error correcting capability. Fig. 1 rep-

the DC-iree property have been investigated in [7]-9]. By us"}%ients the architecture of our proposed scheme. First, the user

such a code, we can obtain not only the DC-freeness butalsog1 ‘ssage sequenteyuius - - is encoded to thetermediate
dlt;;)pal C(t)dlnlgtgalns qzj/er ?hnmsy C;?an?el. ¢ DC-f di sequencézoxizs - - -) by anRDS control encodefhe convo-
IS hatural to consider th€ combination o -Ire€ CodiNg ional encoder then converts an intermediate sequence to the

and binary convolutional coding for error control along the Iing ; ; ;
) . . oded sequen --+). After the ordinary binary-bipolar
of the above mentioned research. Binary convolutional codg quencgoyiy: - -) y y-oIp

. . L 3nversion, the coded sequence is transmitted over a noisy
are, in particular, matched to power-limited channels and thgxannel such as the additive white Gaussian noise (AWGN)

channel.
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Rate =B/ (B +7 - Conventional systey———- Forv = (vg, v1, ..., va—1) € {0, 1}, we define the vector
Rate =p/q RDS ofwv by
udut u2 ... RDS X0 x1 X2 ..... Convolutional] Y0y1y2..
Message Zﬁgggér Intermediate oncoder a -
sequence Inerme: Coded S 2N fvy).
sequence 4=0
Noisy . . . . .
channe The binary-bipolar conversion mappirfgs defined by
Received
RDS sequence 10 A -1, =0
control Viterbi +1, =1
Estimated decoder decoder
message i
e The upper and lower RDS af are defined by

Fig. 1. Architecture of DC-free convolutional coding scheme.

Fig. 1 presents the cascaded structure of the RDS control en-
coder/decoder and the convolutional encoder/Viterbi decodery et ¢ be an(n, k, d) binary linear block code, where,
With this architecture, we are able to exploit soft-decision d@- andd denote the length, the dimension, and the minimum
coding with the Viterbi algorithm. Moreover, the dashed boyistance, respectively. Consider the following decomposition
partin Fig. 1 is exactly identical to a conventional convolution§b0’ Cy) of C.
coding system. The RDS control encoder and decodercanbere- ) - ) )
garded as a front-end and a back-end of the conventional conyoP€finition 1 (Direct Sum Decompositionf-or a given binary
lutional coding system. Thus, we can use a ready-made CODEEar codeC, if two binary linear codeg’, andC satisfy
to implement the proposed scheme.

The proposed scheme is based on the following three major
ideas: 1)additive encodingising a binary linear block code, 2)and
upper and lower bounds on the RDS for an additive encoder, CoNCL=0
and 3) splitting a convolutional code into infinite sequences of
a linear block code, which is calledveindow codeln the fol- then we call the pair of codd€’;, C;) the direct sum decom-
lowing, we shall explain these ideas in order. positionof C. The codeC is called the direct sum code based

The organization of the paper is as follows. In Section Ibn C, andC;. O
we first develop a DC-free coding scheme with an additive en-
coder. We next prove basic properties of an additive encod . ;
including new upper and lower bounds on the RDS. Section [{I* be t_he_,\_generator r_”"?‘”'ces_ﬁﬁ andc, respectively. From
includes the principal results of this paper such as the detd definition above, it is obvious that the ?q”a”“y: ko + .
on the DC-free convolutional coding scheme and its perfo]?"lL hoI_ds. We assume two one-to-one mappings called encoding
mance. Good RDS control encoders which have been found@?pp'ngs
c_omputer se.arch and their performance are also shown. In Sec- bo: Fng —
tion IV, we give a summary.

02{60@61:00 € Cp, €1 601}

IJ_et ko andk; be the dimensions af, andC;, andG, and

Z/)li FQkI - Cl

Il. DC-FREE CODING SCHEME BASED ON AN wherel?; is the Galois field with two elementd, 1}. We de-
ADDITIVE ENCODER note the addition oveF; by ®.

In this section, first, we will introduce necessary notations
and definitions Then, a DC-free coding scheme based on Bn Additive Encoder
additive encoder is presented. The scheme can be consider e here give the definition of an additive encoder and a se-
as a modified version of the scheme presented by Deng 3B8ion rule used in an additive encoder.
Herro [5] and has a close relationship to the idea of additiveAssume an infinite-length binary message sequence
coding [13]. The class of additive encoders presented here QL% a., ...}. Each vectom;(i = 0, 1, 2, ...) belongs tapk
also be regarded as a subclass of guided scrambling [14], O3S, qditive encoder encodes a ’méss’age bigcio ¢; 620
a multimode code [15]. for each block index. The codeC is a binary linear code
. I of lengthn. The resulting sequencge, ¢;, ...} is called a
A. Notation and Definition coded sequence. The additive en{fgder apgends redundancy

Let {so, s1, ..., s, ...} be an semi-infinite length bipolar 1., = . — &, bits per block and thus the coding rate becomes
{+1, —1}-valued sequence. The RDS of the sequence is dg-/n. After the binary-bipolar conversion, the bipolar sequence
fined by 2, 2 Zj’:o s;. If the RDS of the sequence is bounded f(¢y), f(e1), ...} is transmitted over the noisy channel.
by a constant > 0 for any time instant such thatz;| < ¢, 1) Definition: For achieving DC-free transmission, the ad-
then the sequence has a spectral null at DC [1]. ditive encoder has to generate the coded sequence with an RDS
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constraint. The following definition of an additive encoder is RDS z,

quite simple.
Definition 2 (Additive Encoder):An additive encoder en- Select x~ N
codes a message bloakinto ¢; in the following way: 0 Select x t
& = to(bi) & 1 (1) ™~
whereb; € FQ’“0 is selected by the additive encoder according to c0 cl c2

the value of the RDS !, S(¢;) and aselectionrule O
Fig. 2. Typical RDS as a function of time in the control vector selection

We call the vectob; thecontrol vector In other words, the ad- procedure.
ditive encoder has freedom to select a control vector and should
specify a control vector so as to obtain a code sequence whittould be chosen as. For a givene, £1 should be uniquely

keeps the RDS value bounded. defined. In a similar wayg— is chosen in such a way
Note that the codeword; belongs toC' for any block index B
i because is the direct sum code @, andC; . It guarantees z” e{veV(z): 5 <0}

dn(ei, ¢) = dforanye; # ¢;, wheredy,(-, ) is the Hamming 5nq2— has to satisfy the following additional inequality:
distance between two vectors. That is, the coded sequences pro-
duced by an additive encoder have error correcting capability S@™)-Ul@™) = S®)-U®) 2
inherited from the direct sum code for anyv’ € V{(z). If there are several vectors satisfying the
The work by Deng and Herro [5] is the first dealing with this yv & ViZ). . : 9
. . above conditions, the vectar which gives the largesL(v)
class of encoders. In [5], they impose relatively strong restric: . _ .
. i . should be chosen as . For a givene, £~ should be uniquely
tions on the decomposition 6f and use another selection rule

Here, we have removed such restrictions because we neeg%{)med' Assume that_t_he message bleghs given ande =
treat any decomposition af. This is the main difference be- 11(a;) holds. The additive encoder selects the control vdgtor

tween their approach and ours. satisfying
The RDS constraint achieved by an additive encoder depends

1—1
+ i .
on the decomposition @f'. For a givere; € Cy, we define the z5, if ,;0 S(ej) <0,

setV (e, ) by Yo(bi) ® Y1(a;) = ;71 3)
V(Cl) = {Co Pericy € Oo} x, if E S(C]’) > 0.

The setV(e;) is called theshellof ¢;. Namely, the shell o&, i=0

is a coset ofCy containinge; . If for any 2 € C; there exist U

v1, w2 € V(@) satisfyingS(v1) > 0 andS(vo) < 0, thenthe  ap aqditive encoder keeps the RDS value for every time in-

dec_ompositior(Co, 01)_ _is cglled agood decompos_,iyiorOth- stant in its memory and uses this value to select a new control
erwise, the decomposition is calledad decompositian vector. Fig. 2 explains the selection procedure. After processing

2) Selection Rule:The RDS constraint property of an addi, | \ve have a positive RDS value. At this moment, the additive

tive encoder also heavily depends on the selection rule. A gog&-qder selecs corresponding te:—. From the definition of
selection rule is required to reduce the absolute value of the RRS i has a nonpositive vector RDS value. As a result, the RDS
as much as possible. Smaller absolute values of the RDS Hfe is decreasing in a time interval corresponding, tdOb-

preferable with respect to near-DC spectral component SUPPIGS;,sly, the DC-free condition (i.e., the RDS is bounded at any

sion. _ - time instant) holds ifCy, C}) is a good decomposition.
We introduce a selection rule for an additive encoder. The

rule is used for specifying the control vectors. The following. Upper and Lower Bounds on RDS
selection rule includes the values Gf-) and L(-). We show i
. In order to construct a good additive encoder, we need tools
later the RDS bound for the selection rule depends on theTse f luati f ddit d h
values or performance evaluation of an additive encoder. We here to
' prove upper and lower bounds on the RDS of the coded se-
Definition 3 (Selection Rule)for everyz € C1, the vector quences generated by an additive encoder with the selection rule
T is chosen such that defined above. The bound will also play a key role in the design
zt € {v e V(z): S(v) > 0} of the DC-free convolutional coding to be discussed later.
- We first discuss a bound for the RDS in the case where

andz™ has to satisfy the following additional inequality: is a multiple of block length, namely;t = ni(i > 0)

S@@™) - L(a*) < S() - L(v) @)
foranyv € V(z). If there are several vectors that satisfy the
above conditions, the vecterwhich gives the smallest/(v)  min {S(z7):x € C1} < 2, < max{S(x"):z € C1}. (4)

Lemma 1:For: > 0

we use the_notatiom+ to s_how'the depen_dencycmTo clarify the d_epen— Proof: The initial conditionz, = 0 holds fori = 0. We
dency, a function form notation like, () might be better but we think the h h lai f the | holds f he block
function form is somewhat cumbersome. Thus, this unconventional notatio]\€r€ @ssume that the claim of the lemma holds for the bloc

used throughout the paper. indexi — 1. If min{S(z™): 2 € C1} < 2,4-1) <0, thenzt is
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chosen as the next codeword according to Rule-A or to Rule-B. TABLE |

In this case, we have the following inequalities: VECTORRDS, WPPER LOWER VALUES
T y S(y) Uly) L(y) Rule-A Rule-B

Zni = Zn(i—1) T S(@T) <zn(i1) + max {S(&T):x € O1} 50000004 ——
<max{S(z"):z € C1} 1100 0 2 0 x ot
d 0011 0 0 -2 zt x”
an 1111 4 4 0
Zni = Zn(i-1) T S(zt) > Zp(i—1) 2 min {S(:Ef): x € C’l} . 1000 1000 -2 1 -2 T
. 0100 -2 0 -2 x
On the other hand, i < z,;—1) < max{S(z*): z € C1} 1011 2 9 0 §+
holds, thene™ is chosen as the next codeword. In this case, we 0111 2 2 -1 xt
have 0010 0010 -2 0 -2 T
_ + 1110 2 3 0
Zni = Zp(i—1) T S(:IJ ) < Zn(i—1) < max{S(a: ): x e Cl} 0001 _2 0 _3 7
and 1101 2 2 0 xt zt
_ . B 1010 1010 0 1 0 T
Zni = Zn(i—1) + S(.’l‘ ) > Zp(i—1) + min {S(.’l‘ ): rc Cl} 0110 0 1 1 o+
>min{S(z" )z cC}. 1001 0 -1 x”
- { =) 1} 0101 0 0 -1 z~
By induction, we can complete the proof of the claim of the
lemma. = TABLE I
The lemma naturally leads to the following theorem on the VALUES RELATED TO THE RDS BoUND
RDS. Rule-A  Rule-B
max{S(z*):x € C,} 2 2
Theorem 1 (RDS Bound for an Additive EncodefFor any max{U(z~):x € C,} 2 0
time instantt > 0, the following inequalities hold: min{S(z~) : @ € C1} -2 -2
min{L(z") :x € C1} -2 0
z < max{max{S(z"): x € C1} + max{U(z™): x € C}, max{U(z*) :x € C1}} 2 2

min{L(z7) :x € C1}} -3 —2

max{U(z"): z € C1}} 2 U(Co, C1)

: : -\. : +3.
= mm{mlfl{s(m _) ze i} +Zlm{L($ yee Gl The bound can be evaluated for any combinatio6'a@ind its
min{L(z"): ¢ € C1}} = L(Cp, C1). decomposition. The time complexity for computing the bound
Proof: From the previous lemma, we can assume that is O(|C|).
min {S(m_): xe C’l} < zni < max {S(m"'): xe C’l} Example 1: Let
fori > 0. We now consider the values;; for 0 < j < n—1. :<1 10 0) G :<1 00 0) 5)
If min{S(z~): & € C1} < z,; <0, thenz™ is chosen as the 0 0 011 ! 0 01 0)°
next codeword. Fob < j < n — 1, we have The decomposition is a good decomposition &r = I,
J Several parameters including the vector RDS are listed in
Zniti =i+ O f(@f) < zi+max {U@*):2 € C1}  Table I. Consider a simplified selection rule, which is called
=0 Rule-A. Rule-A is almost the same as the selection rule defined
< max{U(z*): 2z € C1} in Section 1I-B2 (called Rule-B here). The only difference
and is that Rule-A does not include inequalities (1) and (2). It is
J easy to show the bounds on RDS presented in this section are
Znidj =%ni+ P @) 2 zni +min {L(z*): 2 € C1}  also valid for Rule-A. The vectors™ andz~ according to
=0 Rule-A and Rule-B for each codeword 6f are also shown
>min{S(z"):xz € C1} +min{L(z*):z € C1}.  in Table I. From Table I, we can obtain all the values which

are needed to compute the bounds in Theorem 1. These values
are presented in Table Il. From Table Il and Theorem 1, we
have—4 < 2; < 4 for Rule-A. On the other hand, a tighter
RDS constraint—2 < z, < 2, can be obtained with Rule-B.
pre This result shows the superiority of Rule-B over Rule-A. The

P . problem of Rule-A is that it does not care about the values
max {S(z"): 2 € O} +max {U(z7):z € C1}f U(-) and L(-). The bound in Theorem 1 depends not only on
and , the vector RDSS() but also considerably on the valugs-)

J . . .
_ . _ and L(-). We have designed Rule-B taking these values into

Znidi =Zni+ Y F(@) 2 zpi +min {L(z7):x € C1 } accou(nz. ’ ’

. IL:O . o We do not claim that Rule-B is the optimum selection rule in
min {L(z ):z € Oy }. terms of the RDS constraint. However, some experiments indi-
Combining these inequalities on;;, we obtain the claim of cate that Rule-B gives relatively tighter upper and lower bounds
the theorem. O in Theorem 1 than other rules. At least, in most cases, Rule-B is

If 0 < z,; < max{S(z%): « € C,}, thenz™ is chosen as

the next code;vord. Far< j <n -1, we have
J

Znitj = Zni + Z fl27) < zps + max{U(:l‘f): xc Cl}

IA

v
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much superior to Rule-A. Therefore, we only use Rule-B as the TABLE Il
selection rule in this paper. n BLock DC-FREE CODESENITH lE;{R(ljg)CORRECTING CAPABILITY
n = 19,
Example 2: The following generator matrices give a direct n % d ¢ Reforonce
sum decomposition of thg8, 4, 4) extended Bose—Chaudhuri— 16 8 4 5 Ferreira3)
Hocquenghem (BCH) code: 16 9 4 5 Blaum[4]
15 8 4 7 Deng and Herro[5]
Go=(1 1111 1 1 1) 16 8 4 6 Example3
n: code length, &:information bits contained in a
01 01 01 01 codeword,
Gi=|l0 0110011 d: minimum Hamming distance, ¢: upper bound on |z.
0 0 0 0 1 1 11

A. Splitting a Convolutional Code Into Window Codes
From Theorem 1, we have the bourd0 < z; < 10.

Next, we shall examine another decomposition of the ex- Here, the notation concerned with a convolutional code is

tended BCH code. Let b_riefly introduced. Then, the definition of the window code is
given.
Go=(0 0 0 0 1 1 1 1) 1) Notation on Convolutional Coded.et a binary input se-
quencexgx iz - - - Of infinite length be encoded by a convolu-
1 0 01 01 10 ; ; :
tional encoder, wherg; is a binaryp-tuple.
Gi= 8 (1) (1) 1 8 (1) (1) 1 A convolutional encoder is defined as follows. Lg{i =

0,1,2,...,m) beap x ¢ matrix overF>. The parametem
From Theorem 1, we have the bound < z, < 4. This de- is called theencoder memoryWe refer to the matrices as the

composition is superior to the former decomposition in terms §Nerator submatriceg he convolutional encoder encodes the
the RDS constraint. 7 input sequence according to the following rule:

The above example explains that the choice of a direct suh ~ %190 PTi-191 & -+ B Ti—mgm, i=0,1,2,... (6)
decomposition of”' is crucial for achieving a tight RDS con-and outputy; (¢ = 0, 1, 2...) as the code sequence, whgre
straint. is a binaryg-tuple. We assume; = 0 for ¢ < 0 for formality.
Hereinafter, we call the set of all the allowable code sequences

Example 3: Let defined by (6) theconvolutional code”.

0101010101010101 We can also write the encoding rule of the convolutional en-

Go = | 0011001100110011 coder as(yoy ¥, - -) = (Zoz1&2 - --)@, where thegenerator
0000000011111111 matrix G is the infinite size matrix represented by
0001000100010001 go gror Gm
0000100100000110 G = go 9 Im R
0000010100000101 go gm

G — 0000001100000011 :

' 1000000100010111 |- 2) Definition of the Window CodeWe define thewindow

0000000001010101 matrix of G as follows.
0000000000110011 o , _
0000000000001111 Definition 4 (WIndOW COdE):FOT a givena ¢ {0, 1, .. .},

the window matrix ofG is thef x r submatrix ofG which has
These generator matrices correspond to a direct sum decompipgi-form

tion of the(16, 11, 4) extended BCH code. From Theorem 1, we Gm
have the bound-6 < z < 6. This coding scheme has at least Gm—-1  Gm

the error correcting capability of th@6, 11, 4) extended BCH Om—2 Gm—1 Gm
code. ltis interesting to compare this coding scheme with other ) . .
known DC-free coding schemes (see Table IlI). From Table Ill,

we conclude that the presented coding scheme is almost come,,, _ go g1 g2 " Im g
parable to the Deng—Herro scheme and slightly inferior to the”” ~ go g1 92 "0 Im (8)
Ferreira and the Blaum scheme. O go 91 92 "0 Im
[ll. DC-FREE CONVOLUTIONAL CODING go 91 92
In this section, we present a DC-free convolutional coding g0 z;

scheme. The main idea is to apply the additive encoder idea
to window codes obtained from a convolutional code. We cavheres 2 (2m + 1+ «)p andr 2 (m + 1+ «)gq. The binary
obtain a window code by splitting a convolutional code into alimear block code generated 63 is called thevindow codeof
infinite series of block codes. C, which is denoted by'>. O
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Example 4: We here consider a binary four-state convolu- = (v|(u|w)M)G*
tional code of ratd /2 defined by the generator submatrices =(v]v))G* € C°.
go=(1) =010  g:=(1D) It is easy to see that the two codess, C%) give a direct sum
In this case, the generator mattikhas the form decomposition of the window cod&*.
1110 1 1 Of course, there are numerous possibilities to decompose a
1110 1 1 given window code. However, we shall focus on the direct sum
G= 1 110 1 11" decomposition defined above. The decomposition is essential

for the convolutional coding scheme discussed later. We also
introduce the following encoding maps corresponding’tp

For o = 0, we have thé x 6 window matrix such that andCy:
RRRRE
0 do(x) = (0P™[&Mo)G,
G=1 110 11 9) o ’
001110 ¢ PP ) FY — FY,
0000 11 P1(v, w) = (Vjwh;)G*.
Whena = 1, we have th& x 8 window matrix _ _ .
1100000 0 B. Details on DC-Free Convolutional Coding
101 1 0000 Assume that a convolutional codétogether with the param-
Gl 1 11 01100 0 etersw, 3, v, and a decomposition matri¥ are given. We call
“loo 111011 (10)  the codeC the base convolutional coddhe following is the
0 0001110 detail of the DC-free convolutional coding such as encoding,
0 000 O0O0T11 decoding, and its RDS bound.

0 1) Encoding: We first divide the message sequence
(uguiug - - -) into blocks of length3. Theith (¢ =0, 1, 2, ...)
From the encoding rule in (6) and the definition of the windownessage block is denoted by
matrix, we can obtain another expression of the encoding rule
based on the window matrix such that Ui = (“i,ﬁv Uig+1, Uig+2S) + ) “(i+1),8—1) :

G* (11) The message sequences are encoded to the intermediate
sequences by the RDS control encoder (cf. Fig. 1). We divide
for¢ > 0. the intermediate sequen¢eqxixs---) into the intermediate

3) Direct Sum Decomposition of the Window Code:order  plocks of lengthY. Theith intermediate block is defined by
to exploit the results on the additive encoder, a direct sum de-

composition ofC* is needed. We here discuss a direct sum de- x;, = (x(w,a)i, L(y48)i+1r -+ -x(w+,8)i+é—l) ) (15)
composition ofC*. =(0;|n;) (16)
Let M be a(y+/3) x (v+3)-binary nonsingular matrix, where . ]

~ and are positive integers satisfying= pm + v + 3. The Whereo; is the firstpm-tuple ofz; such that

matrix M is called adecomposition matriXxVe now consider
the two submatrices of a decomposition matkik which are
denoted by, andM; . The matrixi, is they x (y+3)-matrix and=n, is the lasty 4 J-tuple ofz; such that

which consists of the firsy-rows of A7. The matrixM; is the

3 x (v + S3)-matrix which consists of the lagt-rows of A7. ™ = (C et @yitpmr Lt pitpmts - Trapive-) - (18)

(?Jt?JH-l o '?Jt-q-m+a) = (Tt—mPr—mt1 " Trtmta)

0i = (T(v4p)is T(v4BYi41r -+ Tt @)idpm—1) 7

Thus, we have the decompositionaf such that We obtain a coded sequen@gy:, .. .) by encoding the inter-
M, mediate sequence with the convolutional encoder. The coded
M = <M1 ) (12) sequence is divided into the coded blocks of lengtfithe ith
_ ) . (=0, 1, 2,...) coded block has the form
For a given window cod€< and a decomposition matrid/,
two subcodes o™ are defined by Y, = (yri—l—qrnv Yritldgm; - - yr(i-l—l)—l-l—qrn) .
o2 {(0P™uMo) G u € Fy'} (13) Note thaty, = (Ygm. .- -» Yr—14qm)- From (11), we have the

relation betweem; andy, suchthay, = 2,G* (: =0, 1, .. .).
Figs. 3 and 4 might be helpful to understand the encoding pro-

The operatot is the concatenation operator of two vectors argédure. Fig. 3 shows the relation between the message, inter-
0™ means the zero vector of length For anya € Cg and Mediate and coded sequences and Fig. 4 illustrates the relation

op 2 {wdn) Grve Ff" we B} (4)

b € C¥, we have of the generator matrix of a convolutional code and a window
matrix.
a®b=(0""|uMo)G* & (v|jwM,)G* Notice that the intermediate blocks andz;.,, are overlap-

= (vjuMy & wM, )G ping. The overlapping part correspondsoto By applying the
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w

User message sequence

-----

G——Y———ﬂ
Control vector sequence b* b |-
(redundancy) i-1 | i
w RDS control
encoder
Intermediate sequence ni
" Xi-1 Xi—p Xi+1
----- (o] ni-g BT ni | ot Nis1 Loz ..

—pm I+ I =pm+y+p

Convolutional encoder
Coded sequence
1 r-

| ¥
yi-1 | yi Yisd

Fig. 3. Relation between message, intermediate and coded sequences.

XXX XXXXXXXXX a
XXXXXXXXXXXX
XXXXXXXXXXXX G
).0.0.0.0.0.0.0.0.0.4
XXXXOOCOORXK .
XXXXXXXHXXK :
XXOOGORXXXXX pm
XXOOPOXKXXXKX S

Y BOOCOMNNRY

XXXXXXXXXXXX
XXXXXXXXXXX
B XXXXXXXXX XXX
XXXXXXX XX XXX
XXXXX
XXX

[ = Control vector

XXXXXXX
XXXXXXXXX
XXXXXXXXXXX

r XXXXXXXXXX XX
XXXXXXXXXXXX

The symbols “xxxx” mean binary sequences contained in the generator
matrix of a convolutional code. For simplicity, a simple decomposition
(described later) is assumed.

Fig. 4. Generator matrix and window matrix of a convolutional code.

additive encoder to a window code, we have to take the over-The following completely describes how the RDS control en-

lapping into account. Within the intermediate blagk only the coder works.

vectprni can be assigned fregly withqut any imfluence of the [RDS Control Encoder]:

previous block. The overlapping past is determined by the o ) o

previous intermediate block;_;. This is the reason why we St€P 1) (nitialize) SeLEDS:: RDSy, ¢ := 0, and initial

assume a specific decompositigfg, C%) in (13) and (14). value ofog € FQ_ (the_detalls about the initial values
As shownin Fig. 3, the RDS control encoder adds redundancy RDS.; andoyo will be discussed later).

(a control vector) to the message sequence and thus the codiiigp 2) Control vector generation Generate the shell of

rate defined between the message and intermediate sequence be- ~ ¢1(0;, u;)

comess/(y + ). The convolutional encoder of rageq ap- Vi = {oo(b;) @ (01, w): by € F'}
pends redundancy to the intermediate sequence. Consequently,
the overall rate becomes and choose the best codewatd € V; according to
rule-B. Let the vectob; be the control vector satis-
R2 (08)/(a(v + B)). fying ef = ¢o(b;) @ ¢1(0:, ui).

Step 3) RDS updatg SetRDS := RDS + S(¢).

The rate loss due to the RDS control encoder can be considef&ep 4) Qutput intermediate sequenceSetn; := (b; |u;) M
as the price for obtaining an RDS constraint. and outputr; as a part of an intermediate sequence.
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(tail) (tail)

Step 5) (Update memory Seto; 41 :=n; , wheren; Proof: Since we have

is the Iast?m-tuple ofn;. ¥, = G = (0s]n) G, i=0.12 .. (20)
Step 6) Counter increment Set: := ¢ + 1 and return to

Step 2). itis sufficient to show that? = (o;|n;)G* for proving the claim

of the lemma. From Step 4) of the encoding procedure and the

The codeCy has27-codewords. Thus, the RDS control enggpjion, of M, we obtain the following relation:

coder first generate8”-candidates ot} and then selects the
best one among the candidates according to Rule-B. This oper-. _ ;«, ey (Mo _ g ‘
ation in Step 2) can be regarded as an additive encoder based o' (b5 s ) M = (7 i) <M1) = b Mo S My (21)
the decompositiofC§, Cf'). Whenv is small enough such asg
~ < 4, the computational task of the additive encoder seems
be very small and we could implement a high-speed RDS con-
trol encoder which is able to catch up with the encoding speed  (o;|n;) G* =
of the convolutional encoder. _
The firstgm-tuple of coded sequence

using the relation and the definitions ¢, ¢, we immedi-
ly have

(07|b:(M0 & 'U,7‘,M1) G*

(Opm|b:M0) G ® (OZ|’U,ZM1) Ge

Po(b;) ® $1(0i, u;)

* 3

A
Yimi = (

c . (22)
exactly coincides with the firsgm-tuple of oo G. Thusy, ; de- -
pends only om,. The initial value of the RDS, RD§ appeared By applying the bound in Theorem 1 to the decomposition
in Step 1), is given by (Cg, C7), we can derive the upper and lower bounds on the
RDS of the coded sequence.

Yo, Y1, -+ qu—l)

o

gm—1

RDSy; = Z f(s)- Theorem 2 (RDS Bound)if
=0

L(CF, CF) £ RDSw; SU(C, CF)

In order to obtain a tighter bound, we have to choogehat
gives the smallest value ¢RDS,;). then the RDS of coded sequenge= ZE:O f(y,) is bounded

2) Decoding: We discuss the decoding issue for the prdy £(C§, CT) < 2 SU(C§, CT) for any time instant > 0.
posed scheme. The received sequence is first decoded by the Proof: FromLemma2, we havg =¢; (i =0, 1, 2...).
Viterbi decoder for the base convolutional cadlelet the set of Each vectoe is specified according to Rule-B. Therefore, we
all the allowable sequences generated by the proposed schégfeuse essentially the same argument of Theorem 1 in the proof.
be Crps. The minimum free Hamming distance defined oNVe thus need the condition
Crps is denoted by, ... From the cascaded structure of the o e ) o e
proposed scheme, e\iident@RDs is contained irC and the in- LG5, €1) = RDSwi < U(C, €7)
equalityd; . > dge. holds. The symbody,... denotes the min- to guarantee the claim of the theorem. O

free —
imum free Hamming distance df. £ le 5 Wi N le of di
As a consequence of this property, we can use the Viteg)i r;(azlspsemé tf?a{)recsaer?a aentﬁ)éaga eolo t.z?];ng: d(len?roprLOCEe-
decoder for the base convolutional code to dedddss. It can ure. ume that w v volutl . X
be considered as a kind of a super code decoding. ample 4, which is the four-state rafie’2 convolutional code

The decoding of the intermediate sequence isAstraightforwé'}!Hh dizee = 5. FOra = 0, we have

from the definition of the RDS control encoder. let #;, and 110000
4; be the estimated blocks correspondingion;, andu,, re- 101100
spectively. The details on the RDS control decoder are as fol- G=|111011
lows. 001 110

0 0 0 0 1 1

[RDS Control Decoderl]:

Step 1) [nitialize) i := 0 We also assume that= 1, 3 = 2, and

Step 2) (nverse matrix Left-multiplying the inverse matrix 1 00
. My
of M byn;, we have M:<—>= 0 1 0
My
L g 001
A Mt = (b |'u,) (19) , o o
oy = (01) is chosen as an initial sequence, which gives
Outputi; as theith estimated message block. RDS.i = 0.
Step 3) Counterincrement Seti :=i+1andreturnto Step A USer message sequence
2). O

('U:O, U, U2, U3, .. ) = (107 ].O7 O].7 OO7 . )
3) RDS Bounds:The next lemma is the basis to prove uppe

r .
and lower bounds on RDS. s assumed to be encoded. When the block index0, the RDS

control encoder select§ = 1 as a control vector. We thus have
Lemma 2: The equalityy, = ¢f holds fori =0, 1, 2, .... no = (bj|luo)M = (110), andzy = (0o|no) = (01110). In
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the same way, we have the following sequendés: 0,55 =1, TABLE IV
b; -0 and RDS GONTROL ENCODERS FORRATE-1/2 FOUR-STATE CONVOLUTIONAL
ren CoDE
= (10010) z» = (10101 = (01000), .... (23 PAZ 12 dpree =5m=2Go =5 G, =7
z = ( ) @2 =( ) 23 =( ), (23) 7o
Note that the intermediate sequences (23) become f?g :'Z i‘; 8 ; {3}3
(10010101000---). The coded sequence obtained from 2/ — +'4 5 EQ‘J
the intermediate sequence is given by 18 -3 +2 1 3 {21374}
3/10 -7 +7 2 2 {2,4}
(Yini> Yor Y1 Yo: -2 2/10 -4 +3 2 3 {3.45)
= (0011, 011001, 111110, 001000, ...). (24) 4/12. -9 411 3 2 {2,5}
3/12 -5 +5 3 3 {2,4,6}
In this case, the overall coding rate becorg® x 2/(1+2) = 2/12 -3 +3 3 4 {3456}
2/6 and the upper and lower bounds on the RDS are given by
L(Cg, CF) = —8andU(Cg, CT) = +6. [ TABLE V
RDS QONTROL ENCODERS FORRATE-1/2 16-STATE CONVOLUTIONAL CODE
C. Computer Search for Finding Good Decompositions Pla=1/2,dfrec =T, m =4,Go =46,G) = 72
For a given window cod€™, we need a good decomposition 5/10 L Yo 7 fff}s
of C* for achieving a tight RDS constraint. We present here a 210 -5 +5 0 3 {4.7.8)
computer search method and good decompositions obtained by /10 -4 44 0 4 {4578}
the exhaustive computer searches. ;‘% o ﬁ‘g}s}
1) Computer Searchiet! be the(3+~) x (5+~)-identity 2/12 -5 45 1 4 {4567
matrixandé; (j =0, 1, ..., S+v—1) be thejth-row vector of 5/14 -14 412 2 2 {4,6}
I. From the definition of>§' andC® ((13) and (14)), we can see iﬁi R ?41; 2?8}

that a direct sum decomposition can be completely described by
a decomposition matri®/ . In other words, we have to look for

a decomposition matrid4 which gives a small absolute value TABLE VI
of the RDS for a given window code. We restrict our attention t&{0S ©NTROL ENCODERS FORRATE-1/2 64-STATE CONVOLUTIONAL CODE
the case wher#/ is obtained from a row permutation 6f The Pl Z1/2djree = 10.m = 6, Co = 554,y — 744

o . . R L U BCPS
restriction helps to reduce the number of possible candidates for 5/14 13 +13 ) 16,10}
M and it makes the computer searches rather easy. We call the 4/14 -8 48 0 3 {679}
decomposition thesimple decompositioriThe restriction also 2;}2 :Is ﬂg ? 3 Eg’zbﬁ’g}
leads to the simplest RDS control encoder/decoder because, if 5/16 -9 +9 1 3 {7.9,12)
M has the above property, the computatioredf,, 2A4;, or 4;16 -7 +7 1 4 %6,7,8,5})}

. . . 6/18 -11 +11 2 3 6,9,10
xM becomes much simpler. Furthermore, with the simple de- 518 -8 48 2 4 {6.7.8,9)

composition,A/ ~! also becomes the row permuted version of
the identity matrix. Thus, no error propagation occurs in the de-
coding process of the intermediate sequence in (19) when anléss easy to see that the above definitions\é§ and A4, corre-
timated intermediate sequence contains bit errors. In this cageond tal which is obtained from the identity matrix by a row
we can expect that its bit-error probability is at least as good permutation.
the bit-error probability obtained by the combination of the base The objective of the computer searches is to find a controller
convolutional code and the corresponding Viterbi decoder. position set which gives the smallest value of an upper bound

In order to describe a permuted matrix, we shall introduam the digital sum variation defined by
some notation. Assume that a set of sjze N

oA o o . ASUCE, CF) — L(CE, C). (28)
@ :{907 917 s 9"/71} C {07 17 27 R /34_7_ 1} (25)
The computer search algorithm is the following. For a given

is given. The set is called theontroller pOSition setThen the base convolutional codg, and parametes, /37 v, we first de-

message position sef size/3 is defined by rive the window matrixG®. We then generate all the possible
N L controller position sets of sizesequentially. For each controller
O ={6p, 01, ... 051} position setA is computed by making use of Theorem 2. Fi-
={0,1,2,..., 3+~— 150" (26) nally, the controller position set which gives the minimuis
) ) chosen as the best controller position set.
By using the sets defined above, we Mg and M, be The computer search results are summarized in Tables [V=VI.

340 i The best binary convolutional codes listed in the book by Lin

i 9‘; i 02 and Costello [16] have been used as the base convolutional

My = A M, = s (27) codes. In these tables, “BCPS” means the “best controller posi-
: : tion set” and the symbal?; denotes the generator polynomial

240 g1 of the base convolutional code in octal notation from [16].

v—1 A—1
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<+ Known DC-free coding scheme

) u Proposed scheme based on
a 64-state convolutional code
@ 14F
*uo: |
3127 Deng and Herro88
o (based on BCH code of length 63)
[}
ST i+ + +
3 W
® sl n
c
= [ | B
o
c 6
g + +
8 Ferreiraga Blaum88(btock)
© 4 [ (block)
aQ
=)

2+ : +

Ferreira83
erreir Calderbank et al 89(multilevel code, asymptotic case)
0 . L L L . L
3.0 35 4.0 4.5 5.0 55 6.0 6.5

Asymptotic coding gain (dB)

Fig. 5. Tradeoffs between asymptotic coding gain and RDS bound.

Of course, there might exist better convolutional encoders for TABLE VI

our purpose. However, the exhaustive search considering com2MULATION RESULTS FORDC-FREE CONVOLUTIONAL ENCODING: BASE
CONVOLUTIONAL CODE IS RATE-1/2 64-STATE CONVOLUTIONAL

b_ination (_)f the convolutional encoder and its simple decomposi- CODE WITH dgyo, = 10
tion requires an enormous number of computations and is con- R L U I U & AcGaD)
sidered to be infeasible. We therefore fixed a base convolutional 5/14 —13 +13 —11 +13 7.83 553
code in our computer search. ﬁﬁj —g Ig —‘; ig g?g ‘3‘2‘15

2) Comparison: In Fig. 5, the tradeoffs between the asymp- 6/16 —1s 415 —12 113 533 571
totic coding gain (ACG) and the upper bound on the absolute 5/16 —9 49 T 49 451 495
value of the RDS for the proposed scheme based on the 64-state 4/16 -7 47 -5 47 292 398

base convolutional code are presented. Parameters of several
known DC-free coding schemes are also plotted in Fig. 5 fgie RDS control encoder and the convolutional encoder. The
comparison. The ACG defined by AC& 10 log,(Rdee) conditions and the parameters related to the simulations are as
means the coding gain compared with uncoded signals overfallows. The base convolutional code is the rdt&2-64-state
additive white Gaussian channel when the signal-to-noise rationvolutional codelm = 6, Go = 534, G; = 744) with
(SNR) goes to infinity. diee = 10. Table VII presents the results. The symbsland
Most DC-free block coding schemes have better tradeoffsinhdenote the minimum and the maximum RDS observed in an
the low coding gain area (less than 4.5 dB) compared with teacoding simulation. It is known that the sum variardde?]
proposed scheme but the difference is not large. We can see thatosely related to the near-DC-suppression characteristic of a
considerably high coding gains (up to 5.7 dB) can be obtain&{-free coding scheme [1], whe#€[-] means the expectation
by the proposed scheme. In the high coding gain area (more tivafue. We here define the sample sum variai¢dy

4.5 dB), few DC-free coding schemes with reasonable decoding No1
complexity seem to be known. Itis fair to mention that Deng and 522 1 22 (29)
Herro’s coding schemes also achieve high coding gains. How- N &~

ever, their code is based on the BCH code of lertigtnd thus where N is the number of samples. From Table VII, we can

the code requires a much more complex Viterbi decoder than ; o
o . . . see that the value& and U are certainly within the range
the one proposed in this paper for attaining the maX|mum—I|ksi;

lihood decoding performance. It can be said that the propo LéCO , O1), U(C, C1)]. Itcan also be recognized that fairly

scheme gives us a wide range of varieties of reasonable tra;ﬂ;a"er values of a sample sum variaifeare attained by the
. . : roposed scheme compared with the upper and lower bounds
offs between the coding gain, the RDS constraint, and decodin P P P

complexit 0¥ the RDS.
plextly. For evaluating near DC-suppression characteristics, we have
also computed the power spectrum values for the coded se-

quence(y07 YL, -- )
In order to verify the performance of the proposed scheme,

D. Simulation Results

N-1
we have performed encoding simulations. In an encoding simu- Aw;) al Z Flye) exp(—jtw;)
lation, randomly generated message sequences are encoded by N P
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Fig. 6. Power spectrum characteristic of the proposed scheme at near DC.

wherew; = (7/256)i. The results for thé2 = 6/16 and the ated by a convolutional encoder. Further coding gains could be
R = 5/16 schemes (in Table VII) are presented in Fig. 6. Webtained from such a concatenated scheme even for a channel
observe that both schemes achieve DC-free and near-DC swijth a low SNR.

pression. Especially, thB = 5/16 scheme shows rather better The proposed scheme has been designed according to the
near-DC-suppression characteristic thanfhe 6/16 scheme. following simple design principle: first, we prove fundamental
Note that the® = 6/16 and theR = 5/16 schemes give sum properties on an additive encoder and then extend the result to

variancest.33 and4.51, respectively. the window code obtained from a base convolutional code. We
expectthat the principle can be applied to a convolutional coding
I\V. CONCLUSION with another constraint such as a run length constraint.

In this paper, a new DC-free convolutional coding scheme
has been presented. The scheme is suitable for a power-limited ACKNOWLEDGMENT
noisy channel. Availability of soft-decision decoding is one of

. . he authors wish to thank the anonymous reviewers for
the major advantages of the proposed scheme. By using the De ful comments
bound derived in the paper, we can guarantee the RDS bound orp '

the proposed scheme explicitly.
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