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DC-Free Binary Convolutional Coding
Tadashi Wadayama, Member, IEEE,and A. J. Han Vinck, Senior Member, IEEE

Abstract—A novel DC-free binary convolutional coding scheme
is presented. The proposed scheme achieves the DC-free coding
and error-correcting capability simultaneously. The scheme has a
simple cascaded structure of the running digital sum (RDS) con-
trol encoder and the conventional convolutional encoder. A given
sequence becomes DC-free if and only if the absolute RDS value
of the sequence is bounded by a constant for any time instant. The
RDS control encoder generates a sequence which gives the convo-
lutional-coded sequence with a bounded RDS value. The structure
allows us to exploit efficient soft-decision decoding which attains
additional coding gains compared with hard-decision decoding
over an additive white Gaussian noise (AWGN) channel. Bounds
on the RDS value are explicitly established for the proposed
scheme. By using the bounds, we have performed computer
searches for finding good RDS control encoders. The proposed
scheme provides wide varieties of reasonable tradeoffs between
the coding gain, the RDS constraint, and decoding complexity. For
example, a 64-state DC-free coding scheme with the overall rate
6 16 and the minimum free distance10 has been obtained. This
scheme satisfies a bounded RDS constraint (from 18 to +18)
and it yields a considerably high asymptotic coding gain (over an
AWGN channel) of 5.7 dB.

Index Terms—Additive encoding, convolutional code, DC-free
coding.

I. INTRODUCTION

T HE DC-free coding is widely employed in digital com-
munication and storage areas. “DC-free” means that the

coded sequence has no DC spectral component. A DC-free or
DC-suppressed coding is essential in some baseband transmis-
sion and magnetic/optical recording systems.

For a noiseless channel, many DC-free codes have been de-
vised and the details about them can be found in [1]. A number
of intensive researches on DC-free codes with an additional
error-correcting capability [2]–[6] have been reported as well.
For bandwidth-limited channels, trellis coding techniques with
the DC-free property have been investigated in [7]–[9]. By using
such a code, we can obtain not only the DC-freeness but also ad-
ditional coding gains over a noisy channel.

It is natural to consider the combination of DC-free coding
and binary convolutional coding for error control along the line
of the above mentioned research. Binary convolutional codes
are, in particular, matched to power-limited channels and they

Manuscript received May 9, 2000; revised June 14, 2001. The material in
this paper was presented at the IEEE International Symposium on Information
Theory, Sorrento, Italy, June 2000.

T. Wadayama is with the Faculty of Computer Science and System Engi-
neering, Okayama Prefectural University, Okayama, 719-1197, Japan (e-mail:
wadayama@c.oka-pu.ac.jp).

A. J. H. Vinck is with the Institute for Experimental Mathematics, Essen Uni-
versity, 45326 Essen, Germany (e-mail: vinck@exp-math.uni-essen.de).

Communicated by E. Soljanin, Associate Editor for Coding Techniques.
Publisher Item Identifier S 0018-9448(02)00055-X.

are commonly utilized in practical communication systems as a
crucial part of an error control system. One of the advantages of
the combination is that it enables us to exploit efficient soft-de-
cision decoding algorithms such as the Viterbi algorithm. In
general, soft-decision decoding gives additional coding gains
compared with hard-decision decoding. However, the combi-
nation is not so straightforward from the earlier works. The
trellis coding techniques [7]–[9] are based on the signal con-
stellation expansion. Thus, we cannot directly apply the ideas
to the power-limited channel cases. On the other hand, most of
the known DC-free block codes with the error correcting ca-
pability are based on nonlinear codes such as balanced codes.
Those codes may not have a simple trellis structure which sup-
ports the efficient soft-decision decoding. In [2], a DC-free code
generated by a finite-state machine with coding rate and
minimum free distance is presented. Although the code itself
has excellent properties, a generalization of the code construc-
tion to other code parameters seems to be difficult.

There are several works on DC-free error-correcting codes
based on convolutional codes. Deng, Li, and Herro [10] pre-
sented a DC-free error-correcting convolutional coding tech-
nique. In their method, the all–’s vector in the generator matrix
of a convolutional code is exploited to control the running digital
sum (RDS) of encoded sequences. Nasiri-Kenari and Rushforth
[11] investigated DC-free subcodes of convolutional codes. Re-
cently, Chiu [12] showed DC-free error-correcting codes based
on convolutional codes. In Chiu’s scheme, a codeword of a
convolutional codes with a small RDS value is chosen with
the Viterbi algorithm. These methods seem promising and fur-
ther investigation on binary DC-free coding schemes with a
simple trellis structure, or equivalently, with small decoding
complexity is hoped for.

In this paper, we present a novel DC-free convolutional
coding scheme with an error correcting capability. Fig. 1 rep-
resents the architecture of our proposed scheme. First, the user
message sequence is encoded to theintermediate
sequence by anRDS control encoder. The convo-
lutional encoder then converts an intermediate sequence to the
coded sequence . After the ordinary binary-bipolar
conversion, the coded sequence is transmitted over a noisy
channel such as the additive white Gaussian noise (AWGN)
channel.

The term “RDS” means the running digital sum of a (bipolar)
coded sequence. It is well known that the DC-free property is
achieved if and only if the absolute value of the RDS is bounded
by a constant value for any time instant [1]. The RDS control
encoder must generate an intermediate sequence which gives a
coded sequence with a desired RDS constraint. In other words,
an intermediate sequence should be determined in such a way
that it generates coded sequences with a bounded RDS.
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Fig. 1. Architecture of DC-free convolutional coding scheme.

Fig. 1 presents the cascaded structure of the RDS control en-
coder/decoder and the convolutional encoder/Viterbi decoder.
With this architecture, we are able to exploit soft-decision de-
coding with the Viterbi algorithm. Moreover, the dashed box
part in Fig. 1 is exactly identical to a conventional convolutional
coding system. The RDS control encoder and decoder can be re-
garded as a front-end and a back-end of the conventional convo-
lutional coding system. Thus, we can use a ready-made CODEC
to implement the proposed scheme.

The proposed scheme is based on the following three major
ideas: 1)additive encodingusing a binary linear block code, 2)
upper and lower bounds on the RDS for an additive encoder,
and 3) splitting a convolutional code into infinite sequences of
a linear block code, which is called awindow code. In the fol-
lowing, we shall explain these ideas in order.

The organization of the paper is as follows. In Section II,
we first develop a DC-free coding scheme with an additive en-
coder. We next prove basic properties of an additive encoder
including new upper and lower bounds on the RDS. Section III
includes the principal results of this paper such as the details
on the DC-free convolutional coding scheme and its perfor-
mance. Good RDS control encoders which have been found by
computer search and their performance are also shown. In Sec-
tion IV, we give a summary.

II. DC-FREE CODING SCHEME BASED ON AN

ADDITIVE ENCODER

In this section, first, we will introduce necessary notations
and definitions Then, a DC-free coding scheme based on an
additive encoder is presented. The scheme can be considered
as a modified version of the scheme presented by Deng and
Herro [5] and has a close relationship to the idea of additive
coding [13]. The class of additive encoders presented here can
also be regarded as a subclass of guided scrambling [14], or as
a multimode code [15].

A. Notation and Definition

Let be an semi-infinite length bipolar
-valued sequence. The RDS of the sequence is de-

fined by . If the RDS of the sequence is bounded
by a constant for any time instant such that ,
then the sequence has a spectral null at DC [1].

For , we define the vector
RDS of by

The binary-bipolar conversion mappingis defined by

.

The upper and lower RDS ofare defined by

Let be an binary linear block code, where,
, and denote the length, the dimension, and the minimum

distance, respectively. Consider the following decomposition
of .

Definition 1 (Direct Sum Decomposition):For a given binary
linear code , if two binary linear codes and satisfy

and

then we call the pair of codes thedirect sum decom-
positionof . The code is called the direct sum code based
on and .

Let and be the dimensions of and , and and
be the generator matrices of and , respectively. From

the definition above, it is obvious that the equality
holds. We assume two one-to-one mappings called encoding

mappings

where is the Galois field with two elements . We de-
note the addition over by .

B. Additive Encoder

We here give the definition of an additive encoder and a se-
lection rule used in an additive encoder.

Assume an infinite-length binary message sequence
. Each vector belongs to .

An additive encoder encodes a message blockto
for each block index . The code is a binary linear code
of length . The resulting sequence is called a
coded sequence. The additive encoder appends redundancy

bits per block and thus the coding rate becomes
. After the binary-bipolar conversion, the bipolar sequence

is transmitted over the noisy channel.
1) Definition: For achieving DC-free transmission, the ad-

ditive encoder has to generate the coded sequence with an RDS
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constraint. The following definition of an additive encoder is
quite simple.

Definition 2 (Additive Encoder):An additive encoder en-
codes a message blockinto in the following way:

where is selected by the additive encoder according to
the value of the RDS and aselection rule.

We call the vector thecontrol vector. In other words, the ad-
ditive encoder has freedom to select a control vector and should
specify a control vector so as to obtain a code sequence which
keeps the RDS value bounded.

Note that the codeword belongs to for any block index
because is the direct sum code of and . It guarantees

for any , where is the Hamming
distance between two vectors. That is, the coded sequences pro-
duced by an additive encoder have error correcting capability
inherited from the direct sum code.

The work by Deng and Herro [5] is the first dealing with this
class of encoders. In [5], they impose relatively strong restric-
tions on the decomposition of and use another selection rule.
Here, we have removed such restrictions because we need to
treat any decomposition of . This is the main difference be-
tween their approach and ours.

The RDS constraint achieved by an additive encoder depends
on the decomposition of . For a given , we define the
set by

The set is called theshellof . Namely, the shell of
is a coset of containing . If for any there exist

satisfying and , then the
decomposition is called agood decomposition. Oth-
erwise, the decomposition is called abad decomposition.

2) Selection Rule:The RDS constraint property of an addi-
tive encoder also heavily depends on the selection rule. A good
selection rule is required to reduce the absolute value of the RDS
as much as possible. Smaller absolute values of the RDS are
preferable with respect to near-DC spectral component suppres-
sion.

We introduce a selection rule for an additive encoder. The
rule is used for specifying the control vectors. The following
selection rule includes the values of and . We show
later the RDS bound for the selection rule depends on these
values.

Definition 3 (Selection Rule):For every , the vector
is chosen such that

and has to satisfy the following additional inequality:

(1)

for any .1 If there are several vectors that satisfy the
above conditions, the vectorwhich gives the smallest

1We use the notationxxx to show the dependency onxxx. To clarify the depen-
dency, a function form notation like� (xxx) might be better but we think the
function form is somewhat cumbersome. Thus, this unconventional notation is
used throughout the paper.

Fig. 2. Typical RDS as a function of time in the control vector selection
procedure.

should be chosen as . For a given , should be uniquely
defined. In a similar way, is chosen in such a way

and has to satisfy the following additional inequality:

(2)

for any . If there are several vectors satisfying the
above conditions, the vector which gives the largest
should be chosen as . For a given , should be uniquely
defined. Assume that the message blockis given and

holds. The additive encoder selects the control vector
satisfying

if ,

if .

(3)

An additive encoder keeps the RDS value for every time in-
stant in its memory and uses this value to select a new control
vector. Fig. 2 explains the selection procedure. After processing

, we have a positive RDS value. At this moment, the additive
encoder selects corresponding to . From the definition of

, it has a nonpositive vector RDS value. As a result, the RDS
value is decreasing in a time interval corresponding to. Ob-
viously, the DC-free condition (i.e., the RDS is bounded at any
time instant) holds if is a good decomposition.

C. Upper and Lower Bounds on RDS

In order to construct a good additive encoder, we need tools
for performance evaluation of an additive encoder. We here to
prove upper and lower bounds on the RDS of the coded se-
quences generated by an additive encoder with the selection rule
defined above. The bound will also play a key role in the design
of the DC-free convolutional coding to be discussed later.

We first discuss a bound for the RDSin the case where
is a multiple of block length , namely, .

Lemma 1: For

(4)

Proof: The initial condition holds for . We
here assume that the claim of the lemma holds for the block
index . If , then is
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chosen as the next codeword according to Rule-A or to Rule-B.
In this case, we have the following inequalities:

and

On the other hand, if
holds, then is chosen as the next codeword. In this case, we
have

and

By induction, we can complete the proof of the claim of the
lemma.

The lemma naturally leads to the following theorem on the
RDS.

Theorem 1 (RDS Bound for an Additive Encoder):For any
time instant , the following inequalities hold:

Proof: From the previous lemma, we can assume that

for . We now consider the values for .
If , then is chosen as the
next codeword. For , we have

and

If , then is chosen as
the next codeword. For , we have

and

Combining these inequalities on , we obtain the claim of
the theorem.

TABLE I
VECTORRDS, UPPER, LOWER VALUES

TABLE II
VALUES RELATED TO THE RDS BOUND

The bound can be evaluated for any combination ofand its
decomposition. The time complexity for computing the bound
is .

Example 1: Let

(5)

The decomposition is a good decomposition for .
Several parameters including the vector RDS are listed in
Table I. Consider a simplified selection rule, which is called
Rule-A. Rule-A is almost the same as the selection rule defined
in Section II-B2 (called Rule-B here). The only difference
is that Rule-A does not include inequalities (1) and (2). It is
easy to show the bounds on RDS presented in this section are
also valid for Rule-A. The vectors and according to
Rule-A and Rule-B for each codeword of are also shown
in Table I. From Table I, we can obtain all the values which
are needed to compute the bounds in Theorem 1. These values
are presented in Table II. From Table II and Theorem 1, we
have for Rule-A. On the other hand, a tighter
RDS constraint, , can be obtained with Rule-B.
This result shows the superiority of Rule-B over Rule-A. The
problem of Rule-A is that it does not care about the values

and . The bound in Theorem 1 depends not only on
the vector RDS but also considerably on the values
and . We have designed Rule-B taking these values into
account.

We do not claim that Rule-B is the optimum selection rule in
terms of the RDS constraint. However, some experiments indi-
cate that Rule-B gives relatively tighter upper and lower bounds
in Theorem 1 than other rules. At least, in most cases, Rule-B is
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much superior to Rule-A. Therefore, we only use Rule-B as the
selection rule in this paper.

Example 2: The following generator matrices give a direct
sum decomposition of the extended Bose–Chaudhuri–
Hocquenghem (BCH) code:

From Theorem 1, we have the bound .
Next, we shall examine another decomposition of the ex-

tended BCH code. Let

From Theorem 1, we have the bound . This de-
composition is superior to the former decomposition in terms of
the RDS constraint.

The above example explains that the choice of a direct sum
decomposition of is crucial for achieving a tight RDS con-
straint.

Example 3: Let

These generator matrices correspond to a direct sum decomposi-
tion of the extended BCH code. From Theorem 1, we
have the bound . This coding scheme has at least
the error correcting capability of the extended BCH
code. It is interesting to compare this coding scheme with other
known DC-free coding schemes (see Table III). From Table III,
we conclude that the presented coding scheme is almost com-
parable to the Deng–Herro scheme and slightly inferior to the
Ferreira and the Blaum scheme.

III. DC-FREE CONVOLUTIONAL CODING

In this section, we present a DC-free convolutional coding
scheme. The main idea is to apply the additive encoder idea
to window codes obtained from a convolutional code. We can
obtain a window code by splitting a convolutional code into an
infinite series of block codes.

TABLE III
BLOCK DC-FREE CODES WITH ERROR CORRECTINGCAPABILITY

(n = 15; 16)

A. Splitting a Convolutional Code Into Window Codes

Here, the notation concerned with a convolutional code is
briefly introduced. Then, the definition of the window code is
given.

1) Notation on Convolutional Codes:Let a binary input se-
quence of infinite length be encoded by a convolu-
tional encoder, where is a binary -tuple.

A convolutional encoder is defined as follows. Let
be a matrix over . The parameter

is called theencoder memory. We refer to the matrices as the
generator submatrices. The convolutional encoder encodes the
input sequence according to the following rule:

(6)

and outputs as the code sequence, where
is a binary -tuple. We assume for for formality.
Hereinafter, we call the set of all the allowable code sequences
defined by (6) theconvolutional code .

We can also write the encoding rule of the convolutional en-
coder as , where thegenerator
matrix is the infinite size matrix represented by

...
...

(7)

2) Definition of the Window Code:We define thewindow
matrix of as follows.

Definition 4 (Window Code):For a given ,
the window matrix of is the submatrix of which has
the form

...
...

...

...
...

...
...

(8)

where and . The binary
linear block code generated by is called thewindow codeof

, which is denoted by .
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Example 4: We here consider a binary four-state convolu-
tional code of rate defined by the generator submatrices

In this case, the generator matrixhas the form

...
...

...

For , we have the window matrix such that

(9)

When , we have the window matrix

(10)

From the encoding rule in (6) and the definition of the window
matrix, we can obtain another expression of the encoding rule
based on the window matrix such that

(11)

for .
3) Direct Sum Decomposition of the Window Code:In order

to exploit the results on the additive encoder, a direct sum de-
composition of is needed. We here discuss a direct sum de-
composition of .

Let be a -binary nonsingular matrix, where
and are positive integers satisfying . The

matrix is called adecomposition matrix. We now consider
the two submatrices of a decomposition matrix which are
denoted by and . The matrix is the -matrix
which consists of the first -rows of . The matrix is the

-matrix which consists of the last-rows of .
Thus, we have the decomposition of such that

(12)

For a given window code and a decomposition matrix ,
two subcodes of are defined by

(13)

(14)

The operator is the concatenation operator of two vectors and
means the zero vector of length. For any and

, we have

It is easy to see that the two codes give a direct sum
decomposition of the window code .

Of course, there are numerous possibilities to decompose a
given window code. However, we shall focus on the direct sum
decomposition defined above. The decomposition is essential
for the convolutional coding scheme discussed later. We also
introduce the following encoding maps corresponding to
and :

B. Details on DC-Free Convolutional Coding

Assume that a convolutional codetogether with the param-
eters and a decomposition matrix are given. We call
the code the base convolutional code. The following is the
detail of the DC-free convolutional coding such as encoding,
decoding, and its RDS bound.

1) Encoding: We first divide the message sequence
into blocks of length . The th

message block is denoted by

The message sequences are encoded to the intermediate
sequences by the RDS control encoder (cf. Fig. 1). We divide
the intermediate sequence into the intermediate
blocks of length . The th intermediate block is defined by

(15)

(16)

where is the first -tuple of such that

(17)

and is the last -tuple of such that

(18)

We obtain a coded sequence by encoding the inter-
mediate sequence with the convolutional encoder. The coded
sequence is divided into the coded blocks of length. The th

coded block has the form

Note that . From (11), we have the
relation between and such that .
Figs. 3 and 4 might be helpful to understand the encoding pro-
cedure. Fig. 3 shows the relation between the message, inter-
mediate and coded sequences and Fig. 4 illustrates the relation
of the generator matrix of a convolutional code and a window
matrix.

Notice that the intermediate blocks and are overlap-
ping. The overlapping part corresponds to. By applying the
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Fig. 3. Relation between message, intermediate and coded sequences.

Fig. 4. Generator matrix and window matrix of a convolutional code.

additive encoder to a window code, we have to take the over-
lapping into account. Within the intermediate block, only the
vector can be assigned freely without any influence of the
previous block. The overlapping part is determined by the
previous intermediate block . This is the reason why we
assume a specific decomposition in (13) and (14).

As shown in Fig. 3, the RDS control encoder adds redundancy
(a control vector) to the message sequence and thus the coding
rate defined between the message and intermediate sequence be-
comes . The convolutional encoder of rate ap-
pends redundancy to the intermediate sequence. Consequently,
the overall rate becomes

The rate loss due to the RDS control encoder can be considered
as the price for obtaining an RDS constraint.

The following completely describes how the RDS control en-
coder works.

[RDS Control Encoder]:

Step 1) (Initialize) Set RDS RDS , , and initial
value of (the details about the initial values
RDS and will be discussed later).

Step 2) (Control vector generation) Generate the shell of

and choose the best codeword according to
rule-B. Let the vector be the control vector satis-
fying .

Step 3) (RDS update) Set .

Step 4) (Output intermediate sequence) Set
and output as a part of an intermediate sequence.
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Step 5) (Update memory) Set , where
is the last -tuple of .

Step 6) (Counter increment) Set and return to
Step 2).

The code has -codewords. Thus, the RDS control en-
coder first generates -candidates of and then selects the
best one among the candidates according to Rule-B. This oper-
ation in Step 2) can be regarded as an additive encoder based on
the decomposition . When is small enough such as

, the computational task of the additive encoder seems to
be very small and we could implement a high-speed RDS con-
trol encoder which is able to catch up with the encoding speed
of the convolutional encoder.

The first -tuple of coded sequence

exactly coincides with the first -tuple of . Thus de-
pends only on . The initial value of the RDS, RDS appeared
in Step 1), is given by

RDS

In order to obtain a tighter bound, we have to choosethat
gives the smallest value ofRDS .

2) Decoding: We discuss the decoding issue for the pro-
posed scheme. The received sequence is first decoded by the
Viterbi decoder for the base convolutional code. Let the set of
all the allowable sequences generated by the proposed scheme
be . The minimum free Hamming distance defined on

is denoted by . From the cascaded structure of the
proposed scheme, evidently, is contained in and the in-
equality holds. The symbol denotes the min-
imum free Hamming distance of.

As a consequence of this property, we can use the Viterbi
decoder for the base convolutional code to decode . It can
be considered as a kind of a super code decoding.

The decoding of the intermediate sequence is straightforward
from the definition of the RDS control encoder. Let and

be the estimated blocks corresponding to and re-
spectively. The details on the RDS control decoder are as fol-
lows.

[RDS Control Decoder]:

Step 1) (Initialize)
Step 2) (Inverse matrix) Left-multiplying the inverse matrix

of by , we have

(19)

Output as the th estimated message block.
Step 3) (Counter increment) Set and return to Step

2).

3) RDS Bounds:The next lemma is the basis to prove upper
and lower bounds on RDS.

Lemma 2: The equality holds for .

Proof: Since we have

(20)

it is sufficient to show that for proving the claim
of the lemma. From Step 4) of the encoding procedure and the
definition of , we obtain the following relation:

(21)

By using the relation and the definitions of , we immedi-
ately have

(22)

By applying the bound in Theorem 1 to the decomposition
, we can derive the upper and lower bounds on the

RDS of the coded sequence.

Theorem 2 (RDS Bound):If

RDS

then the RDS of coded sequence is bounded
by for any time instant .

Proof: From Lemma 2, we have .
Each vector is specified according to Rule-B. Therefore, we
can use essentially the same argument of Theorem 1 in the proof.
We thus need the condition

RDS

to guarantee the claim of the theorem.

Example 5: We present an example of an encoding proce-
dure. Assume that we have the convolutional code from Ex-
ample 4, which is the four-state rate– convolutional code
with . For , we have

We also assume that and

is chosen as an initial sequence, which gives
RDS .

A user message sequence

is assumed to be encoded. When the block index , the RDS
control encoder selects as a control vector. We thus have

, and . In
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the same way, we have the following sequences:
, and

(23)

Note that the intermediate sequences (23) become
. The coded sequence obtained from

the intermediate sequence is given by

(24)

In this case, the overall coding rate becomes
and the upper and lower bounds on the RDS are given by

and .

C. Computer Search for Finding Good Decompositions

For a given window code , we need a good decomposition
of for achieving a tight RDS constraint. We present here a
computer search method and good decompositions obtained by
the exhaustive computer searches.

1) Computer Search:Let be the -identity
matrix and be the th-row vector of
. From the definition of and ((13) and (14)), we can see

that a direct sum decomposition can be completely described by
a decomposition matrix . In other words, we have to look for
a decomposition matrix which gives a small absolute value
of the RDS for a given window code. We restrict our attention to
the case where is obtained from a row permutation of. The
restriction helps to reduce the number of possible candidates for

and it makes the computer searches rather easy. We call the
decomposition thesimple decomposition. The restriction also
leads to the simplest RDS control encoder/decoder because, if

has the above property, the computation of , , or
becomes much simpler. Furthermore, with the simple de-

composition, also becomes the row permuted version of
the identity matrix. Thus, no error propagation occurs in the de-
coding process of the intermediate sequence in (19) when an es-
timated intermediate sequence contains bit errors. In this case,
we can expect that its bit-error probability is at least as good as
the bit-error probability obtained by the combination of the base
convolutional code and the corresponding Viterbi decoder.

In order to describe a permuted matrix, we shall introduce
some notation. Assume that a set of size

(25)

is given. The set is called thecontroller position set. Then the
message position setof size is defined by

(26)

By using the sets defined above, we let and be

...
...

(27)

TABLE IV
RDS CONTROL ENCODERS FORRATE-1=2 FOUR-STATE CONVOLUTIONAL

CODE

TABLE V
RDS CONTROL ENCODERS FORRATE-1=2 16-STATE CONVOLUTIONAL CODE

TABLE VI
RDS CONTROL ENCODERS FORRATE-1=2 64-STATE CONVOLUTIONAL CODE

It is easy to see that the above definitions of and corre-
spond to which is obtained from the identity matrix by a row
permutation.

The objective of the computer searches is to find a controller
position set which gives the smallest value of an upper bound
on the digital sum variation defined by

(28)

The computer search algorithm is the following. For a given
base convolutional code, and parameters , we first de-
rive the window matrix . We then generate all the possible
controller position sets of sizesequentially. For each controller
position set, is computed by making use of Theorem 2. Fi-
nally, the controller position set which gives the minimumis
chosen as the best controller position set.

The computer search results are summarized in Tables IV–VI.
The best binary convolutional codes listed in the book by Lin
and Costello [16] have been used as the base convolutional
codes. In these tables, “BCPS” means the “best controller posi-
tion set” and the symbol denotes the generator polynomial
of the base convolutional code in octal notation from [16].
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Fig. 5. Tradeoffs between asymptotic coding gain and RDS bound.

Of course, there might exist better convolutional encoders for
our purpose. However, the exhaustive search considering com-
bination of the convolutional encoder and its simple decomposi-
tion requires an enormous number of computations and is con-
sidered to be infeasible. We therefore fixed a base convolutional
code in our computer search.

2) Comparison: In Fig. 5, the tradeoffs between the asymp-
totic coding gain (ACG) and the upper bound on the absolute
value of the RDS for the proposed scheme based on the 64-state
base convolutional code are presented. Parameters of several
known DC-free coding schemes are also plotted in Fig. 5 for
comparison. The ACG defined by ACG
means the coding gain compared with uncoded signals over an
additive white Gaussian channel when the signal-to-noise ratio
(SNR) goes to infinity.

Most DC-free block coding schemes have better tradeoffs in
the low coding gain area (less than 4.5 dB) compared with the
proposed scheme but the difference is not large. We can see that
considerably high coding gains (up to 5.7 dB) can be obtained
by the proposed scheme. In the high coding gain area (more than
4.5 dB), few DC-free coding schemes with reasonable decoding
complexity seem to be known. It is fair to mention that Deng and
Herro’s coding schemes also achieve high coding gains. How-
ever, their code is based on the BCH code of lengthand thus
the code requires a much more complex Viterbi decoder than
the one proposed in this paper for attaining the maximum-like-
lihood decoding performance. It can be said that the proposed
scheme gives us a wide range of varieties of reasonable trade-
offs between the coding gain, the RDS constraint, and decoding
complexity.

D. Simulation Results

In order to verify the performance of the proposed scheme,
we have performed encoding simulations. In an encoding simu-
lation, randomly generated message sequences are encoded by

TABLE VII
SIMULATION RESULTS FORDC-FREE CONVOLUTIONAL ENCODING: BASE

CONVOLUTIONAL CODE IS RATE–1=2 64-STATE CONVOLUTIONAL

CODE WITH d = 10

the RDS control encoder and the convolutional encoder. The
conditions and the parameters related to the simulations are as
follows. The base convolutional code is the rate–64-state
convolutional code , with

. Table VII presents the results. The symbolsand
denote the minimum and the maximum RDS observed in an

encoding simulation. It is known that the sum variance
is closely related to the near-DC-suppression characteristic of a
DC-free coding scheme [1], where means the expectation
value. We here define the sample sum varianceby

(29)

where is the number of samples. From Table VII, we can
see that the values and are certainly within the range

. It can also be recognized that fairly
smaller values of a sample sum varianceare attained by the
proposed scheme compared with the upper and lower bounds
on the RDS.

For evaluating near DC-suppression characteristics, we have
also computed the power spectrum values for the coded se-
quence
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Fig. 6. Power spectrum characteristic of the proposed scheme at near DC.

where . The results for the and the
schemes (in Table VII) are presented in Fig. 6. We

observe that both schemes achieve DC-free and near-DC sup-
pression. Especially, the scheme shows rather better
near-DC-suppression characteristic than the scheme.
Note that the and the schemes give sum
variances and , respectively.

IV. CONCLUSION

In this paper, a new DC-free convolutional coding scheme
has been presented. The scheme is suitable for a power-limited
noisy channel. Availability of soft-decision decoding is one of
the major advantages of the proposed scheme. By using the RDS
bound derived in the paper, we can guarantee the RDS bound for
the proposed scheme explicitly.

The proposed scheme can be divided into two parts; the RDS
control encoder/decoder and the convolutional encoder/decoder.
The RDS control encoder generates only several codewords of
a window code for selecting a control vector. The decoder re-
quires much simpler tasks than the encoder. Therefore, the RDS
control encoder/decoder seems to be simple enough to be imple-
mented.

As shown in the search results of Tables IV–VI, some good
RDS control encoders have been found successfully by com-
puter searches. For example, a 64-state DC-free coding scheme
with overall rate and minimum free distance satisfies
a bounded RDS condition (from to ) and yields the
asymptotic coding gain (over an AWGN channel) of 5.7 dB.
Furthermore, the proposed scheme offers a system designer nu-
merous choices of reasonable tradeoffs between the error cor-
recting capability (coding gains), the RDS constraint, and the
decoding complexity.

In addition, the proposed scheme looks promising as a com-
ponent code in a concatenated code such as serial concatenated
coding. This is because the code sequences generated by the pro-
posed scheme are contained in the set of code sequences gener-

ated by a convolutional encoder. Further coding gains could be
obtained from such a concatenated scheme even for a channel
with a low SNR.

The proposed scheme has been designed according to the
following simple design principle: first, we prove fundamental
properties on an additive encoder and then extend the result to
the window code obtained from a base convolutional code. We
expect that the principle can be applied to a convolutional coding
with another constraint such as a run length constraint.
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