Historische Erfahrungen mit Mathematik

Geschichte der Mathematik kann beitragen:

- zu Einsichten in die Entwicklung mathematischer Begriffe,
- zu einem vertieften Verständnis der Rolle der Mathematik in unserer Welt: Bezug zu Anwendungen, Kultur und Philosophie,
- zur Wahrnehmung und zum Verstehen der subjektiven Seite der Mathematik: Ziele und Intentionen mathematischer Begriffsbildungen und Verfahren, Möglichkeiten alternativer Wege, persönliche Aspekte.

Für den Unterricht kann man sich verschiedene Typen von historischen Gegenständen, Materialien und Aktivitäten vorstellen, um diese Ziele zu erreichen:

Die Schülerinnen und Schüler bearbeiten interessante Aufgaben aus historischen Lehrbüchern (vgl. den Beitrag von Führer in diesem Heft).

Die Lernenden untersuchen historische, heute vielleicht überholte Rechentechniken. Der Beitrag von Biermann in diesem Heft beschreibt eine Unterrichtsreihe zu Adam Ries, bei der auch der zeitgeschichtliche Kontext erneut genommen wird.

Hans Niels Jahnke
geb. 1948, Apl. Professor am Institut für Didaktik der Mathematik der Universität Bielefeld

mathematik lehren / Heft 91
Sich auf Mathematikgeschichte einlassen

Da die Lektüre historischer Texte ein anspruchsvolles Unternehmen ist, sollten die Schülerinnen und Schüler sich in der Regel schon mit der in Frage stehenden Mathematik auseinander gesetzt haben. Das bedeutet, einen Text zu verstehen, erfordert die Anwendung mathematischer Kenntnisse und Einsichten in einer Problemsituation, die von üblicher Übungsaufgaben verschieden ist.

„Bei gleichen Winkeln ist die Reflexion vernunftgemäß“

Im nächsten Schritt behandelt er die Reflexion am ebene und am gekrümmten Spiegel (Abschnitt IV und V). Hier findet sich Herons berühmteste Beweis des Reflexionsgesetzes. Genauer gesagt zeigt er, dass das Licht den kürzesten Weg zurücklegt, wenn Einfallswinkel gleich Reflexionswinkel ist. Am Schluss von Abschnitt IV zeigt er auch die Umkehrung: Wenn \(\alpha = \chi \) (Figur 1) der kürzeste Lichtweg ist, dann sind bei jedem anderen Lichtweg Einfalls- und Reflexionswinkel verschieden.

Im Mittelteil seiner Abhandlung behandelt er eine Reihe von Sätzen über den Strahlengang an verschiedenen Typen von Spiegeln. Der ganze erste Teil ist praktischen Anwendungen gewidmet. Im Kasten werden die Mathematik un um die Konstruktion eines „Spuens“ und eines „Geisterspiegels“ vorgestellt, ohne auf Einzelheiten einzugehen.

Mathematisch setzt der Beweis des Reflexionsgesetzes nur Kongruenzgeometrie voraus, könnte also in Klasse 8 behandelt werden. Besser wäre aber eine Bearbeitung in Klasse 9 oder 10, etwa im Zusammenhang von Optimierungsproblemen (vgl. Schupp 1992). Wie Euklid notiert Heron seinen Beweis Schritt für Schritt, ohne die übergreifende Idee herauszustellen. Es empfiehlt sich daher, zuvor einen eigenen Beweis
Fast von allen, die über Dioptrik und Optik geschrieben haben, ist nun in Erwägung gezogen, aus welchem Grunde die von uns aus einfallenden Sehstrahlen von den Spiegeln reflektiert werden und die Reflexion unter gleichen Winkeln bilden. Daß wir aber zufolge der Sehstrahlen sehen, welche in geraden Linien von dem Sehorgan ausgehen, dürfte folgermaßen dargethan werden. Denn alles, was sich mit ununterbrochener Schnelligkeit bewegt, das bewegt sich in gerader Linie, so wie wir es bei den von den Bogen abgeschnittenen Pfeilen sehen. Denn wegen der (Wucht der) entsendenden Kraft sucht der sich bewegende Gegenstand sich auf einer Linie zu bewegen, die rücksichtlich der räumlichen Entfernung die kürzeste ist, da der Gegenstand keine Zeit hat zu einer langsameren Bewegung, um auf einer Linie, die der Entfernung (Strecke) nach länger ist, sich zu bewegen. Denn das läßt die (Wucht der) treibenden Kraft nicht zu. Darum ist also offenbar, daß die Schnelligkeit, welche der Gegenstand zu erreichen strebt, nur auf dem kürzesten Wege erreicht wird. Die Gerade ist aber die kürzeste von den Linien, welche dieselben Endpunkte haben.

Daß aber auch die von uns ausgehenden Sehstrahlen sich mit unendlicher Schnelligkeit bewegen, kann man noch aus folgendem lernen. Wenn wir nämlich, nachdem wir die Augen geschlossen hatten, wieder zum Himmel sehen, so gelangen ihre Strahlen (unmittelbar) ohne irgendwelchen zeitlichen Zwischenraum zum Himmel. Denn im selben Augenblick, in dem wir emporkümmern, sehen wir die Sterne, obgleich doch, so zu sagen, die Entfernung unendlich ist. Auch wenn also diese Entfernung noch weit größer wäre, so würden sich der Vorgang jedenfalls wiederholen, so daß sich daraus ergibt, daß die (von uns) ausgehenden Sehstrahlen mit unendlicher Geschwindigkeit ausstrahlen. Daher erreichen sie also (beim Ausstrahlen) keine Unterbrechung (in der Bewegung), noch machen sie einen Umweg oder einen Weg auf einer gebrochenen Linie, sondern sie bewegen sich auf der kürzesten Linie, nämlich der geraden.

Es sei \(ab\) (Fig. 1) ein ebener Spiegel, Punkt \(g\) aber das Sehorgan (Auge), \(d\) das Gesehene. Und es falle in den Spiegel der Strahl \(ga\), und man verbinde \(ad\). Es sei ferner der Winkel \(eag\) dem Winkel \(bad\) gleich. In ähnlicher Weise falle ein anderer Strahl \(gb\) ein, und man verbinde \(bd\). Ich behaupte, daß

\[
g a + d c > g b + b d
\]

sind. Man falle von \(g\) auf \(ab\) das Lot \(ge\) und verlängere \(ge\) und \(da\) bis \(z\) und verbinde \(zb\). Da ja

\[
\angle bad = \angle zae
\]

als Scheitelwinkel und

\[
\angle zae = \angle eag
\]

ist, aber auch die Rechten bei \(e\) (einerlei gleich sind), so ist also

\[
z a = a g
zb = bg.
\]

Da nun

\[
zd < zb + bd,
z a = a g
zb = bg.
\]

so sind also

\[
ga + ad < gb + bd,
\]

weil nämlich

\[
\angle eag = \angle bad,
\]

aber

\[
\angle ebg < eag,
\angle hbd > bad,
\angle hbd also viel > ebg.
\]

Man denke sich auch einen gekrümmten Spiegel, bei dem \(ab\) die Peripherie (Fig. 2), \(g\) das Auge, \(d\) das Gesehene sei. Und es sollen \(ga\) und \(ad\) unter gleichen Winkeln einfallen, \(gb\) und \(bd\) aber unter ungleichen. Ich behaupte, daß

\[
g a + d c < g b + b d
\]

sind. Man ziehe nämlich die Tangente \(eaz\). Es ist also

\[
\angle hae = baz\]

und der übrige \(\angle eag = \angle zad\). Verbindet man also \(zd\), so sind auf Grund des früheren Beweises

\[
ga + ad < gz + zd.
gz + zd < gb + bd.
\]

Also

\[
ga + ad < gb + bd.
\]

Kasten 1: Quellentext: Die Katoptrik von Heron (nach Nix/ Schmidt 1900, S. 321–361)
Einen Spiegel an einem gegebenen Platze so aufzustellen, daß jeder Herantretende weder sich selbst noch irgend jemand anders sieht, sondern allein das Bild, das jemand vorher ausgewählt hat.

Wenn in irgend einem Hause ein Fenster ist, so dürfte es zweckmäßig sein, im Hause einen Spiegel aufzustellen, in dem die auf der entgegengesetzten Seite Kommenden oder die auf den Gassen oder Straßen sich Herumtreibenden sichtbar werden, indem man sie von einem gegebenen Punkte aus, der jedoch im Hause liegt, sieht.

[Dies wird angewandt bei einem Tempel (Fig. 5):]
mit den Schülerinnen und Schülern zu erarbeiten. Die von \(g \) ausgehenden Strahlen werden durch gleichlange Linienzüge ersetzt, die von \(z \) ausgehen (Figur 1). Jeder von \(z \), verschiedener Linienzug ist länger als \(z \). Dann kann man im Text nachsehen, wie Heron es gemacht hat. Beim gekrümmten Spiegel (Abschnitt V) sollte die Argumentation mit den (endlich kleinen) „Hornwinkeln“ (Figur 2, \(\angle \text{hae} \) und \(\angle \text{bao} \)) betrachtet werden, durch die unmittelbar plausible wird, dass man an einer gekrümmten Fläche so tun kann, als werde der Lichtstrahl an der Tangentialebene reflektiert. Wegen der mit ihnen verbundenen Paradoxien werden Hornwinkel in der heutigen Mathematik nicht mehr betrachtet.

Es ist lohnend, den Abschnitt II, der Herons physikalische Auffassungen enthält, zu diskutieren. Die Idee der vom Auge ausgehenden Sehstrahlen ist zunächst überraschend. Was kann man zugunsten dieser These anführen? Wie kann man sich den Sehvorgang unter dieser Hypothese vorstellen?

Ebenso lässt sich fragen, wie überzeugend die Begründung der Geradlinigkeit der Sehstrahlen und der Unendlichkeit ihrer Ausbreitungsgeschwindigkeit ist. Heron benutze Analogien („abgeschossener Pfeil“) und appellier an alltagsweltliche Erfahrungen („der Gegenstand hat keinen Zeit zu einer langsameren Be wegung, um auf einer Linie, die der Entfernung nach länger ist, sich zu bewegen“). Letztlich bleibt aber doch ein harter Kern übrig. Wenn man das Prinzip des kürzesten Weges einmal akzeptiert hat, dann folgt aus ihm mathematisch, dass Einfalls- und Reflexionswinkel gleich sind, eine Erfahrungstatsache, die Heron auch ganz unabhängig von dieser Herleitung bekannt war. In der allgemeinen Struktur ist die Argumentation also durchaus nicht völlig verschieden von der in der modernen Physik. Aus einer allgemeinen Hypothese „(das Licht breitet sich auf dem kürzesten Weg aus)“, die man plausibel machen, aber nicht beweisen kann, werden eine Reihe logischer Schlussfolgerungen gezogen, die experimentell überprüfbar sind. In diesem Zusammenhang sollte thematisiert werden, was Heron mit seiner Feststellung „In diesem Falle, also bei gleichwinkeligen Winkeln, ist die Reflexion unnötig gen gen auf [lat.: rationabiler] gemeint haben könnte. Vielleicht wollte er nur sagen, dass hier ein mathematisch formulierbares Prinzip vorliegt, vielleicht meinte er aber auch, dass die Welt optimal eingerichtet ist.

In einem letzten Schritt kann man sich Gedanken über die Adressaten machen, für die Heron vermutlich geschrieben hat. Die im letzten Teil dargestellten Anwendungen legen nahe, dass er an Techniker gedacht hat, die für eine reiche Kunden schaft arbeiteten und teils spielerisch Bedürfnisse befriedigten, teils alltägliche Probleme lösten. Es entsteht das Bild einer sich arbeitenden, hoch entwickelten Zivilisation. Auf der anderen Seite stehen die Überlegungen zur Grundlegung der Optik am Beginn der Quelle. Dies sind eindeutig theoretische Überlegungen, die darauf schließen lassen, dass auch Wissenschaftler, z. B. Herons Kollegen an der Akademie von Alexandria, zu seinen Lesern gehörten.

Mathematikgeschichte – Sprache – Bildung

Die hier vorgestellte Konzeption der Quellenlektüre macht letztlich nur Sinn, wenn der Unterricht insgesamt ein größeres Gewicht auf Reflexion legt, als dies üblicherweise der Fall ist (Neubrand 1990). Insofern lebt die Mathematikgeschichte von einer neuen Unterrichtskultur und kann umgekehrt helfen, sie in Gang zu bringen.

Literatur

