UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Fachbereich Mathematik

Master-Studiengang Mathematik für das Lehramt an Grundschulen (nicht vertieft)

Modulhandbuch

17.05.2023

Falls in Veranstaltungen Studienleistungen verlangt werden, müssen diese neben dem Bestehen der Modulprüfung erbracht werden, um die Modul-CP gutgeschrieben zu bekommen. Falls diese erbracht werden müssen, um zu der Modulprüfung zugelassen zu werden (Prüfungsvorleistung), wird dies in der Veranstaltungsbeschreibung explizit benannt.

Modulname	Modulcode
Mathematik	MP-MA-M
Modulverantwortliche/r	Fachbereich
Studiendekan der Fakultät für Mathematik	Mathematik

Zuordnung zum Studiengang	Modulniveau
Lehramt Grundschule (Mathematik nicht vertieft)	MA

Vorgesehenes Studiensemester	Dauer des Moduls	Modultyp (P/WP/W)	Credits
1	1 Semester	Р	5

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
Bachelor Lehramt Grundschule	

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
	Mathematische Fachveranstaltung (wählbar aus den Schwerpunkten Anwendungen und Strukturen) z. B.:			
	Elementare Stochastik			
	Funktionen und Anwendungen	WP	4	150 h
	Kryptographie			
	Lineare Algebra			
	Analytische Geometrie			
	Elementare Zahlentheorie			
Sumi	me (Pflicht und Wahlpflicht)		4	150 h

Lernergebnisse / Kompetenzen

Die Studierenden

- verfügen über elementares mathematisches Wissen zur Einordnung der Schulmathematik
- können die fachmathematischen Inhalte mit schulmathematischen Fragestellungen verknüpfen
- durchschauen die Systematik eines elementaren Teilgebiets der Mathematik sowie den Prozess der fachbezogenen Begriffs-, Modell- und Theoriebildung

davon Schlüsselqualifikationen

Analysefähigkeit, Denken in Zusammenhängen, deduktives Denken, Problemlösefähigkeit

Prüfungsleistungen im Modul

Klausur über die Inhalte der gewählten Veranstaltung, 90-120 Minuten

Stellenwert der Modulnote in der Fachnote

5/11

Modulname	Modulcode	
Mathematik im Studiengang "Mathematik nicht vertieft"	MP-MA-M	
Mathematik Schwerpunkt Anwendungen im Studiengang "Mathematik vertieft"	MP-MA-MA	
Veranstaltungsname	Veranstaltungscode	
Elementare Stochastik	MP-MA-M-ST	
Lehrende/r	Lehreinheit Belegungstyp	
Alle Lehrenden der Fakultät Mathematik	Mathematik	WP

Vorgesehenes Studiensemester	Angebotshäufigkeit	Sprache	Gruppengröße
1	jährlich	deutsch	Vorlesung: 60 Übung: 25

SWS	Präsenzstudium	Selbststudium	Workload in Summe
4	60 h	90 h	150 h

Vorlesung mit Übung, V2+Ü2

Lernergebnisse / Kompetenzen

Die Studierenden

- kennen Grundbegriffe der Wahrscheinlichkeitsrechnung
- können quantitatives Denken, Problemlösefähigkeit, Urteilskompetenz bei stochastischen Fragestellungen entwickeln
- sind in der Lage, Informationstechnologie kompetent zu nutzen
- beherrschen grundlegende und wichtige Begriffe sowie Konzepte der Stochastik und können Zufallsphänomene bzw. Zufallsexperimente mathematisch modellieren und behandeln

Inhalte

- Wahrscheinlichkeitsbegriff
- Verteilungen und Zufallsvariable, Erwartungswert und Varianz
- Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung
- Normalverteilung
- Theorem von Bernoulli
- Schätzen und Testen
- Approximation der Binomialverteilung durch die Normalverteilung

Prüfungsleistung

siehe Modulbeschreibung

Literatur

Eichler, A. & Vogel, M. (2014). *Leitidee Daten und Zufall. Von konkreten Beispielen zur Didaktik der Stochastik* (2. Auflage). Wiesbaden: Springer.

Henze, N. (2006). Stochastik für Einsteiger (6. Auflage). Wiesbaden: Vieweg.

Kütting, H. & Sauer, M. J. (2011). *Elementare Stochastik. Mathematische Grundlagen und didaktische Konzepte* (3., stark erw. Aufl.). Heidelberg: Spektrum.

Weitere Literatur wird in der Veranstaltung angegeben.

Modulname	Modulcode	
Mathematik im Studiengang "Mathematik nicht vertieft" Mathematik Schwerpunkt Anwendungen im Studiengang "Mathematik vertieft"	MP-MA-M MP-MA-MA	
Veranstaltungsname	Veranstaltungs	code
Funktionen und Anwendungen	MP-MA-M-F	
Lehrende/r	Lehreinheit Belegungstyp (P/WP/W)	
Alle Lehrenden der Fakultät Mathematik	Mathematik	WP

Vorgesehenes Studiensemester	Angebotshäufigkeit	Sprache	Gruppengröße
1	jährlich	deutsch	Vorlesung: 60 Übung: 25

SWS	Präsenzstudium	Selbststudium	Workload in Summe
4	60 h	90 h	150 h

Vorlesung mit Übung, V2+Ü2

Lernergebnisse / Kompetenzen

Die Studierenden

- beherrschen grundlegende und wichtige Begriffe sowie Konzepte der Analysis
- können funktionale Zusammenhänge erkennen, modellieren und beweisen

Inhalte

- Spezielle Funktionen: Polynome, Exponential- und Logarithmusfunktion
- Geometrische Deutung von Stetigkeit, Differenzierbarkeit und Integrierbarkeit
- Elementare Anwendungsbeispiele in den Naturwissenschaften (z. B. Räuber-Beute-Modell)

Prüfungsleistung

siehe Modulbeschreibung

Literatur

Büchter, A. & Henn, H.-W. (2010). *Elementare Analysis. Von der Anschauung zur Theorie*. Heidelberg: Spektrum.

Wittmann, G. (2008). Elementare Funktionen und ihre Anwendungen. Berlin: Spektrum.

Weitere Literatur wird in der Veranstaltung angegeben.

Modulname	Modulcode	
Mathematik im Studiengang "Mathematik nicht vertieft" Mathematik Schwerpunkt Anwendungen im Studiengang "Mathematik vertieft"	MP-MA-M MP-MA-MA	
Veranstaltungsname	Veranstaltungscode	
Kryptographie	МР-МА-М-К	
Lehrende/r	Lehreinheit	Belegungstyp (P/WP/W)
Alle Lehrenden der Fakultät Mathematik	Mathematik	WP

Vorgesehenes Studiensemester	Angebotshäufigkeit	Sprache	Gruppengröße
1	jährlich	deutsch	Vorlesung: 60 Übung: 25

SWS	Präsenzstudium	Selbststudium	Workload in Summe
4	60 h	90 h	150 h

Vorlesung mit Übung, V2+Ü2

Lernergebnisse / Kompetenzen

Die Studierenden

- beherrschen grundlegende und wichtige Begriffe sowie Konzepte der elementaren Zahlentheorie und können diese auf kryptographische Probleme anwenden
- kennen und benutzen elementare Begriffe der Kryptographie/Kryptologie
- beherrschen elementares fachliches Wissen als Hintergrundwissen für schulmathematische Inhalte

Inhalte

- Kongruenzen, insbesondere Sätze von Fermat und Euler, Teilbarkeitskriterien
- Chinesischer Restsatz
- Symmetrische Kryptographie-Verfahren
- Asymmetrische Kryptographie-Verfahren, RSA-Verfahren
- Endliche Körper (z.B. Anwendung auf Diffie-Hellman-Schlüsselaustausch)
- Primzahltests
- Statistische Verfahren der Kryptoanalyse

Prüfungsleistung

siehe Modulbeschreibung

Literatur

Beutelspacher, A. (2015). Kryptologie. Eine Einführung in die Wissenschaft vom Verschlüsseln, Verbergen und Verheimlichen (10. Auflage). Wiesbaden: Springer.

Weitere Literatur wird in der Veranstaltung angegeben.

Modulname	Modulcode	
Mathematik im Studiengang "Mathematik nicht vertieft" Mathematik Schwerpunkt Struktur im Studiengang "Mathematik vertieft"	MP-MA-M MP-MA-MS	
Veranstaltungsname	Veranstaltungs	code
Lineare Algebra	MP-MA-M-LA	
Lehrende/r	Lehreinheit	Belegungstyp (P/WP/W)
Alle Lehrenden der Fakultät Mathematik	Mathematik	WP

Vorgesehenes Studiensemester	Angebotshäufigkeit	Sprache	Gruppengröße
1	jährlich	deutsch	Vorlesung: 60 Übung: 25

SWS	Präsenzstudium	Selbststudium	Workload in Summe
4	60 h	90 h	150 h

Vorlesung mit Übung, V2+Ü2

Lernergebnisse / Kompetenzen

Die Studierenden

- beherrschen grundlegende und wichtige Begriffe sowie Konzepte der linearen Algebra
- können lineare Strukturen in verschiedenen Bereichen der Mathematik erkennen und modellieren
- erkennen lineare Abbildungen in verschiedenen Bereichen der Mathematik

Inhalte

- Vektorräume über reellen Zahlen
- Lineare Unabhängigkeit, Basis, Dimension
- Lineare Abbildungen und Matrizen
- Lineare Gleichungssysteme
- Anwendungen in Geometrie und analytischer Geometrie

Prüfungsleistung

siehe Modulbeschreibung

Literatur

Beutelspacher, A. (2001). Lineare Algebra. Braunschweig: Vieweg.

Weitere Literatur wird in der Veranstaltung angegeben.

Weitere Informationen zur Veranstaltung	

Modulname	Modulcode	
Mathematik im Studiengang "Mathematik nicht vertieft" Mathematik Schwerpunkt Struktur im Studiengang "Mathematik vertieft"	MP-MA-M MP-MA-MS	
Veranstaltungsname	Veranstaltungs	code
Analytische Geometrie	MP-MA-M-AG	
Lehrende/r	Lehreinheit	Belegungstyp (P/WP/W)
Alle Lehrenden der Fakultät Mathematik	Mathematik	WP

Vorgesehenes Studiensemester	Angebotshäufigkeit	Sprache	Gruppengröße
1	jährlich	deutsch	Vorlesung: 50 Übung: 25

SWS	Präsenzstudium	Selbststudium	Workload in Summe
4	60 h	90 h	150 h

Vorlesung mit Übung, V2+Ü2

Lernergebnisse / Kompetenzen

Die Studierenden

- verstehen Koordinatisierung als Möglichkeit, geometrische Phänomene algebraisch zu behandeln
- geben Beispiele für Vektoren wie Kraft und Geschwindigkeit und beschreiben, wie Vektoren Beträge und Richtungen von Größen ausdrücken
- stellen Zusammenhänge zur Elementargeometrie her
- arbeiten darstellend und analytisch mit linearen Gebilden (wie Geraden und Ebenen)

Inhalte

Ausgewählte Kapitel aus den folgenden Bereichen:

- Lineare Gleichungssysteme, Matrizen
- Skalar- und Vektorprodukt
- Geraden und Ebenen im Raum
- Lagebeziehungen und Abstandsberechnungen
- Lineare und affine Abbildungen

Prüfungsleistung

siehe Modulbeschreibung

Literatur

Fischer, G. (2017). Lernbuch Lineare Algebra und Analytische Geometrie. Das Wichtigste ausführlich für das Lehramts- und Bachelorstudium (3 ed.). Wiesbaden: Springer.

Wittmann, E. C. (1987). *Elementargeometrie und Wirklichkeit: Einführung in geometrisches Denken*. Braunschweig: Vieweg.

Weitere Literatur zum jeweiligen Bereich wird in der Veranstaltung angegeben.

Modulname	Modulcode	
Mathematik im Studiengang "Mathematik nicht vertieft" Mathematik Schwerpunkt Struktur im Studiengang "Mathematik vertieft"	MP-MA-M MP-MA-MS	
Veranstaltungsname	Veranstaltungs	code
Elementare Zahlentheorie	MP-MA-M-EZ	
Lehrende/r	Lehreinheit	Belegungstyp (P/WP/W)
Alle Lehrenden der Fakultät Mathematik	Mathematik	WP

Vorgesehenes Studiensemester	Angebotshäufigkeit	Sprache	Gruppengröße
1	jährlich	deutsch	Vorlesung: 60 Übung: 25

SWS	Präsenzstudium	Selbststudium	Workload in Summe
4	60 h	90 h	150 h

Vorlesung mit Übung, V2+Ü2

Lernergebnisse / Kompetenzen

Die Studierenden

- beherrschen grundlegende und wichtige Begriffe sowie Konzepte der elementaren Zahlentheorie
- können Zahlbeziehungen erkennen, modellieren und beweisen
- beherrschen elementares fachliches Wissen als Hintergrundwissen für schulmathematische Inhalte

Inhalte

- Sätze und Muster bei Quadratzahlen
- Pythagoräische Zahlentripel
- Kongruenzen/Restklassen
- Chinesischer Restsatz
- Sätze von Euler und Fermat
- Elementare Sätze zu Primzahlen
- Elementare Inhalte zu diophantischen Gleichungen
- Theorie magischer Quadrate

Prüfungsleistung

siehe Modulbeschreibung

Literatur

Padberg, F. & Büchter, A. (2015). *Vertiefung Mathematik Primarstufe – Arithmetik/ Zahlentheorie*. Berlin: Springer.

Ziegenbalg, J. (2015). *Elementare Zahlentheorie. Beispiele, Geschichte, Algorithmen.* Wiesbaden: Springer.

Weitere Literatur wird in der Veranstaltung angegeben.

Modulname	Modulcode
Vertiefung Didaktik Mathematik	MP-MA-MLL
Modulverantwortliche/r	Fachbereich
Studiendekan der Fakultät für Mathematik	Mathematik

Zuordnung zum Studiengang	Modulniveau: BA/MA
Lehramt Grundschule (Mathematik nicht vertieft)	MA

Vorgesehenes Studiensemester	Dauer des Moduls	Modultyp (P/WP/W)	Credits
1 und 3	2 Semester	Р	6

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
BA Grundschule	

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	SWS	Workload
I	Vorbereitung Praxissemester	Р	1	60 h
Ш	Mathematik lehren und lernen	Vorlesung P Übung WP	3	120 h
Sum	Summe (Pflicht und Wahlpflicht)		4	180 h

Lernergebnisse / Kompetenzen

Die Studierenden

- kennen mathematikdidaktische Konzepte zur Reflexion von Mathematik lehren und lernen
- können Mathematikunterricht theoriegeleitet und kindgemäß unter Berücksichtigung neuer fachdidaktischer Erkenntnisse planen
- sind in der Lage, Kommunikationsweisen in Unterrichtsexperimenten und Diagnosegesprächen zu reflektieren und theoriebasiert zu analysieren
- können Fehlerquellen und Lernhürden der Kinder beurteilen und die Leistungen in Bezug auf den gewählten Schwerpunkt beurteilen
- haben ein differenziertes professionstheoretisches Verständnis von der Bedeutung und den Anforderungen des Berufs einer Grundschullehrerin/eines Grundschullehrers

davon Schlüsselqualifikationen

- Umgang mit wissenschaftlichen Texten und videografierten Dokumenten
- Planung, Durchführung, Auswertung und Präsentation eigener Forschungsvorhaben

Prüfungsleistungen im Modul

15 bis 20-minütiger Vortrag auf Basis von unterrichtspraktischen Dokumenten (z.B. aus vorherigen Veranstaltungen) und wissenschaftlichen Grundlagen aus den Veranstaltungen des Moduls Vertiefung Didaktik Mathematik. Nähere Modalitäten werden vom Veranstalter festgelegt.

Stellenwert der Modulnote in der Fachnote

6/11

Modulname	Modulcode	
Vertiefung Didaktik Mathematik im Studiengang "Mathematik nicht vertieft"	MP-MA-VD	
Vertiefung Didaktik und Fach Mathematik im "Studiengang Mathematik vertieft"	MP-MA-V	
Veranstaltungsname	Veranstaltungscode	
Vorbereitung Praxissemester	MP-MA-VD-PS	
Lehrende/r	Lehreinheit Belegungstyp (P/WP/W)	
Alle Lehrenden der Didaktik der Mathematik	Mathematik P	

Vorgesehenes Studiensemester	Angebotshäufigkeit	Sprache	Gruppengröße
1	Jedes Semester	deutsch	25

SWS	Präsenzstudium	Selbststudium	Workload in Summe
1	15 h	45 h	60 h

Seminar

Lernergebnisse / Kompetenzen

Die Studierenden

- reflektieren Lernangebote unter Berücksichtigung mathematikdidaktischer Erkenntnisse (K1 – Lernangebote reflektieren)
- planen Unterrichtsvorhaben theoriegeleitet und adressatenorientiert (K2 Unterrichtsvorhaben planen)
- kennen ein ausgewähltes fachdidaktisches Konzept zur Reflexion von Mathematikunterricht vertieft (K3 – fachdidaktisches Konzept kennen)

Inhalte

- Fachliche und fachdidaktische Aufbereitung eines Lernangebots für Grundschulkinder
- Planungen zu Unterrichtsvorhaben, die im Praxissemester umgesetzt werden
- Ausgewähltes fachdidaktisches Konzept zur Reflexion von Unterricht (z. B. Interaktionsmuster)

Prüfungsleistung

siehe Modulbeschreibung

Literatur

Bruder, R., Hefendehl-Hebeker, L., Schmidt-Thieme, B. & Weigand, H.-G. (Hrsg.) (2015). Handbuch der Mathematikdidaktik. Berlin & Heidelberg: Springer Spektrum.

Krummheuer, G. & Fetzer, M. (2004). *Der Alltag im Mathematikunterricht. Beobachten – Verstehen – Gestalten.* Heidelberg: Spektrum.

Weitere Literatur wird in der Veranstaltung bekannt gegeben.

Modulname	Modulcode	
Vertiefung Didaktik Mathematik im Studiengang "Mathematik nicht vertieft"	MP-MA-VD	
Vertiefung Didaktik und Fach Mathematik im "Studiengang Mathematik vertieft"	MP-MA-V	
Veranstaltungsname	Veranstaltungscode	
Mathematik lehren und lernen	MP-MA-VD-MLL	
Lehrende/r	Lehreinheit	Belegungstyp (P/WP/W)
Alle Lehrenden der Didaktik der Mathematik	Mathematik	Р

Vorgesehenes Studiensemester	Angebotshäufigkeit	Sprache	Gruppengröße
3	WS	deutsch	Vorlesung: 130 Seminar: 20

SWS	Präsenzstudium	Selbststudium	Workload in Summe
3	45 h	75 h	120 h

Vorlesung mit Übung, V1+Ü2

Lernergebnisse / Kompetenzen

Die Studierenden

- kennen verschiedene fachdidaktische Konzepte zur Reflexion von Mathematikunterricht (K1 – fachdidaktisches Wissen vertiefen)
- analysieren beobachteten und eigenen Mathematikunterricht unter Berücksichtigung fachdidaktischer Konzepte und empirischer Befunde mathematikbezogener Lehr-Lern-Forschung (K2 – Mathematikunterricht analysieren)
- reflektieren mathematikdidaktische Theorien vor dem Hintergrund empirischer Erfahrungen (K3 mathematikdidaktische Theorien reflektieren)
- beurteilen inklusive Modelle gemeinsamen Lernens in der Schule im Hinblick auf das Mathematiklernen (K 4 – inklusive Modelle beurteilen)
- stellen Theorien und theoriegeleitete Analyse von Mathematikunterricht kritisch dar (K
 5 Theorien und Praxisanalysen darstellen)

Inhalte

- Wissenschaftliche Ansätze in der Mathematikdidaktik
- Inklusive Modelle gemeinsamen Lernens
- Professionelles Wissen von Lehrpersonen
- Theoriegeleitete Analyse von Episoden aus dem Mathematikunterricht
- Kritische Reflexion von theoretischen Konzepten auf der Grundlage beobachteter und eigener Praxis

Prüfungsleistung

siehe Modulbeschreibung

Literatur

Bruder, R., Hefendehl-Hebeker, L., Schmidt-Thieme, B. & Weigand, H.-G. (Hrsg.) (2015): Handbuch der Mathematikdidaktik. Berlin & Heidelberg: Springer Spektrum.

Krummheuer, G. & Fetzer, M. (2004). *Der Alltag im Mathematikunterricht. Beobachten – Verstehen – Gestalten*. Heidelberg: Spektrum.

Weitere Literatur wird in der Veranstaltung angegeben.

Weitere Informationen zur Veranstaltung

Vorgaben zur Strukturierung der Vorträge werden vom Veranstalter gemacht.

Modulname	Modulcode
Praxissemester: Schule und Unterricht forschend verstehen	PS_Ma_G
Modulverantwortliche/r	Fachbereich
Von allen Fakultäten gemeinsam verantwortet	

Zuordnung zum Studiengang	Modulniveau: Ba/Ma
Master of Education, Lehramt an Grundschulen	Master

vorgesehenes Studiensemester	Dauer des Moduls	Modultyp (P/WP/W)	Credits
2	1 Semester	Р	 5 Cr pro Lernbereich/ Unterrichtsfach/ BiWi mit Studienprojekt
			1 Cr pro Lernbereich/ Unterrichtsfach/ BiWi ohne Studienprojekt 13 Cr Schulpraxis

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen
Erfolgreicher Abschluss des Bachelor	Die Vorbereitungsveranstaltungen in den Lernbereichen und Bildungswissenschaften sind vor dem Praxissemester zu absolvieren.

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	Workload
I	Begleitveranstaltung Lernbereich/Unterrichtsfach/BiWi mit Studienprojekt	Siehe LV-Formular	150 h
II	Begleitveranstaltung Lernbereich/Unterrichtsfach/BiWi mit Studienprojekt	Siehe LV-Formular	150 h
III	Begleitveranstaltung Lernbereich/Unterrichtsfach/BiWi ohne Studienprojekt	Siehe LV-Formular	30 h
III	Begleitveranstaltung Lernbereich/Unterrichtsfach/BiWi ohne Studienprojekt	Siehe LV-Formular	30 h
Sum	Summe (Pflicht und Wahlpflicht)		

Lernergebnisse / Kompetenzen

Die Studierenden

- identifizieren praxisbezogene Entwicklungsaufgaben schulformspezifisch
- planen auf fachdidaktischer, fach- und bildungswissenschaftlicher Basis kleinere Studien-, Unterrichts- und/oder Forschungsprojekte (auch unter Berücksichtigung der Interessen der Praktikumsschulen), führen diese Projekte durch und reflektieren sie
- können dabei wissenschaftliche Inhalte der Bildungswissenschaften und der Unterrichtsfächer auf Situationen und Prozesse schulischer Praxis beziehen
- kennen Ziele und Phasen empirischer Forschung und wenden ausgewählte Methoden exemplarisch in den schul- und unterrichtsbezogenen Projekten an
- sind befähigt, Lehr-Lernprozesse unter Berücksichtigung individueller, institutioneller und gesellschaftlicher Rahmenbedingungen zu gestalten, nehmen den Erziehungsauftrag von Schule wahr und setzen diesen um
- wenden Konzepte und Verfahren von Leistungsbeurteilung, p\u00e4dagogischer Diagnostik und individueller F\u00f6rderung an
- reflektieren theoriegeleitet Beobachtungen und Erfahrungen in Schule und Unterricht

davon Schlüsselqualifikationen

- Organisationsfähigkeit, realistische Zeit- und Arbeitsplanung
- Planungs-, Projekt- und Innovationsmanagement
- Kooperationsfähigkeit
- Erschließung, kritische Sichtung und Präsentation von Forschungsergebnissen
- Anwendung wissenschaftlicher Methoden und Auswertungsstrategien
- konstruktive Wertschätzung von Diversity
- Entwicklung eines professionellen Selbstkonzeptes

Prüfungsleistungen im Modul

2 Modulteilprüfungen zum Abschluss des Moduls, die zu gleichen Teilen in die Modulabschlussnote eingehen (je 1/2).

Stellenwert der Modulnote in der Endnote

25/120

Begleitveranstaltungen zum Praxissemester, die zu fachübergreifenden Modulen gehören:

Modulname	Modulcode	
Praxissemester	PS_Ma_G	
Veranstaltungsname	Veranstaltungscode	
Begleitseminar Praxissemester Mathematik	PS_Ma_G_BL	
Lehrende/r	Lehreinheit Belegungstyp (P/WP/W)	
Alle Lehrenden der Didaktik der Mathematik	Mathematik	Р

Vorgesehenes Studiensemester	Angebotshäufigkeit	Sprache	Gruppengröße
2	Jedes Semester	deutsch	25

SWS	Präsenzstudium	Selbststudium	Workload in Summe
2	30 h	0 h bzw. 120 h*	30 h bzw. 150 h

Lehrform

Seminar

Lernergebnisse / Kompetenzen

Die Studierenden

 entwickeln aus ihren ersten Unterrichtserfahrungen Fragen an die Mathematikdidaktik (K1 – Fragen an die Mathematikdidaktik entwickeln)

beziehen mathematikdidaktische Lösungsansätze auf die Anforderungen der Praxis.
 (K2 – mathematikdidaktische Lösungsansätze auf die Praxis beziehen)

Die Studierenden mit Studienprojekt können darüber hinaus

- vor dem Hintergrund mathematikdidaktischer Konzepte Studienprojekte durchführen und reflektieren (K3 Studienprojekte durchführen und reflektieren)
- ausgewählte Methoden mathematikdidaktischer Forschung in begrenzten eigenen Untersuchungen anwenden (K4 – Methoden mathematikdidaktischer Forschung anwenden)

* Je nach Seminartyp 70 h (inklusive Anfertigung des Studienprojekts (STUP)) oder 30 h (ohne Anfertigung des STUP)

Inhalte

- Entwicklung von Fragestellungen für ein thematisch eingegrenztes Studienprojekt (z. B. eine oder zwei Unterrichtsstunden und mathematische Kleingruppengespräche)
- Planung und Reflexion von Studienprojekten und Unterrichtsversuchen in Zusammenarbeit mit den Seminarteilnehmenden
- Entwicklung von Alternativen und Modifikationen in Bezug zu den Anforderungen der Praxis
- Theoriegeleitete Analyse von Dokumenten, Eigenproduktionen, Unterrichtsbeobachtungen oder Interaktionsszenen z.B. aus den durchgeführten Studienprojekten und Unterrichtsversuchen

Prüfungsleistung

siehe Modulbeschreibung

Literatur

Bruder, R., Hefendehl-Hebeker, L., Schmidt-Thieme, B. & Weigand, H.-G. (Hrsg.) (2015): Handbuch der Mathematikdidaktik. Berlin & Heidelberg: Springer Spektrum.

Weitere Literatur wird in der Veranstaltung angegeben.

Weitere Informationen zur Veranstaltung

Studienleistung für Studierende ohne Studienprojekt (durchgeführt in Mathematik):

Schriftliche Praxisreflexion (ca. 2 Seiten bzw. 8.000 Zeichen inkl. Leerzeichen)

Prüfungsleistung für Studierende mit Studienprojekt (durchgeführt in Mathematik):

Mündliche Prüfung, bestehend aus Präsentation (10 Minuten) und anschließender Diskussion (5 Minuten)

Modulname			Modulcode
Professionelles Handeln wissenschaftsbasiert weiterentwickeln			PHW_MA_ G
Modulverantwortliche/r			Fachbereich
Von den Fakultäten ger	meinsam verantwortet		
Zuordnung zum Studier	ngang		Modulniveau
Master of Education, Le	ehramt an Grundschule	n	Master
Vorgesehenes Studiensemester	Dauer des Moduls	Credits	
4	1 Semester	Р	9 Cr insgesamt, davon 3 Cr: LB vertieft 2 Cr: LB 2 Cr: LB 2 Cr: BiWi
Voraussetzungen laut Prüfungsordnung		Empfohlene Vorausset	zungen
Erfolgreicher Abschluss des Bachelor			

Zugehörige Lehrveranstaltungen:

Nr.	Veranstaltungsname	Belegungstyp	Workload
I	Professionelles Handeln wissenschaftsbasiert weiterentwickeln aus der Perspektive des vertieften Lernbereichs	Р	90 h
II	Professionelles Handeln wissenschaftsbasiert weiterentwickeln aus der Perspektive eines weiteren Lernbereichs	Р	60 h
III	Professionelles Handeln wissenschaftsbasiert weiterentwickeln aus der Perspektive eines weiteren Lernbereichs	Р	60 h
IV	Professionelles Handeln wissenschaftsbasiert weiterentwickeln aus der Perspektive der Bildungswissenschaften	Р	60 h
Sumi	270 h		

Lernergebnisse / Kompetenzen

Die Studierenden

- kennen Forschungsmethoden sowie deren methodologische Begründungszusammenhänge und können auf dieser Grundlage Forschungsergebnisse rezipieren
- haben vertiefte Kenntnisse über den Aufbau und Ablauf von Forschungsprojekten mit anwendungsbezogenen, schulrelevanten Themen
- können ihre bildungswissenschaftlichen, fachlichen, fachdidaktischen und methodischen Kompetenzen im Hinblick auf konkrete Theorie-Praxis-Fragen integrieren und anwenden

davon Schlüsselqualifikationen

- interdisziplinäres Verstehen, Fähigkeit verschiedene Sichtweisen einzunehmen und anzuwenden
- Organisationsfähigkeit, realistische Zeit- und Arbeitsplanung
- Erschließung, kritische Sichtung und Präsentation von Forschungsergebnissen
- Professionelles Selbstverständnis des Berufes als ständige Lernaufgabe

Prüfungsleistungen im Modul
Stellenwert der Modulnote in der Fachnote
Das Modul wird nicht benotet

Modulname	Modulcode	
Professionelles Handeln wissenschaftsbasiert weiterentwickeln	PHW_MA_ G	
Veranstaltungsname	Veranstaltungs	code
Professionelles Handeln wissenschaftsbasiert weiterentwickeln aus der Perspektive des nicht vertieften Lernbereichs Mathematik	PHW_MA_ G_N	V
Lehrende/r	Lehreinheit	Belegungstyp (P/WP/W)
Alle Lehrenden der Didaktik der Mathematik	Mathematik	Р

Vorgesehenes Studiensemester	Angebotshäufigkeit	Sprache	Gruppengröße
4	Jedes Semester	deutsch	25

SWS	Präsenzstudium	Selbststudium	Workload in Summe	
1	15 h	45 h	60 h	

Seminar

Lernergebnisse / Kompetenzen

Die Studierenden

- kennen Forschungsmethoden der Mathematikdidaktik sowie deren methodologische Begründungszusammenhänge und können auf dieser Grundlage Forschungsergebnisse in der Mathematikdidaktik rezipieren,
- haben vertiefte Kenntnisse über den Aufbau und Ablauf von mathematikdidaktischen Forschungsprojekten mit anwendungsbezogenen, schulrelevanten Themen,
- können ihre mathematischen und mathematikdidaktischen Kompetenzen im Hinblick auf konkrete Theorie-Praxis-Fragen integrieren und anwenden.

Inhalte

- Besprechung ausgewählter Forschungsarbeiten
- Anwendung von Forschungsergebnissen auf Lernexperimente

Literatur

Wird semesterweise nach den jeweiligen Forschungsschwerpunkten ausgewählt.

Modulname	Modulcode
Masterarbeit	MA_Arbeit
Modulverantwortliche/r	Fachbereich
Studiendekan	Mathematik

Zuordnung zum Studiengang	Modulniveau: BA/MA
Master of Education	Master

vorgesehenes Studiensemester	Dauer des Moduls	Modultyp (P/WP/W)	Credits	
4	1 Semester	Р	20 Cr	

Voraussetzungen laut Prüfungsordnung	Empfohlene Voraussetzungen	
erfolgreicher Abschluss des Praxissemesters und Erwerb weiterer 35 Credits		

Zugehörige Lehrveranstaltungen:

Nr.	Lehr-und Lerneinheiten	Belegungstyp	Workload
I	Verfassen einer wissenschaftlichen Arbeit im Umfang von maximal 70 Seiten, innerhalb einer Frist von 15 Wochen	Р	600 h
Sur	Summe (Pflicht und Wahlpflicht)		

Lernergebnisse / Kompetenzen

Die Studierenden

- können innerhalb einer vorgegebenen Frist selbstständig eine wissenschaftliche Aufgabenstellung lösen und ihre Ergebnisse angemessen darstellen
- wenden wissenschaftliche Arbeitstechniken an: sie k\u00f6nnen sich erforderliche theoretische Hintergr\u00fcnde anhand von Fachliteratur erarbeiten und auf dieser Grundlage Forschungsergebnisse rezipieren
- können ihre vertieften bildungswissenschaftlichen, fachlichen, fachdidaktischen und methodischen Kompetenzen anwenden

davon Schlüsselqualifikationen

• Erschließung, kritische Sichtung und Präsentation von Forschungsergebnissen

Prüfungsleistungen im Modul

Verfassen einer wissenschaftlichen Arbeit

04 11 4		R 4 I			
Stellenwert	aer	Modn	inote	ın der	Lachnote

20/120