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The Development of Automaticity in Short-Term Memory Search:

Item-Response Learning and Category Learning

Rui Cao, Robert M. Nosofsky, and Richard M. Shiffrin

Indiana University Bloomington

In short-term-memory (STM)-search tasks, observers judge whether a test probe was present in a short list of
study items. Here we investigated the long-term learning mechanisms that lead to the highly efficient
STM-search performance observed under conditions of consistent-mapping (CM) training, in which targets
and foils never switch roles across trials. In item-response learning, subjects learn long-term mappings
between individual items and target versus foil responses. In category learning, subjects learn high-level codes
corresponding to separate sets of items and learn to attach old versus new responses to these category codes.
To distinguish between these 2 forms of learning, we tested subjects in categorized varied mapping (CV)
conditions: There were 2 distinct categories of items, but the assignment of categories to target versus foil
responses varied across trials. In cases involving arbitrary categories, CV performance closely resembled
standard varied-mapping performance without categories and departed dramatically from CM performance,
supporting the item-response-learning hypothesis. In cases involving prelearned categories, CV performance
resembled CM performance, as long as there was sufficient practice or steps taken to reduce trial-to-trial
category-switching costs. This pattern of results supports the category-coding hypothesis for sufficiently
well-learned categories. Thus, item-response learning occurs rapidly and is used early in CM training;
category learning is much slower but is eventually adopted and is used to increase the efficiency of search

beyond that available from item-response learning.

Keywords: memory search, recognition, response time, short-term memory, long-term memory

Memory researchers tend to focus on either episodic memory for
recent events or long-term learning, but of course learning can and
does occur even in episodic short-term-memory (STM) tasks. In this
article, we study learning that occurs in certain variants of the memory
search task popularized by Sternberg (1966): A short list of items is
presented in sequence, followed by a test probe that is either a “target”
from the list or a “foil” not from the list. Performance is generally
highly accurate, and the primary data of interest are the way response
time varies with the size of the list, termed the set-size effect. In the
typical paradigm, the stimuli that are targets on one trial are foils on
another, and vice versa, a method termed varied mapping (VM) by
Schneider and Shiffrin (1977). In such a paradigm, response time rises
more or less linearly as set size increases (errors are low but also
increase with set size). Sternberg (1966, 2016) proposed serial-
exhaustive search of the list set to explain the findings observed under
his conditions of testing. Other research that increased presentation
rates and shortened the delay between list presentation and test as
provided evidence for alternative models, in which response time is
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largely determined by lag or recency of the test item (e.g., McElree &
Dosher, 1989; Monsell, 1978; Nosofsky, Little, Donkin, & Fific, 2011).

This article uses a memory search paradigm but focuses on a
different question: What sorts of long-term learning contribute to
performance in different variants of the task? In the typical VM
paradigm, an item might serve as a target on one trial, thereby
producing some learning that that item is a target. But on other trials
the same item might serve as a foil, pushing learning in the other
direction. This inconsistency would lead to memory interference (e.g.,
Nosofsky, Cox, Cao, & Shiffrin, 2014) and/or suppress long-term
learning. As a result, in a VM paradigm, performance tends to rely
primarily on retrieval of items from only the current list held in
short-term memory, and the set-size effect tends to retain its magni-
tude as training continues.

However, VM is not the only memory search paradigm. Shiffrin
and Schneider (1977), in their hybrid memory search/visual search
procedure, also used consistent mapping (CM). In CM the targets
remain targets on every trial, and foils remain foils on every trial. As
training proceeds, it is evident that some form of learning has taken
place: Subjects perform faster with fewer errors and, most important,
the slope of the set-size function drops toward zero, a result suggest-
ing an increasing reliance on a process other than retrieval from a list
held in STM (see also Logan & Stadler, 1991). Indeed, CM perfor-
mance is often considered a hallmark example of the development of
forms of automaticity in cognition (for extensive converging evi-
dence, see Schneider & Shiffrin, 1977, and Shiffrin & Schneider,
1977). Thus, it is important to develop a deeper understanding of the
mechanistic bases for CM learning.

In a CM paradigm, at least two types of long-term learning can take
place. First, the observer may learn that a given item always has the
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response “target” (or always has the response “foil”"). We refer to this
form of learning as “item-response learning,” a mechanism that serves
as a core component of Logan’s (1988) influential theory of the
development of automaticity. Nosofsky, Cao, Cox, and Shiffrin
(2014) examined cases in CM and VM training in which the same foil
was repeated across consecutive trials. Whereas this manipulation led
to massive interference in VM, if anything there was slight facilitation
in CM. This facilitation in CM is consistent with the view that
observers were forming memories of the actual item-response map-
pings (i.e., target vs. foil), rather than responding solely based on a
simple increase in stimulus familiarity (for converging evidence in the
domain of hybrid visual/memory search, see Wolfe, Boettcher, Jo-
sephs, Cunningham, & Drew, 2015).

A second potential form of learning in CM is learning that all the
target items are the members of a single category with a common
(perhaps implicit) label and that all the foil items are members of a
separate category (e.g., Cheng, 1985; Logan & Stadler, 1991; Sch-
neider & Shiffrin, 1985; Shiffrin & Schneider, 1977). The latter kind
of learning is typical of concept and category learning that takes place
in life after a great deal of experience—a category label encodes a
category, and the encoding involves more than standing for a list of
the category members. Examples of such categories include animal,
letter, and number. In the CM paradigm, once observers learn the
categories, they can then respond “old” or “new” by determining the
category to which the test item belongs, without the need to search
the memory set presented on the current trial. Use of learned catego-
rization could thereby eliminate the memory search set-size effect.

Crucially, in their hybrid visual memory search paradigms, Shiffrin
and Schneider (1977) observed greatly enhanced CM performance
(compared to VM performance) even in cases in which targets and
foils were grouped into arbitrary categories, albeit after a great deal of
training. Likewise, in pure memory-search paradigms, Nosofsky,
Cox, et al. (2014) also used arbitrary categories and observed similar
forms of enhanced CM performance, even at early stages of practice.
In the present article, we examine memory search both for categories
made up initially of arbitrarily related items and for existing well-
learned categories.

In sum, in a CM paradigm, performance could come to rely on
either item-response learning or category learning. In the former,
given some test item, a response could be based on the learned
response (“‘old” or “new”) to that particular item. In the latter, the
item could be coded as a member of a newly learned category, and
the response based on a response to the category label. Note that
in both cases, the speed of the response would not depend on the
size of the current memory set.

In the present research, our key theme is to try to distinguish
between the two types of learning mechanisms by making use of
categorized varied mapping (CV). In this paradigm, there are two
groups of items; all items within each group are always assigned to the
same role on a given trial, but the roles switch from trial to trial. For
example, for ease of description, suppose the two sets are letters and
numbers: On one trial the memory set might be chosen from the
numbers and a foil from the letters, and on another trial the memory
set from the letters and a foil from the numbers. Thus, the memory set
and foil are always from different categories, but the categories switch
roles across trials. Obviously, item-response learning cannot take
place in CV, because the mapping of a given item to a response
changes from trial to trial. The critical point is that category learning
can take place in CV because the items of a given category are

consistently assigned together, whether the response is a target or foil.
Thus, if the test item belongs to the same category as the memory-set
items, then it must be a target, whereas if it belongs to the alternative
category, then it must be a foil.

If category encoding is not learned, then because item associations
cannot be used, the CV results should align closely with VM, with
both showing large set-size effects. But to the extent that category
encoding is learned and used, then set-size effects should drop. To
repeat the logic, the observer need only note the category of the
memory set and then check to see whether the category of the test
item matches. This strategy would produce a binary decision unre-
lated to the number of items presented.

Thus, in the present research we tested between the item-response-
learning and category-learning possibilities by conducting memory
search tasks involving VM, CM, and CV training. Although Shiffrin
and Schneider (1977) included a CV condition in one of their studies,
it was conducted in the context of a hybrid memory/visual search
paradigm that used prelearned categories and highly practiced observ-
ers. By contrast, in our Experiment 1 we use CV in an attempt to
unravel the mechanisms underlying varied forms of memory search at
early stages of practice and with arbitrarily assigned pictures as
categories. Although many classic studies of the development of
efficient memory and visual search involve paradigms with extensive
practice, Nosofsky, Cox, et al. (2014) observed markedly more effi-
cient CM memory search than VM memory search after relatively
few practice trials. Thus, obtaining a deeper understanding of the
multiple long-term learning mechanisms that may underlie efficient
memory search requires examination of performance at early stages of
practice as well. Our primary focus in the present set of studies is on
these early stage practice effects.

To anticipate, our initial results point strongly in favor of the
item-response-learning hypothesis just described, because CV perfor-
mance involving arbitrary categories is closely aligned with VM
performance and is dramatically worse than CM performance. How-
ever, our further investigations to test for a role of category learning
revealed some factors that complicate the story. Resolving these
complicating factors will motivate us to conduct further experiments
with more intricate manipulations that will provide a great deal more
information concerning the mechanisms that play a role in VM, CM,
and CV memory search. We describe these mechanisms in the Gen-
eral Discussion section following our presentation of the complete set
of experimental results.

Experiment 1

Each subject was trained in VM, CM, or CV memory search
conditions for five blocks of 25 trials each.! Set size was 2, 4, or
8, randomly varying from trial to trial.

! To explore the role of initial type of training on performance under new
item-response-mapping conditions, we then transferred subjects to two
blocks of either CM or CV conditions, using the same stimuli as in training.
However, the transfer results were difficult to interpret and not the central
focus of the present research, so we do not discuss them in this article. In
brief, subjects switched to CM versus CV turned out to have, by happen-
stance, significantly different baseline performances in the original mem-
ory search training conditions. The different baselines made it difficult to
interpret and draw strong conclusions regarding the patterns of perfor-
mance in the various transfer conditions.
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Method

Subjects. In the first experiment, 175 undergraduate students
from Indiana University participated to fulfill an introductory
psychology class requirement: 36 in VM, 69 in CM, and 70 in CV.
(The different number of subjects in the conditions was due to the
transfer manipulation that we mentioned in footnote 1.)

Stimuli. The stimuli were drawn from a pool of 2,400 unique
object images obtained from the website of Talia Konkle and
described by Brady, Konkle, Alvarez, and Oliva (2008). Each
image subtended a visual angle of approximately 7 degrees and
was displayed on the center of a gray background. The experiment
was conducted with MATLAB’s Psychophysics Toolbox (Brain-
ard, 1997) on personal computers.

Procedure. In all conditions, half the tests were targets and
half foils. For each subject, 16 stimuli were randomly sampled
from the 2,400 images. On each trial in the VM condition a
memory set of 2, 4, or 8 items was randomly sampled from the
16-stimulus set. Targets were randomly chosen from the memory
set; foils were randomly chosen from the remaining items in the
16-item set. Thus, in the VM condition, items were not grouped
into categories and were mapped in varied fashion to target and
foil responses. In the CM condition, eight stimuli were randomly
drawn from the 16-stimulus set; memory sets were randomly
chosen from these same eight on every trial. Targets were ran-
domly chosen from the memory set. Foils were randomly selected
from the remaining eight items. Thus, throughout the CM condi-
tion, items were grouped in consistent categories and were also
mapped consistently to target and foil responses. In the CV con-
dition, two sets of eight stimuli were selected from the 16; these
sets were termed A and B. The memory set on each trial was
selected from either A or B, with A or B chosen randomly on each
trial. A target would be chosen randomly from the memory set, and
a foil would be chosen randomly from the eight-item set not
providing the memory set. Thus, the items remained grouped in
consistent categories throughout the condition but had varied map-
pings to target and foil responses.

For each trial, a fixation point (asterisk) appeared in the center
of the screen for .1 s to indicate the start of that trial. Then each of
the memory-set items was presented sequentially for 1 s, followed
by .1-s interstimulus intervals. After a 1-s retention interval of a
blank screen, a second fixation point (a plus sign) was presented
for .5 s, followed by the test probe. The test probe remained on the
screen until subjects responded (J key = “old,” F key = “new”).
Feedback was then provided on screen for 1 s to indicate whether
the response was correct. Subjects were instructed to respond as
rapidly as possible while minimizing errors.

Results

The top panel in Figure 1 shows median response times for
correct responses for each condition and each set size, averaged
across subjects; the lower panel shows probability of an error for
each condition and set size, averaged across subjects. Both panels
show results averaged across Blocks 2-5 (the first block was
considered practice). Data from trials with response times less than
180 ms or greater than 4,000 ms were excluded from these anal-
yses (less than 1% of the data).

Probably due to the use of pictures as stimuli, the error rates in
VM were somewhat higher than is usually found when the stimuli
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Figure 1. Experiment 1: Median correct response times (RTs; top panel)

and probability of error (bottom panel) plotted as a function of condition
(CM, CV, and VM), old—new status of probe, and set size. CM =
consistent mapping; CV = categorized varied mapping; VM = varied
mapping; prob = probability. Bars indicate standard error of the mean.

are numbers or letters. These error rates are high enough to be
considered outcomes of the memory retrieval process (rather than,
say, accidental button presses) and should provide evidence con-
sistent with the response time data.

The data pattern in the CM and VM conditions is consistent with
patterns observed in many previous studies, including those in our
previous articles (e.g., Nosofsky, Cao, et al., 2014; Shiffrin &
Schneider, 1977). CM error rates were low, and CM response
times were short. In addition, CM response times varied only
slightly (and inconsistently) with changes in set size. VM errors
and response times increased strongly with set size. Errors were
generally higher and response times much longer than found in
CM. Such results were expected and serve as baseline results for
comparison with the CV condition.

The middle column in the top and bottom panels of Figure 1
shows the CV data. These data are similar to the VM data in the
right column, both showing similar set-size effects; the pattern of
results is markedly different from that for CM in the left column.
Because the set-size effect is the major measurement of impor-
tance for the condition comparisons, we fit linear regression func-
tions to both the response-time data and error-probability data
based on set size for each subject. We then performed a 3 X 2
mixed-model analysis of variance (ANOVA) on the set-size func-
tion slopes using conditions (CM, CV, and VM) and test-probe
types (“old” and “new”) as factors. For response time, the condi-
tion manipulation was significant, F(2, 172) = 25.93, MSE = 886,
p < .01. Pairwise comparisons revealed significant differences in
slopes for CM versus CV, F(1, 138) = 48.99, p < .01, and CM
versus VM, F(1, 102) = 35.85, p < .01. The difference between
CV and VM did not approach statistical significance, F(1, 104) <
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1. For probability of errors, the condition manipulation overall was
also significant, F(2, 173) = 69.36, MSE = .00029, p < .01, and
the pairwise comparisons showed the same pattern of results as for
the RTs: F(1, 138) = 124.9, p < .01, for CM versus CV, and F(1,
102) = 93.95, p < .01, for CM versus VM. Again, the CV versus
VM difference did not approach statistical significance, F(1,
104) < 1.

Discussion

The VM results are standard; they exhibit strong set-size effects,
presumably because long-term learning of all sorts is suppressed.
Thus, responding is based on storage of the memory set in STM
coupled with retrieval that depends on set size (likely because of
retrieval processes that depend on lag or serial position; see, e.g.,
Nosofsky, Cox, et al., 2014). The CM results are also standard
(e.g., Schneider & Shiffrin, 1977), albeit perhaps surprising, in that
the pattern is found so early in training. It is reasonable to conclude
that stimulus-to-response item learning occurred rapidly in CM
training, presumably in Block 1 or shortly thereafter, thereby
providing a basis for responding independent of set size. Presum-
ably the memory set can be ignored and the response can be based
on the learned assignment (foil or target) of each test item.

Most important, because the CV results strongly resemble the
VM results, and depart dramatically from the CM results, a rea-
sonable initial conclusion is that categorical encoding has not been
used as a basis for responding in CV. It seems likely that categor-
ical encoding has not been learned. (Although it is conceivable that
such learning took place but was not used to govern responding,
this possibility seems unlikely because subjects usually adopt
response methods that minimize cognitive effort.) Finally, the
dramatically better performance in the CM condition compared to
VM and CV suggests that item-response learning can operate at
early stages of training to yield highly efficient CM memory
search.

We emphasize that these conclusions are tentative ones, based
on our reasoning involving the nature of the CV paradigm and its
relation to VM and CM. As will be seen, the next experiment
(Experiment 2) reveals some complicating factors involving CV
memory search that we had not anticipated. We address these
complicating factors in Experiment 3, the results of which confirm
the main conclusions reached in Experiment 1 and provide more
detailed information concerning the mechanisms that underlie
these varied forms of memory search.

Experiment 2A

Whereas Experiment 1 suggests that the greatly enhanced CM
performance at early stages of practice is due to item-response
learning, in the present experiment we addressed the question: Are
categorical codes ever learned and used to govern responding in
memory search? One way to assess the use of categorical codes in
CV is to employ the use of already well learned categories. Our
reasoning is straightforward: If the category codes already exist
and do not need to be learned, then subjects should be able to
employ the category-coding strategy at the onset of CV training.
This approach is the basis for Experiments 2A and 2B, which use
letters and numbers. For both CM and CV, the two categories for
the stimuli were letters and numbers, whereas the stimuli were all

drawn from letters for the VM condition. Our prediction was that
CV performance would now strongly resemble CM and depart
dramatically from VM.

Logan and Stadler (1991) used the letter and number stimuli in
CM but included “catch trials” toward the end of each session:
When the memory set was, say, letters, and another letter not in the
set occurred as a foil, there was a high tendency to respond “old,”
consistent with a categorical basis for responding. Our Experiment
2 may provide converging evidence for Logan and Stadler’s con-
clusions regarding the use of category coding.

Method

Subjects. In this experiment, 70 undergraduate students from
Indiana University participated to complete course credit. There
were 23 subjects in the CM condition, 24 subjects in the CV
condition, and 23 subjects in the VM condition.

Stimuli. The stimuli were the English alphabet set and single-
digit number set, excluding O, I, 1, and 0 to avoid confusion. The
letters were all capital letters. The stimuli were presented in the
center of the computer screen in Courier font size 40.

Procedure. In all conditions, subjects each had seven blocks
of training, with 25 trials per block. The procedures matched those
in Experiment 1 in most respects—set sizes were again 2, 4, and 8.
In the CM and CV conditions, a letter-category set was created by
randomly selecting eight letters from the total letter set for each
subject. The number-category set was the same for every subject
and contained the numbers two to nine. In the VM condition, a set
of 16 letters was randomly selected from the letter set for each
subject.

In the VM condition, on each trial, the memory set was ran-
domly sampled from the 16-item set and the foil randomly sam-
pled from the remaining letters. In the CM condition, the memory
set was always randomly sampled from the letter-category set.
Foils were randomly sampled from the number-category set. In the
CV condition, on each individual trial, the memory set was taken
from either the letter category or the number category. If the test
item was a foil, then it was chosen from the other set. All other
aspects of the procedure were the same as in Experiment 1.

Results

Although we expected memory search for letters and/or num-
bers to be easy, that did not turn out to be case for all subjects. We
explored various criteria for eliminating poorly performing sub-
jects—none changed the pattern of results, but the least noisy
results were found when we used a criterion that eliminated the
worst performing six subjects in CV, three subjects in VM, and
two subjects in CM—overall accuracy less than 0.7 and/or median
response time (RT) greater than 1,200 ms in the CV and VM
conditions; median RT greater than 1,000 ms for the CM condi-
tion. For the remaining subjects, there were no trials with response
times shorter than 180 ms or longer than 4,000 ms. As in Exper-
iment 1, we considered Block 1 as practice and next report the
results for all the subsequent blocks.

The results are shown in Figure 2 using the same format as for
Experiment 1. CM and VM showed the usual patterns, with the
set-size functions being nearly flat for CM but increasing steeply
for VM. To our surprise, however, rather than strongly resembling
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Figure 2. Experiment 2A: Median correct response times (RTs; top
panel) and probability of error (bottom panel) plotted as a function of
condition (CM, CV, and VM), old—new status of probe, and set size. CM =
consistent mapping; CV = categorized varied mapping; VM = varied
mapping; prob = probability. Bars indicate standard error of the mean.

CM, a better summary is that the CV results were overall inter-
mediate between CM and VM performance. Indeed, for the RTs,
the CV results seem more similar to those for VM than for CM
(although the RT data were noisy). The error data seem more
similar overall to those for CM than for VM, but even here there
was a clear set-size effect for the old items. We again performed
a 3 X 2 mixed-model ANOVA on the set-size function slopes
using conditions (CM, CV and VM) and test-probe types (old and
new) as factors. Overall, the condition manipulation was signifi-
cant for both RTs and error rates: RT: F(2, 56) = 12.13, MSE =
641, p < .01; probability of error: F(2, 56) = 33.73, MSE =
.00017, p < .01. Pairwise comparisons indicated that CV was
significantly different from both CM and VM for probability of
errors: CV vs. CM: F(1, 37) = 15.25, p < .01; CV vs. VM: F(1,
36) = 15.94, p < .01. For response time, CV is significantly
different from CM, F(1, 37) = 8.94, p < .01, but not from VM,
F(1, 36) = 2.14, p = .15. As expected, performance for CM was
significantly different from that for VM for both response time,
F(1, 39) = 71.04, p < .01, and probability of errors, F(1, 39) =
36.59, p < .01.

These results indicate some difficulty in using the well-learned
categories of letters and numbers to govern responding in CV, at
least for some subjects and some trials. It is possible that the
switching of response assignments from trial to trial is confusing
and inhibits efficient use of a categorical strategy for responding.
An analysis by blocks was quite noisy but seemed to indicate a
trend for the CV results to move farther from the VM pattern as
blocks continued.

We decided, therefore, to conduct a similar study with longer
periods of CV training. Four full sessions of CV training were
followed by two sessions of CM training with the same stimuli.

Experiment 2B

We tested four subjects using the same procedure as in the CV
conditions of Experiment 2A. The subjects were tested for four
sessions of seven blocks of 25 trials. The subjects then switched to
two sessions of CM, always drawing memory sets from each
subject’s letter category set. Subjects were paid $12 for the com-
pletion of each session.

Results

Figure 3 shows median response times (averaged across sub-
jects) for correct responses as a function of sessions, test-probe
type (old vs. new), and set size—the first four panels CV and the
last two CM. Because error rates were low (less than .05) for all set
sizes in all conditions, we do not show plots of the error functions.
The Session 1 RT results were much like the intermediate CV
results in Experiment 2A. However, Sessions 2, 3, and 4 show
results much like those for CM. In fact, the switch to CM for
Sessions 5 and 6 did not produce dramatic changes in performance
(RTs got slightly shorter, but error rates slightly increased).

Discussion

Why there should have been such a marked change in CV
performance, especially in the first two sessions, is not clear.
Perhaps it takes time to become accustomed to the constant switch-
ing from trial to trial. Perhaps it takes time to realize that an
alternative and more efficient response strategy is available. What-
ever the reasons for the slow switch, it is clear that categorical
coding as a strategy for performing CV memory search task
occurred with sufficient training (at least in cases involving pre-
learned categories).

Nevertheless, the Session 1 results involving CV memory search
with these prelearned categories leave somewhat unclear the in-
terpretation of our original Experiment 1 results. There, we found
that at early stages of practice, CV performance involving arbitrary
category sets closely resembled VM performance and departed
dramatically from CM performance. Our interpretation was that
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Figure 3. Experiment 2B: Median correct response times plotted as a
function of sessions (CV: 1-4, CM: 5-6), condition (CV, CM), old—new
status of probe, and set size. CM = consistent mapping; CV = categorized
varied mapping. Bars indicate standard error of the mean.
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subjects had not learned codes for the arbitrary category sets and
that item-response learning was the fundamental basis for the
enhanced CM performance. However, in Experiment 2, we found
that even with prelearned categories for which category codes
were readily available, CV performance departed significantly
from CM performance at the early stages of practice. Thus, a
logical possibility is that subjects were able to rapidly learn cate-
gory codes even for arbitrary sets in both CV and CM search and
that the early CV deficits arose because of the continual switching
of response assignments.

To disentangle these multiple factors and gain a deeper under-
standing of their joint role in memory-search performance, we
conducted Experiment 3, which attempted to control for switching
costs while also manipulating memory-search conditions (VM,
CM, CV) and whether the categories are arbitrary or prelearned.

Experiment 3

One aim of Experiment 3 was to continue to use the CV
paradigm as a vehicle for contrasting item-response learning ver-
sus category learning in memory search, while controlling for the
switching costs that seem to arise during the early stages of CV
practice. A second aim was to compare memory search involving
arbitrary and prelearned categories within the same experiment
and using the same types of stimuli. As is seen in this section, these
manipulations allowed us to draw stronger conclusions regarding
the long-term learning mechanisms that contribute to performance
in the memory-search task.

To control for switching costs, we conducted a “blocked” ver-
sion of the CV task in which the target set and foil set were held
fixed for 10 consecutive trials. The assignment of sets to target and
foil responses was then switched and held fixed for the next 10
consecutive trials, and so on, back and forth. Thus, just as in our
previous experiments, there were still two fixed categories of items
throughout the entire experiment, allowing for category coding in
the CV condition. In addition, just as in our previous experiments,
long-term item-response learning could take place because the
members of each category were assigned equally often to target
and foil responses. However, unlike in our previous experiments,
within each 10-trial sequence, there was ample opportunity for
subjects to become accustomed to which category was aligned
with target responses and which category was aligned with foil
responses (if such category coding had indeed occurred). We refer
to this condition as CV-blocked.

For purposes of comparison, we again tested a CM condition as
well as a VM condition. However, to gauge the extent to which
short-term forms of item learning can contribute to performance,
we tested two versions of the VM condition. One version was the
standard version in which the target and foil sets were randomly
selected anew on each individual trial. The second version was a
VM-blocked condition. Here, the target and foil sets remained
constant across 10-trial blocks, then were randomly resampled for
each subsequent 10-trial block (see the Method section for details).
The upshot is that there were no long-term categories that could be
learned in the VM-blocked condition, but short-term memory for
recently presented items was equated across the CV-blocked and
VM-blocked conditions.

Finally, in both the CV-blocked and CM tasks, we tested con-
ditions involving arbitrary category sets as well as prelearned

category sets. Holding stimulus types fixed across conditions, the
prelearned categories were pictures of small animals versus small
human-made objects. Naturally, we expected that subjects could
make easy use of category codes in the conditions involving
prelearned categories. Thus, assuming that our blocking manipu-
lation would remove switching costs, then the prediction was
that the set-size functions should be nearly flat in the CV-
blocked condition with prelearned categories, even during the
early stages of practice. Furthermore, CV-blocked performance
with prelearned categories should resemble CM performance.
The critical question concerned the nature of the -size functions
in the CV-blocked condition with the arbitrary categories. If
category coding developed early, then the set-size functions
should be flat in the CV-blocked condition with arbitrary cat-
egories as well. However, if item-response learning is the main
basis for enhanced CM performance with arbitrary categories
(at early stages of practice), then performance in the CV-
blocked condition with arbitrary categories should instead re-
semble VM-blocked performance. Finally, we could gauge the
extent to which STM for recently presented items from previous
lists might contribute to performance by comparing CV-
blocked and VM-blocked to standard VM.

Method

Subjects. The subjects were 114 undergraduate students from
Indiana University who participated in partial fulfillment of an
introductory psychology course requirement.

Stimuli. The stimuli consisted of 32 unique pictures of small
animals and small man-made objects (16 of each category) from
Konkle’s website and described in Konkle and Caramazza (2013).
(The website contains 60 pictures from each category. We chose
16 of each with the aim of including distinct subtypes of each
category as well as eliminating certain animals that seemed likely
to arouse emotional reactions, such as snake, rat, and spider). Each
image subtended a visual angle of approximately 7 degrees and
was displayed in the center of a gray background. The experiment
was conducted with MATLAB Psychophysics Toolbox (Brainard,
1997) on personal computers.

Procedure. Subjects were randomly assigned to one of the six
conditions described in the introduction to this experiment (CV-
blocked arbitrary, CV-blocked prelearned, CM arbitrary, CM pre-
learned, VM-blocked, and VM standard). In all conditions, (a)
there were five blocks of trials with 30 trials per block; (b)
memory-set size was 2, 4, or 8, randomly determined on each trial;
and (c) the type of test probe (old vs. new) was also randomly
determined on each trial.

In the conditions involving the prelearned categories (CM pre-
learned and CV-blocked prelearned), for each subject, eight items
from the object set and eight items from the animal set were
randomly selected. In the CM condition, for each subject, either
the object set or the animal set was randomly chosen to serve as the
target set throughout the experiment. The other set would serve as
the foil set. The CM procedure was then just as described in our
previous experiments.

At the start of the CV-blocked (prelearned) condition, either the
object set or the animal set would be randomly chosen to serve as
the target set, with the other set serving as the foil set. This
assignment stayed fixed for 10 trials. The assignment of categories
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to target and foil sets would then switch and be held constant for
the next 10 trials, and so on for the remainder of the experiment.
In all other respects, the CV-blocked condition was the same as
described in our previous experiments.

In the conditions involving the arbitrary categories (CM arbi-
trary and CV-blocked arbitrary), the stimuli were all chosen from
one of the prelearned categories (objects or animals), randomly
determined for each subject. Half the items were randomly as-
signed to Category A and the other half to Category B. In the CM
condition, Category A would serve as the target set and Category
B as the foil set throughout the experiment. In the CV-blocked
condition, the assignment of the A and B items to the target and
foil sets would switch every 10 trials, just as described earlier for
the CV-blocked prelearned condition. We decided to use a single
prelearned category to form each of the A and B sets (rather than
randomly sampling from both categories) so that subjects would
not have strong prior beliefs about which items should be grouped
together.?

In the VM conditions, one of the prelearned categories was
randomly chosen to serve as the full set of stimuli throughout the
experiment. At the start of the VM-blocked condition, eight of the
16 items were randomly assigned as Set A, and the remaining eight
items as Set B. Set A would serve as the target set, and Set B as
the foil set for 10 consecutive trials. In the next block of 10 trials,
a new set of randomly sampled items would serve as Set A and the
remaining items as Set B. (Thus, there were no permanent arbitrary
categories; instead, although the target and foil sets remained fixed
for 10 trials, their composition changed randomly in each subse-
quent sequence of 10 trials.) To remove accidental runs of near-
permanent categories, we constrained the sampling such that half
the items assigned as targets in one block would serve as foils in
the next block. Finally, in the VM-standard condition, the
memory set was randomly sampled from the full set on each
trial, and a foil would be randomly sampled from all remaining
items. A schematic illustration of the full set of conditions is
provided in Figure 4.

Other details of the procedure were the same as described in
Experiment 1. Subjects received no explicit instructions about the
10-trial sequences in the CV-blocked and VM-blocked conditions.

Results

The first block was considered practice and was excluded from
all the following data analyses. Data from trials with RTs less than
180 ms or greater than 4,000 ms were also excluded from these
analyses (1.2% of the data).

To begin, we first examined performance in the CV-blocked
condition with prelearned categories as a function of trials in the
10-trial sequences. These results are plotted in Figure 5, separately
for the new and old test probes, with the top panel showing the
median RTs and the bottom panel the error probabilities, averaged
across subjects. Although performance for the old test probes did
not change systematically across the 10-trial sequences, perfor-
mance on the new test probes improved, particularly from the first
three trials to the following trials. Based on these results, we
decided to exclude the first three trials of each 10-trial sequence in
all remaining analyses across all conditions.

The median correct RTs are plotted as a function of condition,
test-probe type (old vs. new), and set size in Figure 6. The error

CM condition
Set A: positive set Set A: positive set Set A: positive set
Set B: negative set Set B: negative set Set B: negative set
cv-Blocked condition

Set A: positive set Set B: positive set

Set A: positive set
Set A: negative set Set B: negative set
VM-Blocked condition
Random 8 items: positive set Random 8 items: positive set Random 8 items: positive set
Remaining 8 items: negative set Remaining 8 items: negative set Remaining 8 items: negative set

VM condition

DIMDIIMIINDD -

Figure 4. A schematic illustration of the conditions in Experiment 3. In
both the blocked CV and blocked VM conditions, each color block repre-
sents a 10-trial sequence where memory sets are drawn from a positive set
that is fixed through the 10 trials and the set then changes for the next 10
trials. In the CM condition, the positive set was fixed across all trials. In the
VM condition, the set randomly changed for every trial. CM = consistent
mapping; CV = categorized varied mapping; VM = varied mapping. See
the online article for the color version of this figure.

Set B: negative set

data are plotted in Figure 7. In both figures, the results from the
conditions involving arbitrary categories are plotted in the left
columns, whereas the results involving the prelearned categories
are plotted in the right columns.

To begin, note that performance in the CM conditions was
clearly better than in all remaining conditions and that the CM
set-size functions are generally nearly flat. (In cases in which there
are slight changes in CM performance with set size, the changes
are inconsistent across the new and old items.) Second, as ex-
pected, overall performance was worst in the standard VM condi-
tion, with the set-size functions for both RTs and errors steeply
increasing. The set-size functions also increased in the VM-
blocked condition, although performance in this condition was
somewhat better than in the standard VM condition (see the
discussion later).

The key results of interest involve performance in the CV-blocked
conditions and how performance in these conditions related to per-
formance in the other conditions. First, note that in the case involving
prelearned categories (right panels), the set-size functions in the
CV-blocked condition are flat for the new items and increase only
slightly for the old items. Apparently, once switch costs were reduced
through use of the blocking procedure, subjects were able to make far
better use of the category-coding strategy as a basis for performing the
task (compared to the early stages of practice in Experiment 2). By
contrast, in the case involving the arbitrary categories, the set-size
functions in the CV-blocked condition are generally steeply increas-
ing (the single exception is the error-probability function for new
items). Indeed, in the case involving arbitrary categories, performance

2 A technical concern is the level of features that serve to discriminate
the prelearned categories and the arbitrary categories. A category code can
be regarded as a “high level” feature. It is conceivable that low-level
perceptual features might be available that separate the members of the
prelearned categories. No salient low-level features were apparent to us
upon visual inspection of the stimuli. Future research would be needed to
investigate this issue.
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Figure 5. Experiment 3: Median correct response times (RTs; top panel)
and probability of errors (bottom panel) plotted as a function of old—new
status of probe and position in the 10-trial sequences in the CV-blocked
condition with prelearned categories. CV = categorized varied mapping;
studyCon = study condition; prob = probability.

in the CV-blocked condition departed dramatically from CM perfor-
mance and was quite similar to performance in the VM-blocked
condition. Thus, it appears that observers were unable to use a
category-coding strategy at these early stages of practice in the CV-
blocked condition when the sets involved arbitrary categories. A
reasonable inference, therefore, is that the greatly enhanced early
practice performance in the CM condition in cases involving arbitrary
categories is based on item-response learning.

We conducted statistical analyses to confirm our descriptions of
the comparisons of performance across the arbitrary and pre-
learned conditions of the CV-blocked task. In these analyses, we
fitted least-squares regression lines to the set-size functions
yielded by each individual observer in each condition, separately
for the old and new test probes. The mean regression-line slopes
are displayed in Figure 8: The left panel displays the results for the
RTs, and the right panel displays the results for the error proba-
bilities. Except for the case involving error probabilities for new
items, the mean set-size slopes are greater for the arbitrary cate-
gories than for the prelearned ones, and the prelearned slopes are
generally near zero. We conducted 2 X 2 ANOVAs on the
individual-subject set-size slope data, using condition (arbitrary vs.
prelearned) and test-probe type (old vs. new) as factors. There was
a main effect of condition for the RT data, F(1, 36) = 8.63, MSE =

arbitrary pre_learned
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Figure 6. Experiment 3: Median correct response times (RTs) plotted as
a function of condition (CM, blocked CV, VM, blocked VM), category
type (arbitrary vs. prelearned), old—new status of probe, and set size. Bars
indicate standard error of the mean across subjects. CM = consistent
mapping; CV = categorized varied mapping; VM = varied mapping.

695, p < .01, reflecting the steeper slopes in the arbitrary condition
compared to the prelearned condition. There was no main effect of
condition for the error-probability data, F(1, 36) = 2418, p =
.129, reflecting the lack of any effect for the new items. A focused
t test for the old items was significant in a one-tailed test: #(36) =
1.71, p = .048.

As we noted earlier, performance in the VM-blocked condition
was better than performance in the standard VM condition (and
performance in the CV-blocked condition with arbitrary categories
was similar to that for the VM-blocked performance). Because

arbitrary pre learned
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Figure 7. Experiment 3: Probability of error plotted as a function of
condition (CM, blocked CV, VM, blocked VM), category type (arbitrary
vs. prelearned), old-new status of probe, and set size. Bars indicate
standard error of the mean across subjects. CM = consistent mapping;
CV = categorized varied mapping; VM = varied mapping; prob =
probability.



is not to be disseminated broadly.

n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri
This article is intended solely for the personal use of the individual user anc

MEMORY SEARCH 9

Response Time ) ll;’ercentage of Error

w
o

N
o
N
o

% iz
3 : 205
810 e
o o
7] [}
2 I %00 + |
20 o
B’ -
5 520
30+ (0]
N N1s
(7] [
ko] D
®20 [ ?10
o o
o Q
1ol 05
0.0

arbiirary pre_léarned arbiirary pre_léarned

Figure 8. Comparison of subjects’ performance for arbitrarily assigned
categories (dark bars) and prelearned categories (light bars). Left panels:
Average set-size slopes of correct response times (msec) in the CV-blocked
conditions. Right panels: Average set-size slopes of percentage of error in
the CV-blocked conditions. Error bars indicate standard error of the mean
across subjects. CV = categorized varied mapping.

there were no long-term categories to be learned in the VM-
blocked condition and there was no possibility of long-term item-
response learning, it is apparent that the better performance in this
condition was due to memory for recent lists and test probes. In the
VM-blocked condition, within each 10-trial sequence, items main-
tained consistency in their assignments as positive versus negative
probes. Thus, there seem to be two related hypotheses to explain
the advantages of blocking in VM: (1) Item learning occurs rapidly
and is used in the latter stages of each block and (2) in nonblocked
VM, interference arises from immediately preceding trials that
have differing response assignments for the current-trial test item;
blocking removes this interference. The present evidence does not
provide a clear way to distinguish these hypotheses—although
item learning can occur quite quickly, it is not clear whether such
learning continues when the response assignments switch every 10
trials.

A final point to note is that, even in the case involving pre-
learned categories, overall performance in the CM condition was
better than in the CV-blocked condition (see the right panels of
Figures 6 and 7), although the set-size functions in both conditions
were nearly flat. It seems to be the case that consistent mappings
without switches provide an overall response-time benefit. This
result is consistent with a finding by Shiffrin and Schneider (1977,
Experiment 3); they found that for highly practiced observers
(roughly 24 sessions of training) engaging in hybrid visual/mem-
ory search, CM performance was better than CV performance.

General Discussion

Summary

The present research aimed to explore the combined, interactive
roles of short-term and long-term memory in probe-recognition
memory search. This issue was studied by exploring the long-term

learning mechanisms that lead to the highly efficient memory
search (flat set-size functions) observed under conditions of
consistent-mapping (CM) training. The basic idea is that the nor-
mal processes of checking the just-studied list of items held in
STM is supplemented by response mappings that are learned over
time and held in long-term memory. We distinguished between
two potential forms of long-term learning: item-response learning
versus category learning. In item-response learning, subjects learn
long-term mappings between individual items and target versus
foil responses. In category learning, subjects learn high-level codes
corresponding to separate sets of items and learn to attach old
versus new responses to these category codes. In an attempt to
distinguish between these two forms of learning, we tested subjects
in categorized varied mapping (CV) conditions: There were two
distinct categories of items, but the assignment of categories to
target versus foil responses varied across trials. Our reasoning was
that if the basis for efficient performance in the CM condition
relies solely on category learning, then CV performance should
closely resemble CM performance. By comparison, if item-
response learning is playing the major role, then CV performance
should resemble performance in standard varied-mapping (VM)
conditions, with CM performance being dramatically better than
both. Our subsequent experiments, however, revealed that some
more nuanced mechanisms are also involved.

We tested between these alternatives in three separate experi-
ments that used varieties of different stimuli, types of categories,
amount of training, and sequential relations among study-test lists.
In Experiment 1, the categories were composed of novel, arbi-
trarily assigned pictures, and we investigated performance during
a single session of testing. CV performance departed dramatically
from CM performance and strongly resembled VM performance,
providing initial support for the item-response-learning hypothe-
sis. In Experiment 2, we used prelearned categories composed of
letters versus digits for which it should be easy to use a category-
coding strategy to perform the CV memory-search task. Unexpect-
edly, however, we found that at early stages of practice, CV
performance remained worse than CM performance (although
better overall than VM performance). Apparently, the costs of
switching the assignments of categories to target and foil responses
from trial to trial interfered with the use of the category-coding
strategy. Because the same costs would be expected to have
occurred in Experiment 1, the original support for the item-
response-learning hypothesis in that earlier experiment was ren-
dered somewhat ambiguous.

Therefore, in Experiment 3, we conducted manipulations de-
signed to greatly lessen the CV switching costs by blocking across
10-trial sequences the assignment of categories to target and foil
responses. In addition, in this experiment, we held constant the
stimulus types across conditions and simultaneously manipulated
whether the memory-search task involved arbitrary versus pre-
learned categories. In the condition involving prelearned catego-
ries, CV performance now yielded flat set-size functions that
resembled those for CM performance. By contrast, in the condition
involving arbitrary categories, CV performance again departed
dramatically from CM performance and yielded steep set-size
functions that resembled those for VM performance. Thus, in this
latter condition, it appears that at the early stages of practice,
subjects did not form and use category codes corresponding to the
two separate, arbitrary sets of objects. A reasonable inference,
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therefore, is that at early stages of practice involving CM memory
search with arbitrary sets, the greatly enhanced performance is
indeed due to item-response learning and not category learning.

Relations to Other Work

Our results suggest that item-response learning plays a funda-
mental role in CM memory search and that it occurs rapidly. For
example, in our Experiment 3, just a few trials with consistent item
mappings led to clear benefits in both VM and CV performance
with arbitrary categories. A similar form of rapid item learning
appears to underlie repetition-priming effects in lexical decision
(Logan, 1990) and in a variety of classification tasks such
as relative-size classification (Dobbins, Schnyer, Verfaellie, &
Schacter, 2004; Horner & Henson, 2011). In a sample version of
the relative-size classification paradigm, subjects were instructed
to press one of two keys to indicate whether a test object was
larger than a reference object. Following initial testing, there was
a transfer phase in which the reference object was changed such
that the response judgment remained the same for some items
(congruent) but switched for other items (incongruent). The key
finding was that response times for congruent stimuli are much
faster compared to novel stimuli, whereas the effect is much
smaller or even reverses for incongruent stimuli (Horner & Hen-
son, 2011). A general interpretation is that these repetition-priming
effects arise from forms of rapid item-response learning as op-
posed to a general facilitation of visual classification processes
(because general facilitation would lead to better performances for
both congruent and incongruent stimuli). The results from these
repetition-priming classification tasks are consistent with our re-
sults, and it is possible that a similar item-response learning
mechanism accounts for the rapid performance improvement in
both tasks.

Subjects were slow to adopt the category-coding strategy in the
CV condition for well-learned categories in our Experiment 2.
Whereas item-response learning allows observers to form reliable
responses for individual items, the category-coding strategy could
lead to overgeneralization and produce false-alarm responses to
other stimuli in the category. Therefore, observers might be reluc-
tant to adopt the category-coding strategy at early learning stages
and utilize the strategy only when confident. For example, in
Experiment 3 of Logan and Stadler (1991), subjects received CM
training for well-learned categories (letters vs. numbers) in a
memory-search paradigm. At different stages of training, a catch
trial was inserted: A novel member of the target-set category was
presented as a new test probe (e.g., if targets were always letters,
a novel letter would be presented as a foil). Performance on
standard trials rapidly improved, but the false-alarm rate to catch
trials increased more slowly as the training progressed. This result
is consistent with the hypothesis that subjects learn and use item
responses quickly but learn and use category coding more slowly.
It is of course plausible that there are switch costs associated with
the training in our Experiment 2 (as suggested by the results from
our Experiment 3) and that could also have slowed the adoption of
a category-response strategy.

Future Research Directions

With sufficient practice or with designs that remove switching
costs, it is apparent that subjects can use the category-coding

strategy in CV tasks involving prelearned categories (Experiments
2 and 3). We hypothesize that the same pattern would eventually
be observed for the arbitrarily assigned picture stimuli once suf-
ficient category learning took place. It may be that category
learning for arbitrary groups of stimuli occurs more slowly than
does item-response learning because category learning is more
abstract and indirect, because the arbitrarily assigned stimuli be-
long to other preexisting natural categories or, more likely, both.

We should acknowledge that our logic involving the use of CV
for contrasting item-response versus category learning is not fool-
proof. Our assumption has been that in both CM and CV, the two
sets of items assigned to target and foil response are always
separated, so any learning that groups the items into categories
should proceed at roughly the same pace across the conditions. It
is possible to argue, however, that, for some reason, the asymmet-
ric method of separating the categories in CM, with one category
of items experienced frequently in the memory sets and the second
set experienced infrequently as foils, leads to more efficient cate-
gory learning than occurs in CV. Future research would be needed
to investigate this possibility.

Another goal of future research is to obtain converging evidence
for our conclusions regarding the role of long-term learning in CM
memory search. One approach that we find particularly intriguing
was reported by Carlisle, Arita, Pardo, and Woodman (2011).
These researchers conducted a paradigm in which observers en-
gaged in visual search for a single target that remained fixed across
trials. The expectation was that there would be a shift from a visual
working memory representation to a long-term memory represen-
tation for this single consistently mapped target. Carlisle et al.
(2011) observed a neurological signature of this shift by measuring
changes in the contralateral-delay activity of event-related poten-
tials across trials of the visual-search task. Perhaps such an ap-
proach could provide evidence of the forms of long-term item-
response learning that we hypothesize occurs in the context of the
present memory-search tasks that involve much larger sets of
consistently mapped targets.

Finally, it is important that formal models be developed that
capture the joint influence of item-response learning and category
coding in the development of automaticity in memory search.
There are a number of memory-search models designed to account
for how the history of experience with previous lists influences
performance on current lists (e.g., Banks & Atkinson, 1974; Lo-
gan, 1988, 1990; Nosofsky, 2016; Nosofsky, Cao, et al., 2014;
Nosofsky, Cox, et al., 2014). The emphasis in such models is on
evidence-accumulation processes driven by item retrieval. How-
ever, in the case of prelearned categories, and perhaps in the case
of arbitrary categories with highly practiced subjects, such models
would need to be extended to account for the role of category
coding in CV and CM memory search. It is an open question
whether the category-coding process might be modeled as simply
contributing to the same evidence-accumulation process that is
driven by retrieved items or whether some mixture-of-strategies
model might be needed to account for the data.

Conclusion

In sum, it appears that two mechanisms of long-term learning
may contribute to the efficient performance observed in consistent-
mapping memory search—item learning and category learning—
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and that the contributions of each mechanism follow different time
courses and vary with experimental conditions. Item learning is the
main driver of performance at early stages of practice involving
arbitrary categories, whereas category-coding strategies play an
important role in cases involving prelearned categories. It is an
open question whether category-coding processes may also con-
tribute in cases involving arbitrary sets at later stages of practice.
These results add to the theoretical understanding of the mecha-
nistic bases for CM performance, one of the hallmark examples of
the development of forms of automaticity in cognition.
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