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We present a theoretical framework and a simplified simulation model for the co-evolution of knowledge
and event memory, both termed SARKAE (Storing and Retrieving Knowledge and Events). Knowledge
is formed through the accrual of individual events, a process that operates in tandem with the storage of
individual event memories. In 2 studies, new knowledge about Chinese characters is trained over several
weeks, different characters receiving differential training, followed by tests of episodic recognition
memory, pseudo-lexical decision, and forced-choice perceptual identification. The large effects of
training frequency in both studies demonstrated an important role of pure frequency in addition to
differential context and differential similarity. The SARKAE theory provides a framework within which
models for various tasks can be developed; we illustrate the way this could operate, and we make the
verbal descriptions of the theory more precise with a simplified simulation model applied to the results.
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The processes involved in the accumulation of knowledge and
the formation of event memories are interdependent: Knowledge
grows from events experienced, and events are coded in terms of
existing knowledge. This is not only an old idea but seems self-
evidently true. It is a structural component of many neural net-
work/connectionist models (discussed later). Memory theorists
have, however, focused mainly on either event memory (episodic
memory, as Tulving, 1972, termed it) or semantic memory (access
to knowledge). This article therefore builds on traditional memory
theorizing, but looks at the larger picture, and illustrates (one way)
event memories and knowledge interact at all phases of storage,
coding, and retrieval. It does so with both a general theoretical
framework and a simplified simulation model.

The theory is informed by several studies; each study builds new
knowledge in an extended training task and then tests the effects of
that knowledge in three transfer tasks spanning the field of cog-
nition. The focus of these initial studies is differential experience:
Individual items are given widely differing amounts of training. In
these tasks, initially unknown Chinese characters are trained for
several weeks so that the cognitive system comes to develop a
simple form of perceptual knowledge. One training task, visual
search, builds knowledge about both the individual characters and
the context in which those characters are trained. The other train-
ing task, character matching, eliminates variation of the training
context. Frequency of character training was varied because fre-
quency of event occurrence produces some of the most reliable
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effects upon performance in almost all cognitive and behavioral
tasks, and according to the theory is the basis for knowledge
formation. In addition, the cause of frequency effects has hereto-
fore been a matter for debate.

To set the stage and motivate the studies and analyses to follow,
we lay out here in brief a few key elements of the theoretical
framework and models. A central goal is the presentation of a
coherent conceptual framework within which models can and
hopefully will be developed. An extremely simplified simulation
model is presented and fit to the experimental results, but its
purpose is neither to verify a task model by detailed quantitative
fitting nor to demonstrate one model quantitatively superior to
another, but rather to make precise the core concepts of the
approach and to show how the basic framework can be applied to
quite disparate tasks. In the General Discussion, we take up the
ways in which it would be necessary to form more realistic, albeit
more complex, models of the present tasks and a few others.

The theory is termed SARKAE, an acronym for “Storing and
Retrieving Knowledge and Events.” It is assumed that there are
(mostly separate) memory traces for events. What are events is a
complex matter, not yet explored very well by the field. We
discuss this matter at the end of the article, but for the simple
studies used as a basis for present theory development, it does no
harm and it is convenient to define events in terms of the stimuli
presented on each successive “trial.” The traces stored for such
events tend to be weak, imprecise, inaccurate, and impoverished.
Consider the first few times an event occurs, at the onset of
knowledge development. The first occurrence produces an event
trace. A later repetition of an event produces a new event trace.
There are three possibilities: (a) a new event trace is stored in
addition to the previous one; (b) the new event retrieves the earlier
trace, and if the two are similar enough, the new event and the
previous trace are combined into a single new trace; (c) both (a)
and (b) could occur. When an augmentation occurs and a trace
combines information from the present event with a similar pre-
vious event, the resultant trace gains in strength, accuracy, and
precision, in comparison to what would have been stored in an
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independent event trace. It is this augmentation process that grad-
ually causes the development of knowledge traces. Once a knowl-
edge trace of some strength has formed (as happens for words in
one’s language), it will generally be retrieved by another occur-
rence of a similar event (such as another encounter with that word),
and in such cases both a new event trace and an augmentation of
the knowledge trace will take place. In our model, therefore, there
is no hard and fast boundary between event traces and knowledge
traces: There is a continuum of traces from generally weak and
impoverished event traces at one end to very rich and developed
knowledge at the other end. Knowledge traces of words are usually
termed lexical traces, but there are knowledge traces for all types
of events at all levels of abstraction and complexity (e.g., a golf
swing, reading, poker playing).

When an event is encountered, it is always encoded with refer-
ence to retrieved knowledge. For example, when the visual form
“cat,” the auditory expression of that word, or a picture of a cat is
encountered, a cascade of retrieval processes occurs that among
other things will retrieve the lexical knowledge trace and various
aspects of the meaning of “cat.” This encoding information plus
various types of context will then be stored (incompletely and not
entirely accurately) as a new event trace. In addition, the devel-
oping knowledge trace will gain (some part of) this information,
particularly including the context that is specific to the current
event and not yet represented in the knowledge trace. The kinds of
information accessed, encoded, and stored are surely determined
by a variety of implicit and explicit attention processes, but these
are not the main concern of this article and are therefore only
mentioned incidentally in the exposition. In SARKAE, both event
traces and knowledge traces are represented as vectors of counts of
feature values (e.g., “red”) organized by feature types (e.g.,
“color”). As knowledge traces grow richer, the counts keep rising.

Because developed knowledge contains elements of all the
contexts associated with the events that produced the knowledge
trace, no one context stands out, and the knowledge appears to the
person retrieving the knowledge to be context free: We “know” but
do not associate the knowledge with a single life event.

The theory is applied with a very simplified computational
model fit to the data; however, the purpose is not to produce a
fleshed out model for each of the tasks but rather to make precise
the way a theory like the present one can be applied. The model is
applied to five very different tasks: visual search or physical form
matching (the two training tasks), pseudo-lexical decision (the
knowledge retrieval transfer task), episodic recognition memory
(the event memory transfer task), and two-alternative forced-
choice perceptual identification (the perception transfer task). The
studies had limitations on the amount of testing that could be
carried out without distorting the manipulations of training fre-
quency; this constraint produced insufficient data to make it rea-
sonable to apply and test a state-of-the-art quantitative model of
each task. The patterns of data were nonetheless informative, and
we shall see that our simplified simulation was able to capture the
qualitative trends in the data. In designing the simulation, we were
most interested in commonalities: Different tasks necessitate some
differences in assumptions, but all the tasks have many elements in
common and surely utilize many similar processes. To give just
one or two examples, a stimulus is presented and used as a probe
of knowledge in long-term memory; information is retrieved from
knowledge to build a representation in short-term memory; and the

information in short-term memory is used to store an event trace
and add to knowledge. Therefore, we kept the models as concep-
tually consistent as possible and kept parameters and their esti-
mated values constant across the various applications, whenever
such constancy was sensible.

In the first portion of the article, we describe some of the
background that gives rise to the theory and provide a summary of
SARKAE’s main assumptions and processes. Experience is the
basis for the formation of knowledge, so we then review some of
the relevant research on the effects of frequency of training. In the
second portion of the article, we report two training studies in
which novel knowledge is formed for Chinese characters that are
trained to differing degrees; training is followed by tests of event
memory and knowledge retrieval. Both studies revealed strong
frequency effects. According to the theory, the visual search train-
ing used in the first study could have induced frequency effects by
making traces of high frequency characters more similar to each
other (because they co-occurred during training). The second study
eliminated this co-occurrence factor by training with character
self-matching. Frequency effects were found nonetheless, leading
us to incorporate a role for “pure frequency” in the theory. The
next portion of the article makes the theory’s assumptions more
precise by instantiating them in a simulation model and showing
that such model captures the major trends in the data. Lastly, in the
General Discussion, we flesh out the theory and describe how one
might model other sorts of data from the present tasks and how the
theory might be used to form models for other tasks.

Background

The distinction between event memories and knowledge is an
old one, but most present day researchers refer to the distinction
laid out by Tulving (1972). He termed event memories episodic
and distinguished them from semantic memories. Tulving’s ideas
have of course evolved and become more complex over the years,
especially in light of many findings of cognitive deficits caused by
various brain abnormalities, and in light of studies using brain
measurements such as positron emission tomography (PET) and
functional magnetic resonance imaging (fMRI). One update of his
views was presented in summary form (Tulving, 1993) and fo-
cused on different sorts of awareness: noetic awareness of the
contents of episodes or semantic knowledge, autonoetic awareness
of personal participation in the retrieved memory (episodic), and
anoetic awareness of procedural knowledge. The present theory
finds it more useful to divide memories into just two categories,
with procedural knowledge part of knowledge generally. Perhaps
most relevant for present purposes is that Tulving’s recent view
treats episodic memory as an extension of semantic memory rather
a separate system. One could say without too much distortion that
the present treatment caches out this view in considerable detail.

Of course, the main theme of the present theorizing goes beyond
distinguishing events and knowledge to positing the way to two
co-evolve. The interactions are intertwined at every phase of
encoding, storing, and retrieval. Almost every study since the
1890s has shown that the way episodic (or event) memories are
encoded depends on the knowledge (or semantic memory) of the
individual who is encoding them. Conversely, an individual’s
knowledge must be formed through the episodes they encounter.
This idea was the basis of the retrieving effectively from memory
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(REM) model’s account of priming (Shiffrin & Steyvers, 1997):
Study of an event produces an event trace but also adds informa-
tion to an existing trace that is called to mind. For words the trace
called to mind will be the lexical trace, and the added information
produces priming. For relatively novel stimuli, the trace called to
mind would be a previous event trace, and the added information
begins the process of forming a knowledge trace. These interde-
pendent processes create a feedback loop in which knowledge and
episodic memory formation, and retrieval of both, develop jointly
over lifelong learning.

Studies of memory and perception, particularly priming studies
over the last 30 years, have provided strong support for the
interdependence of event memory and knowledge during retrieval
(e.g., Jacoby & Dallas, 1981; Roediger & Challis, 1992; for some
summaries, see Jacoby, 1991; Roediger & McDermott, 1993).
Priming studies typically present a word (the “event”); a later
apparently unrelated test presents the same word for a test of
knowledge retrieval, with the result that knowledge retrieval is
affected by the earlier event presentation. Our prior modeling (e.g.,
Malmberg & Shiffrin, 2005; Schooler, Shiffrin, & Raaijmakers,
2001; Shiffrin & Steyvers, 1997; Wagenmakers et al., 2003) and
SARKAE account for these effects through a process in which the
lexical trace for a given word is augmented by study of that word
(the “prime”): When a word is studied an event memory is formed,
but in addition, novel features of the event, such as the context of
the experimental setting, are added to its lexical representation.
When that word is later presented in a task requiring retrieval from
knowledge (such as naming, perceptual identification, lexical de-
cision), the context tends to be similar to that at study, increasing
the match of the probe cues to the lexical trace, enhancing and/or
biasing retrieval and predicting the priming results. This can be
described as an effect of experience upon perception: The inclu-
sion in knowledge of information such as current context affects
the way that a stimulus is perceived.

Another example of the interaction that occurs between knowl-
edge and event memory is the finding that semantic memory, or
“gist” memory, can be retained while the specifics of an event or
episode are forgotten, shown in the classic studies of Bransford
and Franks (1971). A parsimonious interpretation of such findings
posits storage of an event trace that incorporates general knowl-
edge extracted from long-term memory, and retrieval that is par-
tially a matter of recovering features from the stored trace, and
partially a matter of inference and reconstruction that uses general
knowledge. Perhaps the clearest demonstration of such an effect
and process is recent research by Hemmer and Steyvers (2009a,
2009b): They obtained ratings of environmental base rates for
sizes of fruits and vegetables; other participants viewed objects,
some novel and some fruits and vegetables. Later size judgments
were distorted in ways consistent with the degree of prior knowl-
edge and information in the base rates. In related research (per-
sonal report; Hemmer and Steyvers, 2009a, 2009b), base rates
were obtained for objects likely to be found in kitchens; other
participants saw kitchen scenes and tried to recall the contents.
Recall was a mixture of event memory and intrusions from knowl-
edge, well modeled in terms of the base rates. Related research by
Brainerd, Wright, Reyna, and Payne (2002) also shows the inter-
action of knowledge and event memory in recall. Other research by
Brainerd and Reyna (1990; also see Brainerd, Reyna, & Mojardin,
1999) investigates the use of gist memory in addition to more

veridical memory (“verbatim”) in recognition. The details of their
model aside, the findings quite strongly show that storage and
retrieval processes in recognition include a significant component
due to knowledge. Brainerd and Reyna and their group have
published many related studies pointing to the importance of these
effects in children’s memory retrieval.

Developmental studies of memory in infants provide additional
insight into the co-evolution of event memory and knowledge,
although the relation of that literature to our present theory is
complex. Theories in the developmental literature sometimes fol-
low current theory applied to adults and posit a division of memory
into implicit and explicit memory systems. These terms are not
precisely defined and seem to mean different things in the hands of
different theorists, increasing the difficulty of mapping our present
theory onto this binary dichotomy. Rovee-Collier (1997) has sev-
eral studies showing that very young infants (starting as young as
3 months of age) can and do learn associations between, for
example, two puppets. In her understanding of the explicit/implicit
distinction, these studies show that the two systems develop to-
gether. On the other hand, researchers such as Newcombe have
studies (e.g., Lloyd, Newcombe, & Doydum, 2009) showing that
other types of associations involving relating event context to
situational context (presumably associations that require hip-
pocampal involvement in adults) are much slower to develop in
infancy. She therefore concludes that early event storage is implicit
rather than explicit. Regardless of the mapping of the results onto
a binary categorization of memory systems, the results are consis-
tent with the view that event memory and knowledge develop
conjointly and together, although (in our terms) the content of
event memory may change over early development. We note that
some of the difficulty in assessing early memory development
resides in differing views of the role of the medial temporal lobes
and the hippocampus in forming, storing, and retrieving memories,
and helping the formation of knowledge.

In our view, the extant literature provides support for a major
theme of the present modeling, by which event memory and
knowledge are best viewed “dualistically”: On the one hand, there
are very good reasons to distinguish event memories (episodic)
and knowledge, both functionally and neurally; this view is fos-
tered by our focus on the ends of a continuum—very recent event
memories (“where did I park my car this morning?”) or developed
knowledge (“who was our first president?”’). On the other hand,
knowledge surely develops from experience so memory traces
must lie along a continuum, with event traces at one end of the
continuum, existing “alone” the first time an event is encountered
(e.g., first encounter with a word), to developed knowledge at the
other end of the continuum (e.g., full lexical knowledge). The issue
is complicated by evidence showing a transition from traces
formed and stored with the help of the hippocampus and adjacent
regions to traces stored cortically elsewhere. This transition is
presently an area of intense research, behaviorally, neutrally, and
chemically, and is not settled. Our views of the co-development of
event memory and knowledge are explicated in some detail as we
lay out our theory in later sections of the article. In the General
Discussion, we return to the way our present model maps onto the
ways in which theorists sometimes divide memory systems into
two systems, and although we do not in this article explore the
neural substrates of memory, we also briefly discuss the ways in
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which brain measurements of hippocampal involvement in mem-
ory storage relate to both our theory and system dichotomies.

Our theory, in common with many others, adopts a second
dualism: a distinction between short-term active memory and
long-term passive memory, an idea going back to the first days of
psychology (explicated quantitatively by Atkinson & Shiffrin,
1968, for example). This distinction should not be confused with
that between event traces and knowledge traces, both of which are
formed with the use of short-term memory, are represented in
long-term memory, and produce information in short-term mem-
ory during retrieval.

Modeling the Co-Development of Event Memory and
Knowledge

There are many models of the storage and retrieval of event
memories, and some models of the addition to existing knowledge
of information from recent events (e.g., J. R. Anderson, 1983;
Atkinson & Shiffrin, 1968; Howard & Kahana, 2002; Mueller &
Shiffrin, 2006; Murdock, 1982; Raaijmakers & Shiffrin, 1981;
Shiffrin & Steyvers, 1997). There are also models that explain
retrieval of semantic memories (e.g., Quillian, 1967). A few mod-
els attempt to explain aspects of the way events produce knowl-
edge, especially for aspects of the role played by words in lan-
guage (e.g., Jones, Kintsch, & Mewhort, 2006; McClelland &
Elman, 1986; McClelland & Rumelhart, 1981), though the focus of
such models is more on language than memory per se.

Different goals aside, many neural net and connectionist models
(Rogers & McClelland, 2004, is one well developed example)
directly link presentation of new events, development of long-term
knowledge, and retrieval. In a typical treatment, a new input (the
current event) is presented in the form of a feature vector to a set
of first stage units. These are connected in feedforward manner to
a (usually) smaller number of hidden units that are in turn con-
nected to further sets of units, and eventually to a set of output
units. The output units produce a pattern that deviates from a
desired output, and the connections in the system are adjusted
(with the use of error backpropagation) so that the output units
come closer to the outcome desired. This process continues as new
inputs occur, some of which may be repetitions (very similar
inputs) to previous inputs. Partly because the various intermediate
layers of units are smaller in number, and partly due to the learning
rules, the connections between units come to encode abstractions
(information condensations) of the information distinguishing dif-
ferent groups of similar inputs from each other. A new input
produces a pattern on the output units and this is a typical form of
retrieval. The main point is that a system like this combines events
(the inputs) to form knowledge (the connection weights), and the
encoded knowledge then responds to a retrieval probe (a new
input). In this sense, neural net modelers pursue similar aims as the
present theory.

However, there are a myriad of systems and models of this sort
each of whose structures, representations, goals, and data to be
predicted differ from each other as well as the present theory. Even
if a direct comparison were possible, it would not be clear which
theory and which studies and data sets to use for comparison.
Thus, we simply note the existence of the neural network approach
to the co-evolution of event memory and knowledge, but we do not
attempt to compare and contrast generally. However, given that

such systems have been used to produce richly structured knowl-
edge, we return briefly to this issue in the General Discussion.

The present exposition is long for a journal article but is far too
short to produce a quantitative set of models for memory tasks
involving storage and retrieval in event memory and knowledge,
and their interaction. Thus, we limit our goals to a description of
the general framework, coupled with a very simplified simulation
that produces qualitative predictions for a few critically important
findings from the present studies. A longer term goal is the
development of increasingly accurate and sophisticated models of
particular tasks that (hopefully) will be consistent with the present
framework. Pointers to some of the ways that this larger goal can
be accomplished are taken up in the General Discussion.

The REM model (Shiffrin & Steyvers, 1997, 1998) provided a
preliminary hint of the way SARKAE could deal with both event
memory and knowledge. Those articles were aimed at event rec-
ognition and presented a model whose assumptions were simpli-
fied enough to allow a mathematical derivation of predictions from
a Bayesian inspired theory. That article included a few paragraphs
indicating how addition of information to lexical traces could
explain long term priming, a process that might also be the basis
for the formation of a lexicon. The idea that addition of informa-
tion to a lexical trace could explain long term priming was fleshed
out in Schooler et al. (2001). Although these earlier articles hinted
at the present development, the scope was extremely limited, many
of the implementation assumptions differed from the present treat-
ment, and most important, those articles did not deal seriously with
the recurrent flow of information between knowledge and event
memory that is the main theme of this article.

Earlier modeling that more directly led to the present develop-
ment, and dealt explicitly with the co-evolution of the two systems,
was seen in the REM-II model, created by Mueller and Shiffrin
(2006). The main focus of this research was the development of
knowledge traces. It departed from the common approach of
representing traces by a vector of feature values by instead repre-
senting knowledge traces as an accumulation of the co-occurrence
of features: Features that are present in an episodic event were
coded as occurring together in a matrix representation of semantic
memory. This co-occurrence matrix accrues knowledge over time,
represented as the number of co-occurrences observed for each
feature pair. The REM-II model describes the interaction between
episodic memory and semantic memory, and accounts for phe-
nomena such as polysemy and connotation effects. In this article,
we revert to a vector of features values primarily because this
representation is simpler: There is much to be said for the REM-II
approach, and it could well be extended to larger groups of feature
co-occurrences, but such a system becomes not only complex but
also too powerful to test, able to explain almost any result without
enhancing our understanding of cognition. The present treatment
and simulation considers quite simple kinds of features, but the
general SARKAE theory allows a “feature” to be any established
knowledge trace, of any complexity (e.g., a favorite TV program
could be a feature).

A fundamental storage assumption in SARKAE allows both
event memories and knowledge to develop in concert: Each stor-
age episode produces both (1) an event trace and (2) additional
information added to traces in memory that are brought to mind
due to similarity to the present event. The trace brought to mind
can be a previous event trace (the basis for the start of knowledge
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accumulation) or a developing or mature knowledge trace, or both.
There is no fundamental functional distinction between the repre-
sentation of event traces and knowledge traces in this view (pos-
sible neural distinctions are discussed shortly). Instead, there is a
continuum: Traces are stored initially for each single event; some
of these are retrieved (when a similar new event occurs), gain
additional information, and are re-stored. As this process continues
over successive occurrences of similar events, a rich knowledge
trace results. If one only looks at the ends of this continuum, a
single event trace compared to a mature knowledge trace, these can
appear quite different in their effects on storage and retrieval, as
seen in a variety of dissociations (Jacoby & Dallas, 1981; Neely,
1989).

It is worth a brief segue to discuss an (apparently) alternative
view in which there are separate systems for event memory and
knowledge. In one version, (some kinds of) event memories are
stored initially in the medial temporal lobe (MTL)/hippocampus
and gradually transferred into more permanent memory traces
elsewhere in the cortex. This hypothesis is compatible with and
somewhat orthogonal to the present proposal, in the sense that the
(more) permanent cortical traces would include a continuum of
traces from individual event traces to knowledge traces. Another
version of the alternative approach would posit that each event
occurrence would result in an event trace (presumably involving
the hippocampus) and separately would result in a trace of a
different qualitative character (presumably involving a cortical
storage route separate from the hippocampus). In such a view,
subsequent events would build knowledge by adding to the cortical
representation rather than the initial event trace. This issue may
someday be resolved through neuro-cognitive research, but the
difference is rather subtle from a behavioral perspective, so we
focus solely on the SARKAE approach in which knowledge grows
from event traces.

In SARKAE, accumulation of knowledge about an item or
concept (e.g., for words, its lexical entry) includes features of the
surrounding context that is present at the time of learning. Specit-
ically, knowledge traces develop during learning by storing fea-
tures that come both from the physical properties of the item or
concept being learned, and also from the context surrounding the
item during learning; both types of storage are modified and
governed by attentional focus. These context features arise from
other (attended) events nearby in time and the environment, and
from the various components of internal and external context that
numerous investigators have discussed for many years (Estes,
1955; Godden & Baddeley, 1975; Klein, Shiffrin, & Criss, 2007).
Thus, for example, the knowledge trace that represents the concept
of “table” will include information about the physical properties of
various types of tables, information about the contents of events
that involved tables (e.g., forks, dinners, conversations, replacing
light bulbs), information about thoughts and feelings experienced
at tables, information about the spatial relations and layout, and
information about other events that occurred in the nearby tempo-
ral surround of table events (e.g., dropping of a milk bottle when
removing it from the refrigerator). These features include context
specific events themselves, such as the breakfast event in a given
morning. Knowledge development is therefore built upon the
features of the events that accumulate to form the knowledge. A
mature knowledge trace includes features of numerous events, so
the features of a specific episode tend to be swamped in the
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accumulation of features of many episodes. When a specific event
is retrieved, it is through access to an event trace rather than access
to a knowledge trace. Thus, a knowledge trace in most instances
seems to be context free. What are retrievable from a mature
knowledge trace are features that are consistent across many
episodes, such as the spelling, pronunciation, and meaning of a
word.

This view of context leads back to the issue of feature repre-
sentation, and the issue of the formation of new features with
which to represent an item. Suppose we hear a word, or see a
random dot pattern, for the first time. The features used to code
such an item might be low level physical features (phonemes and
dot arrangements), supplemented by features of the surrounding
context (the observed animal with the long neck might be a feature,
or features, associated with the first hearing of the word “giraffe”).
In general, it is also possible for new features to emerge over time,
often consisting of re-combinations of existing features. Thus, if
many dot patterns observed are generated as distortions of a
prototype pattern with a central square of four dots, the re-
occurrence over events of this partial pattern might be noticed and
become a new feature used to encode such patterns. Of course this
new feature is actually a new trace on its own (both an event trace
and the start of a knowledge trace). In general, features of any item
trace are probably best thought of as relatively unitized other traces
in knowledge. In our present simulations of such a system, we
simplify greatly by fixing the total number of potential features
and feature values (i.e., the number of vector slots) and leaving
certain vector positions empty until they are filled. These ideas are
elaborated later in the article.

There is a dualism between the formation of knowledge and the
coding of event traces, because event traces are formed on the
basis of current knowledge. Although certain very primitive fea-
tures of experience might not depend upon learning and experience
(e.g., a loud sound), most features of events are encodings based
on prior learning (e.g., encoding and storing a table feature as
“dinner”). The model therefore creates event traces by choosing
features of events from knowledge. Such features come from
several sources: Some are directly related to the central defining
elements of the event such as the physical features of which it is
composed (e.g., table physical features) and the central organizing
concept (e.g., dinner); some come from other knowledge traces
that are brought to mind during encoding of the event (e.g., the
illness one encountered when eating breakfast last Sunday, or
one’s commitment to a new diet); some come from features of
other nearby events still in short-term memory at the time of the
present event. To a considerable degree, the features chosen are
modified by attentional focus, so that, for example, a current focus
on danger might lead to features from one meaning of “gun,” while
a focus on racing might lead to features from another meaning of
“gun.” The key concept is the perhaps non-controversial idea that
the features comprising an event representation in short-term
memory, and thereafter the stored event trace, are recruited from
knowledge (e.g., one’s prior experience and knowledge regarding
tables will influence the formation of an event trace concerning a
physically present table).

We have been highlighting mechanisms that produce storage of
event memory and knowledge. Storage depends heavily on re-
trieval (certainly from knowledge, and often from event memory)
and retrieval produces storage (of an event trace and in knowl-
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edge), so their separate discussion should not be allowed to ob-
scure their close interrelation. Furthermore, the mechanisms oper-
ating in retrieval and storage have many similarities that will be
obvious from the following discussion.

We adopt the generally accepted view that retrieval is cue
dependent and based on similarity of the retrieval probe to the
traces in memory (e.g., Tulving & Thompson, 1973). The gener-
ation of such a probe cue can be discrete, as when one is asked:
“What is the capital of South Dakota”? In other cases, retrieval
seems more continuous and automatic, as when information mov-
ing through short-term memory acts as retrieval cues to bring other
associations to mind. However, because modeling continuous re-
trieval is quite complex, we treat all retrieval in terms of discrete
retrieval operations occurring one at a time, each based on some
defined set of retrieval cues. The features that comprise such a
retrieval cue are generated with the same processes that generate
features for storage: They come from the query (if there is one) or
from feature sets presently in short-term memory and attentional
focus, both comprised of features already extracted from knowl-
edge, and include features from the contextual surround at the time
(internal and external context, and nearby events).

An absolutely essential component of storage and retrieval is
noise in these processes. Following the approach in the REM
model, we assume that storage and retrieval are probabilistic,
incomplete, and error prone. When errors are made, it is natural to
assume they are based on information in the knowledge base, and
not completely random. Thus, errors in retrieving and storing
features are assumed to be relevant and consistent, in the sense that
they are feature values for the feature in question (a “blue” color
feature might be retrieved or stored as “green,” but not as “wet”)
and occur in proportion to the base rates of such values in knowl-
edge.

When a cue is used to probe memory, it is compared in parallel
to the event traces and knowledge traces. It would be unworkable
and likely unreasonable to calculate explicitly the match to each of
the essentially uncountable traces in memory. Thus, we assume
that there is a probabilistic cutoff, only traces sufficiently similar
to the probe becoming activated and participating in subsequent
retrieval operations.

Similarity is a fairly vague term and needs to be defined more
carefully. We assume that the relation of memory probe to trace
can be characterized by an “activation strength,” used to define the
set of traces that exceed the threshold for activation and to govern
subsequent retrieval. This activation strength is defined as a rela-
tive measure: In our Bayesian-inspired approach, the activation
strength of a trace is a likelihood ratio; the numerator expresses the
probability that the probe and cue were generated from the same
event, and the denominator expresses the probability that the two
were generated by different events. Both numerator and denomi-
nator are calculated on the basis of the features that match or
mismatch between probe and trace. High strengths depend on
having both a high ratio of matching to mismatching features and
also a high total number of features. These likelihood ratios occupy
the theoretical niche played by “strengths of activation” in various
other theories (such as SAM; Raaijmakers & Shiffrin, 1980, 1981).

This brief summary of some of the central tenets of SARKAE
provides hints concerning the theory, but is only the barest scaf-
folding upon which the model is constructed. The latter portions of
this article cover the theory in detail, but a theory described

verbally, even in great detail, will inevitably be interpreted and
applied differently by different readers for different tasks. There-
fore, to make the basic tenets of the theory more precise, we carry
out studies that explore the development of new knowledge from
events, and the ways in which that knowledge is used in event and
knowledge retrieval, and fit the data with a simplified simulation
model consistent with the theory. The goal of the quantitative
modeling is not the usual one of delving deeply into processes and
mechanisms, but rather to make precise the basic elements of the
theory. In fact, the data are rather straightforward and limited in
extent and are not suitable for the former goal. Thus, aspects of the
general theory are based on key concepts that are rooted in data
from prior research, that are chosen in order to obtain conceptual
coherence, or are copied from previous useful concepts in appli-
cations of the REM theory (a theory that has been shown to give
good accounts of memory, priming, and knowledge retrieval; see,
e.g., Schooler et al., 2001; Shiffrin & Steyvers, 1997; Wagenmak-
ers et al., 2004). The simplified simulation comes close to assum-
ing the minimum needed to handle the present data, but nonethe-
less illustrates the co-evolution theme of the present article.

The studies do serve another and different purpose by answering
a fundamental question about the way that events produce knowl-
edge: What is the role of event frequency? The answer provides a
starting point for the theory development. In particular, the studies
use an extended period of training to foster the development of
new knowledge, and then use transfer tasks to explore the effects
of training upon episodic memory, retrieval from knowledge, and
perception. The effects of differential experience during training
are omnipresent in cognition, and the mechanisms for such effects
are presently an issue under investigation in the field.

It is important to be aware that the simulation model will be
applied to five quite disparate tasks. This allows us to highlight the
co-evolution processes that are common to all, and otherwise add
the minimum assumptions demanded by task differences. Had we
tried to produce a simulation containing a fully fleshed out state-
of-art model for each task, the result would be very complex, and
the theme of this article would be lost in a forest of details.

Role of Experience and Frequency in Cognition

If one hopes to develop a theory in which events accumulate to
form knowledge, it is critical to understand the role of event
frequency. Such effects are omnipresent in memory and perception
tasks, but the processes responsible for such effects remain in
debate. Thus, we vary presentation frequency in the present stud-
ies. In order to control the total experienced frequency, we train
novel characters (Chinese characters). Different characters are
given substantially different amounts of training, over many days.
Following training, these characters are tested in an episodic
memory task (storage and retrieval of recent events), a perception
task (identifying briefly flashed characters), and a knowledge
retrieval task (pseudo-lexical decision: was the test character
trained?).

Researchers have explored the effects of experience in various
ways, typically by analyzing existing knowledge, identifying stim-
uli with different histories of experience, and using the stimuli with
different frequencies in memory and perception tasks. The great
majority of such investigations use words as stimuli: Words are
categorized based on their frequency, defined as normative occur-
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rence in the environment. Estimates of these frequencies are com-
puted from various databases of (typically) textual materials.
Words differing in frequency produce different results in a wide
variety of tasks, and show these differences quite consistently.
When found in episodic recognition memory, the pattern of dif-
ferences is termed the word frequency effect (Glanzer & Adams,
1985, 1990; Kinsbourne & George, 1974). In these tasks words
that occur rarely in the environment are recognized better than
words that occur frequently in the environment, a consistent find-
ing that has been called one of the regularities of recognition
memory (Glanzer, Adams, Iverson, & Kim, 1993). This advantage
for lower frequency is however the exception: In most tasks higher
frequency benefits performance. In episodic recall, high frequency
(HF) words are recalled better (Gregg, 1976), and in perceptual
tasks such as lexical decision and perceptual identification (forced
choice, etc.), high frequency improves response speed and accu-
racy. In lexical decision, HF words are identified both more
accurately and more quickly than low frequency (LF) words
(Becker, 1979; Rubenstein, Garfield, & Millikan, 1970; Scarbor-
ough, Cortese, & Scarborough, 1977). Perceptual identification
shows a more complex pattern of results: Generally, in two alter-
native forced-choice studies, HF targets are better identified, and
both HF and LF targets are better identified when paired with a LF
foil (Wagenmakers, Zeelenberg, & Raaijmakers, 2000).

However, given that word frequency is correlated with so many
other variables (e.g., meaning, regularity of spelling, length of the
word, and virtually every other characteristic one can measure for
words), it is hard to know whether experience per se is responsible
for the observed effects. In fact, a current debate concerns whether
frequency per se or context effects are the primary cause of the
observed findings. Adelman, Brown, and Quesada (2006) for
example suggest that the diversity of contexts in which a word has
been seen is a more accurate predictor of word frequency effects
than the actual frequency of the word. By analyzing three large
corpora of texts that vary in both word frequency and contextual
diversity (the number of documents in which a word was present),
they concluded that it was the contextual diversity of an item, not
the word frequency, that affected response times in word naming
and lexical decision. The difficulty of assessing the cause of
frequency effects for words is one reason we chose to vary fre-
quency of training of novel characters in the present studies. By
training novel stimuli, we can control with far greater precision the
factors correlated with frequency and thereby properly constrain
the theory.

The studies in this article create experience differences over a
fairly lengthy period of training in two quite different tasks, one
based on visual search, and the other based on perceptual match-
ing. Several previous studies have used training to examine the
effects of experience on memory and perception. Maddox and
Estes (1997) trained subjects on letter and number strings using a
memory task. The frequency of presentation of the stimuli in the
memory task was varied such that the strings were familiarized to
varying degrees. This training phase was followed by an episodic
recognition memory task. The results of this study indicated that
both hits (correctly responding “old” to a studied item) and false
alarms (incorrectly responding “old” to an unstudied item) in-
creased as a function of familiarity (as measured by training
exposure). A training study by Reder, Angstadt, Cary, Erickson,
and Ayers (2002) also found differences in post-training memory

performance due to training frequency. Their study used pseudo-
words as the stimuli, and trained the subjects on the pseudowords
to different degrees using a free recall task. The subjects were
tested several times throughout the training period, and the results
showed that early in the training increased familiarity resulted in
increased hits and false alarms (replicating the results of Maddox
& Estes, 1997). However, later on in training when recognition
was tested again, the results showed a mirror effect: More hits and
fewer false alarms occurred for low frequency trained pseudo-
words compared to high frequency.

These studies provide valuable background for our research, but
are not quite ideal as a basis for theory development. For one thing,
the letter and number strings used by Maddox and Estes (1997)
and the pseudowords used by Reder et al. (2002) were only
partially novel, and are related to a good deal of alphanumeric
existing knowledge. Previous studies have shown that in addition
to the effects of the frequency of the entire word, the frequency of
single letters, such as those used in the letter and number strings,
can affect recognition memory (Malmberg, Steyvers, Stephens, &
Shiffrin, 2002). Pseudowords also contain parts of words as well as
bigrams and trigrams that differ in frequency in the language,
factors known to affect performance in lexical decision (Rice &
Robinson, 1975). These stimuli could therefore produce differing
performance due to differential interference based on bigram/
trigram frequency, and even meaning, to the extent that a pseudo-
word reminds the viewer of a word or words in the lexicon. In
order to better control such factors, our studies use stimuli that are
far less related to existing language and numeric knowledge, and
far less likely to bring with them existing frequency correlations:
Chinese characters (we selected participants for whom such stim-
uli are unfamiliar).

In a study by Nelson and Steyvers (2004), subjects were trained
on Chinese characters for seven sessions. A recognition memory
task was used for both training and testing, but produced results
that were difficult to interpret. It could well be that use of the same
task for training and testing produced interactions between the two
phases of the study that obscured the underlying processes. Related
concerns could be raised about the studies by Maddox and Estes
(1997) and Reder et al. (2002). It is of course the case in actual
experience that the training and testing of knowledge occur in
similar tasks, but inferences about underlying processes are more
difficult when this is the case.

The studies reported in this article therefore use training tasks
that are as different as possible from the subsequent transfer tasks.
The first study used a visual search task in training. This task was
based loosely on that of Shiffrin and Lightfoot (1997). Different
Chinese characters appeared with widely differing frequencies
during training. The second study had participants compare a
character to itself, looking for slight physical changes. Following
training, the subjects completed various recognition memory and
perception tasks different from the training task, using both the
trained characters and new characters as stimuli.

For both studies, note that only a limited amount of data was
collected from each participant in the three transfer tasks. Learning
of course continues during testing in the transfer tasks. The transfer
designs required equal use of stimuli trained at different frequency
levels. Thus, as testing continues, there would be an inevitable
dilution of the frequency effects that were one of the research
goals. Testing was limited to minimize such dilution effects.
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The results of the training tasks and transfer tasks are given in
figures, and the pattern of results and their statistical significance
are described in the text. The exact results and details of the
statistical analyses are given in Appendix A. Although the presen-
tation of the model and its parameters occurs later, the figures also
give the model predictions.

Experiment 1: Visual Search Training

Training Task

Method.

Participants. Eight people, recruited through an e-mail adver-
tisement, participated in the experiment for monetary compensa-
tion. All participants reported no prior experience with Chinese
characters.

Apparatus. Al tasks were displayed on Samsung SyncMaster
700NF 17-in. (43.18-cm) flatscreen CRT monitors, and responses
were collected through keyboard presses. Experiments were run
using the programs Authorware and MATLAB. Participants were
seated in dark booths with ventilation fans that greatly reduced
ambient noise.

Procedure. The visual search task required the participants to
judge, as quickly as possible without making more than a few
errors, whether a single Chinese character presented just before a
display was present in a subsequent display of two or four Chinese
characters. A varied mapping procedure was used, so that targets
on some trials were foils on others, and vice versa. Each trial was
initiated by a key press, which was followed by a fixation cross for
500 ms. The cross was followed by a target character presented
centrally for 1,000 ms; the target was then replaced by a blank
screen for 500 ms. Then a display of either two or four characters
appeared and remained until a response was made. The characters
each subtended about 3.5° visual angle vertically and 2.9° hori-
zontally. For the display size of four, the characters were posi-
tioned evenly in each quadrant of the screen, in a square pattern,
with a separation of about 4.3° visual angle. For display size two,
the characters were randomly placed in two of the four possible
positions. The procedure is illustrated in Figure 1 with two sample
sequences: (a) display size two with target present, and (b) display
size four with target absent. Half the trials used display size two,
and half of each type had target present. There were a total of 640
trials per session, and each subject completed 12 visual search
sessions, over the course of roughly 3 weeks.

Design and stimuli. The occurrence of characters were per-
muted so that some occurred more often than others: There were
four frequency conditions, with different characters occurring in a
ratio of 1::3::9::27. These same ratios held for occurrence of a
character as target or foil: In each session, for every occurrence of
a character as a target, it was also present five times as a foil. For
each participant, a set of 32 characters was selected randomly from
a pool of approximately 200 characters. In order to keep the
complexity of the characters similar, all characters were composed
of seven strokes or less. Figure 2 shows a sample of eight char-
acters. From the 32 characters for a given participant, eight were
randomly assigned to each frequency condition. The foils for each
trial were of mixed frequency. The permutation was arranged in a
block of 160 trials, and there were four blocks in each session.

Positive Trial, Display Size 2

H
A
53

Blank

Target Screen

Display

Negative Trial, Display Size 4

N fite
y W AR
I
e
)
4
Blank -
Target Screen Display
Figure 1. Example visual search trials.

Thus, there were 640 trials per session, and 7,680 trials per
participant at the end of training.

Results. The principal measure used to analyze learning over
training sessions was the slope of the search function, calculated
separately for present and absent trials. Slope was defined as half
the difference between response times for display sizes of two and
four. Figure 3A shows mean slope per session, averaged over the
eight subjects, as a function of session number. The slopes show a
decrease over training, beginning at approximately 100 ms/item
and dropping to 60 ms/item for present trials, and falling from 220
ms/item to 150 ms/item for absent trials. Figure 3B shows the
estimated zero intercept of the search function, defined (for present
trials) as the mean response time to a present trial of display size
(4 or 2) minus (4 or 2) times the present slope (the result when size
4 vs. size 2 was used was averaged). The intercept for absent trials
was calculated the same way. Like the slopes, the intercepts
showed improvement over training; approximately, the positive
intercept dropped from 700 ms to 475 ms, and the absent intercept
dropped from 550 ms to 400 ms. The intercept is usually taken to
include various perceptual, encoding, decision making, and motor
response components that may be independent of display size, and
therefore might not demonstrate character learning. The slope is
usually taken to reflect processing time per character in a serial or
limited capacity search, and is a better measure of character
learning.

When separated into frequency groups, the slope patterns are
similar, although, as might be expected, the pattern of results
became quite a bit noisier for characters of lower frequency. It
might be expected under some learning models that search time
per character would vary with training frequency. Under other
models this would be a less clear prediction, because analysis time
for a given display character might depend on the alternative
characters that were, or could have been, present, so that search
time would reflect overall character learning for the entire set. The
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data did not exhibit clear slope or intercept differences by fre-
quency, but the very limited amount of data at the lowest frequen-
cies make meaningful inferences difficult, so these data are not
shown.

Discussion. Training produced a clear and pronounced im-
provement in search rate and search intercept. The slope decreases
extended over a longer period of time than the intercept decreases,
consistent with the view that they reflect different processes.
Although the search results do not demonstrate frequency differ-
ences, they do not rule these out. In any event, findings of differ-
ential results by frequency in the transfer tasks will be sufficient to
prove that training did indeed produce frequency effects.

The results provide evidence for the development of knowledge
about the initially novel Chinese characters. Furthermore, the slope
reduction is not due to the automatic direction of attention to
targets. As demonstrated by Schneider and Shiffrin (1977; Shiffrin
& Schneider, 1977; and verified in many studies since), use of a
varied mapping procedure prevents the learning of automatic at-
traction of attention to targets—such learning takes place in a
consistent mapping procedure.

Instead, the slope reduction is likely due to one of two closely
related factors: the increasing integration of the features of each
character, or the identification of a feature combination that is
unique to each character. These factors were demonstrated in the
study by Shiffrin and Lightfoot (1997). That study did not vary
frequency, but instead carefully controlled features of each stim-
ulus, because the aim was exploration of perceptual learning.
There were just three simple and spatially distinct features per
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stimulus (three line segments pointing inward from the periphery
of a rectangle). Further, no one of these features by itself could
produce successful search, because targets and foils always shared
exactly one feature (a conjunction search was required on every
trial). That study showed a reduction of search slope over training
from around 270 ms per stimulus to about 90 ms per stimulus,
interpreted as a shift from initial sequential consideration of each
of the three features for each display stimulus, to eventual consid-
eration of each entire character in one search step. This perceptual
unitization was verified in a wide variety of subsequent transfer
tasks.

Thus, a good part of the learning seen in the present task is likely
due to perceptual unitization, but a quantitative prediction would
not be possible because the feature composition of the present
Chinese characters was not controlled, and indeed varied with
character sets that differed for each participant. By inspection the
feature overlap appears quite complex, so that some characters and
sets might allow search for a single distinctive feature (once
identified), while other characters and sets might require search for
a conjunction of features. Thus, part of the learning might involve
discovery of distinctive features and other parts of the learning
might involve perceptual unitization of feature combinations.
Whichever way distinctive features are produced, the participants
are likely to find those that are unique for their entire character set:
The task requires that on each trial the target be distinguished from
all foils. Because any of the training characters can be foils on any
trial, it seems likely that the participant will try to identify and
learn a feature or feature combination that will uniquely identify
each character relative to all others. Note that such a requirement,
being based on the composition of the entire set of characters,
could result in a reduction or elimination of frequency differences
in training. Finally, note that some learning that could lower slopes
could occur after perceptual unitization is complete, if the effi-
ciency of such search improves with training. For these various
reasons, quantitative predictions concerning the degree of slope
changes are not possible, but we can conclude that learning has
occurred.

Post-Training Tasks

Following the training on the visual search task, the subjects
completed three post-training tasks: episodic recognition, pseudo-
lexical decision, and forced-choice perceptual identification.
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Figure 3. Panel A: Slope of the search function over training. Error bars represent the standard error of the
mean. Panel B: Intercept of the search function over training. RT = response time.
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Pseudo-Lexical Decision

Method.

Terminology. Lexical decision tasks require distinguishing
words from non-words. Our task involves Chinese characters
rather than words, hence the prefix.

Participants.  All eight subjects who were trained on the char-
acters completed this task shortly (2-3 days) after their final
training session.

Design and procedure. Subjects viewed one list, which con-
tained all 32 trained characters, as well as 32 new characters. Each
of these characters occurred three times throughout the list, making
the total length of the list 192 characters. The placement of the
characters in the list was randomized. Subjects were presented
with a single character on the screen and were asked to decide as
quickly as possible whether they had ever seen that character
during any of the previous training sessions. Responses were made
by pressing either the “v”” or “m” button on the keyboard.

Results. Response times decreased and accuracy increased, as
frequency increased (see Figure 4, solid black lines with inverted
triangle markers; for reference, new items had a mean response
time of 820 ms and accuracy of .93). Analysis showed that higher
frequency characters produced significantly faster response times
and higher accuracy than lower frequency items. Separate analyses
broken down by test position of the same character were somewhat
noisy for accuracy, but showed a decrease in response time for
later tests.

Discussion. The pseudo-lexical decision results show that the
degree of experience with a character, and/or the character context
that is correlated with frequency in our tasks, produces decreases
in response times and increases in accuracy. These findings align
with lexical decision results for words in previous studies (Becker,
1979; Rubenstein et al., 1970; Scarborough et al., 1977). The
present frequency results are due to the factors we introduced in
visual search training (differences in experience and differences in
the character context for characters with different experience) and
are not due to the many other factors that are correlated with word
frequency. It seems reasonable to reverse the logic and infer that a
major component of the word frequency effect is due to those same
factors. One way to understand the processes involved in pseudo-
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lexical decision (and perhaps lexical decision as well) is laid out in
the modeling sections of this article.

Episodic Recognition

Method.

Participants.  All eight subjects who were trained on the char-
acters completed this task shortly after their final training session.

Design and procedure. This task consisted of eight pairs of
study and test lists. Each study list contained eight trained char-
acters (two from each frequency category) and eight untrained
characters. Each test list contained all the items from the study list
as well as 16 unstudied items, which included eight trained char-
acters (two from each frequency category) and eight untrained
characters. The first four items on the test list were always un-
trained characters, providing a buffer for the items of interest
(trained characters). Subjects viewed each item on the study list for
1,000 ms, presented one at a time on the screen. Following the
study list, the subjects were presented with the items on the test list
one by one, and for each item had to respond whether the character
had been present on the list they had just studied. Subjects were
instructed to “reset” their memory in between each list and to
answer “old” to an item on the test list only if it had been present
on the most recent study list.

Results. Performance on the episodic recognition task was
measured in terms of the hit rate (probability of correctly identi-
fying a studied item as “old”) and false alarm rate (probability of
incorrectly identifying a non-studied item as “old”). Performance
of individual subjects as well as performance averaged over all
subjects was analyzed. All subjects showed better performance for
low frequency trained characters than for high frequency trained
characters. The average performance also produced a mirror pat-
tern: more hits and fewer false alarms for low frequency items (see
Figure 5, left panel; also see Table 1, top). A contrast analysis
showed that there was a significant negative relationship between
frequency and hit rate, and a marginally significant positive rela-
tionship between frequency and false alarm rates. Characters of
zero frequency produced performance intermediate between the
levels for trained characters.

Accuracy
1
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Figure 4. Pseudo-lexical decision: Observed data and simulated data for Experiment 1, Experiment 2 imme-
diate test, and Experiment 2 delayed test. Response time (RT) is given in the left panel, and accuracy is given
in the right panel. Error bars represent the standard error of the mean.
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Figure 5. Episodic recognition: Observed (Obs.) data and simulated (Sim.) data for Experiment 1 (left panel),
Experiment 2 (center panel), and Experiment 2 after a 6-week delay (right panel). Error bars represent the
standard error of the mean. FAS = false alarms.
Discussion. In episodic recognition tasks using words as stim- presentation of the SARKAE model and theory in following sec-

uli, it is reliably found that low frequency items produce better
performance, and that a mirror effect occurs: Low frequency words
produce more hits and fewer false alarms than high frequency
words. Many theories have been proposed to explain both the
frequency effects and the mirror pattern, and include such factors
as attention (Glanzer & Adams, 1990), context (Sikstrom, 2001), a
dual-process of familiarity and recollection (Reder et al., 2000),
and the Bayesian-based retrieval models of Shiffrin and Steyvers
(1997) and McClelland and Chappell (1998). The present results
do not clearly distinguish the competing theories, and this was not
their aim. They do show that frequency and the difference in
amount of exposure, and/or the correlated character context (the
character context mainly consisting of that trial’s foils and perhaps
the previous trial’s target), was enough to produce the classic word
frequency effects: better performance for lower frequency items,
and a mirror pattern. Further discussion is deferred until the

Table 1
Episodic Recognition Results
Item type P(H) P(FA) d
Experiment 1

Novel items 0.807 0.142 1.94
Frequency 2 items 0.828 0.055 2.54
Frequency 6 items 0.813 0.094 2.21
Frequency 18 items 0.750 0.117 1.86
Frequency 54 items 0.797 0.102 2.10

Experiment 2 immediate test

Novel items 0.680 0.097 1.77
Frequency 2 items 0.813 0.107 2.13
Frequency 6 items 0.857 0.214 1.86
Frequency 18 items 0.795 0.295 1.36
Frequency 54 items 0.804 0.286 1.42
Experiment 2 delayed test
Novel items 0.707 0.129 1.68
Frequency 2 items 0.781 0.198 1.62
Frequency 6 items 0.771 0.198 1.59
Frequency 18 items 0.740 0.198 1.49
Frequency 54 items 0.688 0.240 1.20

tions.

It is commonly found when words are used as stimuli that
non-words or very low frequency words (effectively non-words for
many participants) do not fall on the same function as other words.
Typically such words exhibit performance intermediate between
low and high frequency words (e.g., Estes & Maddox, 2002). Our
data for untrained characters show a similar pattern. It is perhaps
unsurprising that untrained items, whether words or our characters,
would produce performance inconsistent with the trend for trained
characters. Untrained items do not have a knowledge trace and,
therefore, might be processed with a different set of mechanisms
than items that do. For example, at both study and test, the features
attended and used might be restricted to low level physical char-
acteristics, and/or features extracted from knowledge from traces
of trained items that are similar. Processing of trained items with
knowledge traces would undoubtedly use the contents of those
knowledge traces at both study and test. In our study, it may be
especially important that new characters contain some new fea-
tures, not previously encountered. These could be noticed at both
study and test, and improve performance beyond that expected for
characters encoded with features that are familiar and shared
among several items (this idea is used in the SARKAE model for
lexical decision).

Whatever the processes at play, the replication of the recogni-
tion patterns found for words increases the likelihood that these
processes are similar for the two types of stimuli. To the degree
that this is so, one can discount explanations for the word data that
rely on other factors than exposure frequency and the word context
that is correlated with frequency.

Forced-Choice Perceptual Identification

Method.

Participants. Six out of the eight trained subjects completed
the forced-choice perceptual identification. The task was admin-
istered approximately 3 months after completion of the initial
training, so the subjects completed three sessions of re-training on
the characters prior to the task, using the same visual search task
as was used in the previous training sessions. The slope and
intercept of the search function was measured to assure that the
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subjects were at the same level of performance as when they had
completed the previous tasks.

Design and procedure. This task consisted of five lists, each
with 50 two-alternative forced-choice trials. The first list was used
to adjust the length of target presentation to a 75% correct thresh-
old, using the Best-PEST (parameter estimation by sequential
testing) algorithm (Lieberman & Pentland, 1982). The average
length of target presentation was 67.8 ms. Each subject’s individ-
ual threshold presentation speed was used for the four test lists.
Throughout the task, every combination of foil and target fre-
quency was tested (Frequencies 0, 2, 6, 18, 54), creating a total of
25 conditions.

For each trial, subjects viewed a target character presented
briefly in the center of the screen, which was immediately covered
by a mask stimulus. The mask consisted of a jumbled mix of
Chinese character pieces. After the mask, the subjects were pre-
sented with two choice characters: one on the right side of the
screen, the other on the left. The subjects were asked to choose
which of the two characters matched the target character that had
been presented immediately prior. These two characters stayed on
the screen until a decision was made, and the correct answer was
always one of the choices. Subjects completed one block of 50
speed adjustment trials and four blocks of 50 trials at their estab-
lished presentation speed. Only data from the last four blocks were
analyzed.

Results. The proportion of correct responses was measured
for each condition of target frequency and foil frequency. The
results showed that when target frequency increased (averaged
over all foil frequency conditions), performance increased. The
same was true for foil frequency: When the frequency of the foil
increased (averaged over all target frequency conditions), the
probability of responding correctly increased (see Figure 6). Both
of these effects were marginally significant.

Discussion. The first portion of these findings agrees with
what is found in word frequency literature: When the frequency of
the target word increases, performance generally increases (Broad-
bent, 1967). However, the second portion of our findings is slightly
harder to explain: When the foil is higher frequency, performance
also increased. When words are used for this type of task, the
frequency of the foils produces a much more complex pattern of
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results, and usually a high frequency foil will hinder rather than
help performance (e.g., Wagenmakers et al., 2000). Why words
and the Chinese characters in the present task show a different
pattern for foil frequency is not clear. Regardless, one explanation
for the present findings for foils is based on the use of a negative
inference: suppose the participant or the cognitive system takes
into account the fact that high frequency targets are easier to
perceive correctly. If so, and if nothing or almost nothing is
perceived on a given trial, then it would make sense to guess that
a low frequency choice had been presented (on the “reasoning”
that a higher frequency target would have been seen). This idea is
elaborated in the modeling discussion that follows.

Characterizing Differential Experience in SARKAE

The frequency of character presentation was varied in Experi-
ment 1. Over repetitions, the SARKAE model accumulates feature
counts in a developing knowledge trace. The number of counts
could possibly be one cause of the observed frequency effects, not
only for retrieval from knowledge but for storage and retrieval of
event traces (to the degree that event storage and retrieval depend
in part on access to knowledge). However, the randomization of
targets and foils over the trials of visual search insured that higher
frequency characters occurred in the spatial and temporal vicinity
of other higher frequency characters. Thus, frequency per se was
correlated with what could be termed character context, temporal
context, or character diversity. In fact, Adelman et al. (2006)
proposed that a word’s contextual diversity, not word frequency by
itself, was responsible for most word frequency effects, and this
factor could be another cause of our frequency effects.

There is no real controversy about the existence of context
effects in memory storage and retrieval—they are omnipresent in
cognition at every level of analysis. In the present discussion,
context includes the general situational context but more impor-
tantly also the context of items that may be co-occurring in the
physical and mental environment. This approach is closely related
to that in the temporal context model (e.g., Howard & Kahana,
2002; they use the nearby item context to explain, among other
findings, the tendency for freely recalled items studied together to
be output together, to a degree determined by the presentation
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Figure 6. Two alternative forced choice: Observed (Obs.) data and simulated (Sim.) data, averaged by target
frequency (left panel) and by foil frequency (right panel). Error bars represent the standard error of the mean.
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separation of the items). One natural way to introduce nearby item
context would be to allow an “event” to encompass a group of
several nearby items. However, suppose for simplicity we limit an
event to storage of a single item (e.g., the target on a visual search
trial), as is done in the SARKAE simulation. The effects of nearby
items (such as the foils on a trial) are then introduced by including
storage of their features.

Because knowledge traces are formed from events, they accu-
mulate information about the types of items that are near the
various event occurrences. Thus, the presentation of a Chinese
character as a target causes that character’s knowledge trace to
gain information not only about that character’s features but also
about those from the trial’s foils, and possibly from the target on
previous trial. Because high frequency items tended to co-occur in
our study, their knowledge traces grew to include features of each
other. The feature vectors for the knowledge traces that develop for
higher frequency characters therefore come to overlap more: More
generally, the similarity between two knowledge traces is higher to
the degree that their training frequencies are higher. As one way to
illustrate this, we analyze the similarity of the vectors representing
knowledge traces for characters of differing training frequencies.
There are many ways to characterize the similarity of two vectors.
We have tried several and all produce the same result. Figure 7A
shows representative results for one type of normalized inner
product: Each feature value is divided by the sum of values for that
feature. This is done for every feature. Then a simple inner product
is calculated: If the resultant counts in the two traces are (al, a2,
...,aN)and (bl, b2, .. ., bN), the measure depicted in Figure 7 is
the sum of (ai)(bi). This calculation insures that increased similarity
is not due to larger counts per se, but rather the similarity of the pattern
of counts cross the vectors. We give the results for one simulation of
the SARKAE model, but the pattern is true quite generally. Figure 7A
shows that traces of higher frequency have become more similar to
each other, in that the patterning of the counts across the vector is
more similar. According to SARKAE (and probably any model
taking context into account), the similarity structure of knowledge
should co-vary with presentation frequency to the degree that the
co-occurrence of items of differing frequency is correlated.

We next assessed the possibility that the data from Experiment
1 could be fit with a version of SARKAE that did not include any
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explicit role for frequency other than the change in similarity. This
model (could be made to) fit most of the findings, but left open the
possibility that pure frequency might play a role as well. Experi-
ment 2 was designed to remove the confound between frequency
and context. To take a peek ahead, it demonstrated that an ade-
quate model requires also a role for “pure” frequency, so both the
general SARKAE theory and the simplified simulation will in-
clude both.

The Experiment 2 results had another important implication that
is worth mentioning briefly here because it caused us to employ
the more complex version of our previous event recognition
model. The REM model of Shiffrin and Steyvers (1997) allowed
for activation by the test item of both list traces and pre-list and
pre-experimental traces, but the basic model worked well with
activation of list traces only. The basic model predicted higher
performance for higher frequency words because the list traces
were more similar to higher frequency probes, thereby producing
more confusions. The design of Experiment 2 eliminated
frequency-dependent within-list similarity differences, but effects
of training frequency effects were found nonetheless, ruling out the
basic model. The full model predicts effects of training experience
due to activation of event traces from the training sessions.
SARKAE and the simulation therefore employed the full recogni-
tion model.

Experiment 2: Eliminating Character-Context Effects
of Training

Experiment 2 switched training from visual search to same-
different character matching: A character is presented briefly twice
in succession, and half the time the two presentations vary slightly
in size, rotation, or contrast. The participant judged whether the
two presentations were exactly the same or varied slightly in one
of these three dimensions. Thus, a character was its “own” context.
Further, to remove the possibility that the test character on the
previous trial might provide context for the present trial, one fixed
“control” character, different from any of the experimental char-
acters, was tested (using the same matching task) between every
two experimental character judgments. This extremely high fre-
quency character was not subsequently used in the post-training
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Figure 7. SARKAE (Storing and Retrieving Knowledge and Events): Similarity between normalized lexical
entries (measured by dot product) after completion of training for visual search training (Panel A) and visual
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transfer tasks. If context is carried forward from the previous trial
during training, the context that is carried forward for the experi-
mental characters of different frequency will be equated, because
the previous character is always the same one. Experiment 2 used
the same variation of training frequency as Experiment 1. By
removing characters that provide context on any given trial, and by
holding constant the character context on the preceding trial, it is
plausible to assume that the confound between context and fre-
quency is mostly if not totally eliminated.’

Training Task

Method.

Participants. Seven people, recruited through an e-mail ad-
vertisement, participated in the experiment for monetary compen-
sation. All participants reported no prior experience with Chinese
characters.

Apparatus. Al tasks were displayed on Samsung SyncMaster
700NF 17-in. (43.18-cm) flatscreen CRT monitors, and responses
were collected through keyboard presses. Experiments were run
using MATLAB. Participants were seated in dark booths with
ventilation fans that greatly reduced ambient noise.

Design and stimuli. The occurrence of the characters in the
same/different task was manipulated to produce four frequency
conditions which varied in a ratio of 1::3::9::27. For each subject,
a set of 32 characters was selected randomly from a pool of
approximately 200 characters. From these 32 characters, eight
were assigned to each frequency condition. In order to keep the
complexity of the characters reasonable, all the characters in the
pool were composed of seven strokes or less. In order to fully
eliminate context from the training, one “super-high frequency”
item was also randomly chosen, making the entire training set 33
characters. This character appeared as a “buffer” item every other
trial, and was not used as a stimulus in the post-training tasks.

Procedure. Each trial consisted of two brief (500 ms) presen-
tations of a single Chinese character, which subtended a visual
angle of approximately 4.3 X 4.3 degrees. Specifically, each trial
proceeded as follows: A character was presented on the screen for
500 ms, a white screen was then shown for 250 ms, the character
was presented again for 500 ms, and then text appeared instructing
the subject to respond “identical” or “different” by pressing the “v”
or “m” key, respectively. This text stayed on the screen until the
subject made a response. Once a response was given, the subject
was given feedback (correct or incorrect) that remained on the
screen for 1,000 ms, and was immediately followed by the next
trial.

The two presentations of the character in each trial were either
identical or varied slightly in size, rotation, or contrast of the
character. If a trial contained a variation, only one dimension
varied. There were three levels of each variable (size: small,
medium, large; rotation: left, straight, right; contrast: dark, normal,
light), and the change between each of these levels varied based on
a staircase algorithm. For example, in the case of rotation, when
the subject answered two rotation-difference trials correctly, the
rotation factor (i.e., the difference in angle between the three
levels) decreased by a given amount. If they got a rotation-
different trial wrong, the rotation factor increased by a given
amount. This staircase was done separately for each of the three
variables. In this way, subjects were kept at approximately 75%

accuracy. Subjects completed 12 training sessions, approximately
three per week. There were a total of 1,060 trials for Sessions
1-11, and 1,140 trials for Session 12.

Results. Since the training paradigm used a staircase algo-
rithm to keep subjects at approximately 75% accuracy, the results
of training were analyzed by examining the change factors for size,
rotation, and contrast. If the subjects are showing improvement at
the same/different discrimination, then the change in variable
(size, rotation, or contrast) needed to keep them at 75% should
decrease over session. Figure 8 shows the mean rotation, contrast,
and size changes required (averaged over all subjects) as a function
of training session. The results indicate that subjects were becom-
ing more efficient at the task as training progressed, as indicated by
the decrease in variable change over session.

Discussion. The increases in performance during training are
sufficient to show that something about the characters is being
learned. Is such learning frequency dependent? Frequency differ-
ences in acquisition of visual search were not significant in Ex-
periment 1, suggesting that the same could have been true here. In
fact, one might speculate that character matching produces more
shallow character representations than visual search, possibly re-
ducing further the impact of frequency variations. Unfortunately,
the present design does not allow this question to be answered
because the staircase algorithm does not adjust separately for
different frequencies. In any event, the issue becomes moot given
that the transfer tasks show frequency effects.

Post-Training Tasks

Following the training on the character matching task (approx-
imately 2 days later), the subjects completed three post-training
tasks: pseudo-lexical decision, episodic recognition, and forced-
choice perceptual identification. In addition, for Experiment 2,
post-training testing was carried out again 6 weeks after training.
A programming error, discovered after the transfer tasks were
initially analyzed, caused the forced-choice data to be very noisy
and essentially uninformative. These results are therefore neither
reported nor analyzed. Also, because the forced-choice results
were not useful for the initial transfer tasks, forced-choice testing
was omitted for the delayed testing at 6 weeks.

Pseudo-Lexical Decision

Method.

Participants. All seven subjects who were trained on the char-
acters completed this task shortly after their final training session
(within approximately 2-3 days), and again approximately 6
weeks after their final training session.

Design and procedure. Subjects viewed one list, which con-
tained all 32 trained characters (excluding the buffer item), as well
as 32 new characters. Each of these characters occurred three times

! Between Experiments 1 and 2, an attempt was made to reduce
character-context effects in a study that used a visual search paradigm. This
study used visual search training, but items of a given frequency always
occurred with foils of that same frequency. This manipulation was not
sufficient to remove frequency dependent similarity effects, according to
the simulations of the model. It became clear that the paradigm of visual
search made it difficult to remove all context effects, thus leading to the
paradigm introduced in Experiment 2.
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Figure 8. Average change in rotation (Panel A), size (Panel B), and contrast (Panel C) needed to obtain 75%
accuracy as a function of training session. Rotation factor is measured in degrees, size factor is measured in
percentage size difference, and contrast factor is measured in percentage contrast difference.

throughout the list, making the total length of the list 192 charac-
ters. The placement of the characters in the list was randomized.
Subjects were presented with a single character on the screen, and
were asked to decide as quickly as possible whether they had ever
seen that character during any of the previous training sessions.
Responses were made by pressing either the “v” or “m” button on
the keyboard.

Results. Response time and accuracy were measured for each
frequency condition, as well as new items. The accuracy and
response time results for both new and trained items are shown in
Figure 4 for Experiment 2 immediate testing (solid black lines with
circle markers) and delayed testing (solid black lines with triangle
markers), along with the results for Experiment 1 (solid black lines
with inverted triangle markers). In all cases, a contrast analysis
showed that there was a significant positive relationship between
frequency and accuracy, and a significant negative relationship
between frequency and response time, and the patterns were not
significantly different for any of these testing situations.

Discussion. The lexical decision results showed strong effects
of training frequency on speed and accuracy of decision. The
magnitude of the effects was also quite large, in the general
neighborhood of that from Experiment 1. Furthermore, this fre-
quency effect showed little signs of reduction over 6 weeks. This
study eliminated character-context during training, so the results
cannot be due to that factor. The obvious explanation is based on
the stronger knowledge traces that result from more repetitions
during training. The details are laid out in the later exposition of
SARKAE.

It is noteworthy that accuracy is well below ceiling, response
time is much slower than response times to a simpler task (such as
onset of a flash of light), and both accuracy and response time are
strongly dependent on frequency, yet all of these effects survive
largely intact over 6 weeks of delay. Such results contrast quite
strongly with episodic memory tasks that perhaps start with similar
levels of accuracy (and possibly response time) when tests imme-
diately follow study, but fall off sharply as the delay until test
increases. Pseudo-lexical decision in the present setting is a kind of
episodic memory task, given that one has to judge whether the test
character had been studied in the initial few weeks of training. Of
course the pseudo-lexical decision task does not require a discrim-
ination based on context, so the failure to see forgetting could
reflect a more general principle that much of forgetting is due to

changes in context between study and test, and that such forgetting
will be observed whenever context discrimination is integral to the
task.

Episodic Recognition

Method.

Participants. All seven subjects who were trained on the char-
acters completed this task shortly after training, immediately fol-
lowing the lexical decision task described above. This task was
also completed approximately 6 weeks after the completion of
training.

Design and procedure. The task consisted of eight pairs of
study and test lists. Each study list contained eight trained char-
acters (two from each frequency category) and eight untrained
characters. Each test list contained all the items from the study list
as well as 16 unstudied items, which included eight trained char-
acters (two from each frequency category) and eight untrained
characters. The first four items on the test list were always un-
trained characters, providing a buffer for the items of interest
(trained characters). Subjects viewed each item on the study list for
1,000 ms, presented one at a time on the screen. Following the
study list, the subjects were presented with the items on the test list
one by one, and for each item had to respond whether the character
had been present on the list they had just studied. Subjects were
instructed to “reset’” their memory in between each list, and answer
“old” to an item on the test list only if it had been present on the
most recent study list.

Results. The data from the episodic recognition task carried
out shortly after the completion of training were analyzed by
examining the hit rates (correctly identifying a studied item as old)
and false alarm rates (incorrectly identifying an unstudied item as
old). The hit and false alarm rates (averaged over all subjects) are
plotted as a function of frequency in Figure 5 (middle panel; also
see Table 1, center). Similar to the findings from Experiment 1,
false alarms significantly increased as frequency increased. There
was also a marginally significant decrease in d’ due to frequency.
The hit rate analysis however showed no significant effect of
frequency. Novel items in this study showed a bias to respond
“new”” compared with trained items.

Six of the seven subjects were tested again following a 6-week
delay. The results of the delayed test are shown in the right panel
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of Figure 5 (also see Table 1, bottom). After 6 weeks, one might
expect some lapse in the efficiency of encoding and some increase
in the variability of encoding of these relatively novel Chinese
characters, resulting in a decrease in overall performance. Con-
versely, one might expect a delay to reduce activation and retrieval
of the irrelevant training session traces, thereby boosting perfor-
mance. According to SARKAE (discussed in the model descrip-
tion that follows), if the criterion used for a recognition judgment
about items on a just studied list does not get adjusted according to
the delay since training, the decrease in access to irrelevant traces
will result in a decrease in both hits and false alarm rates, leading
to a general decrease in “old” responses without a large change in
d'.

Of primary interest for theory was the effect of frequency upon
recognition study and test 6 weeks after initial training. Statistical
analyses showed no significant effect of frequency on hit rates,
false alarm rates, or d': Although the trends in the data were in the
same direction as the other recognition findings, the noise in the
data made it impossible to infer the presence of such patterns.
Comparisons across immediate and delayed conditions showed
that there was a significant difference in the magnitude of the false
alarm rate effect found immediately after training compared to the
effect found after a 6-week delay. The delayed tests of novel items
again showed a bias to respond “new,” compared with trained
items.

Discussion. When tested shortly after the completion of train-
ing, the results in the episodic recognition task are similar to results
found in Experiment 1 and in normative word frequency studies:
As frequency increases, d’ decreases. In the current study, this is
due more to an increase in false alarm rates than a decrease in hit
rates with higher frequency items. Unlike Experiment 1, Experi-
ment 2 did not show a significant effect of frequency on hit rates.
However, previous work using normative word frequency manip-
ulations in this task has shown that the effect of frequency on false
alarm rates is much more robust than the effect on hit rates, which
only surfaces a portion of the time (Criss & Shiffrin, 2004b).

After a 6-week delay, unlike the pseudo-lexical decision task
that produced large and essentially unchanged frequency eftects,
the d' and false alarm rate effects were reduced and possibly
absent. The existence of frequency effects in recognition in Ex-
periment 2 and their reduction with delay have important impli-
cations for recognition modeling. It is not uncommon to use a
simplified model for recognition by assuming probes activate only
traces of items from the study list (this approach was used in early
versions of SARKAE applied to Experiment 1). In such a model,
poorer performance for high frequency test items is due to in-
creased confusions with traces of list items, because those traces
are more similar to the high frequency test probes. The present
design should have eliminated such similarity differences. In ad-
dition, if similarity differences are not present in knowledge traces,
then performance differences caused by within-list confusions
should not decrease over a 6-week delay, because the event traces
are stored on the basis of list study at both immediate and delayed
testing. Thus, to model recognition, we use an augmented model
(similar in certain respects to previous models by Criss & Shiffrin,
2004a; Dennis & Humphrey, 2001; Shiffrin & Stevvers, 1997) that
assumes confusions are produced also by the activation of event
traces from the (recent) training sessions. If context changes over
6 weeks, then the activation of training session traces will be

reduced, and the magnitude of frequency effects caused by such
activation will be reduced.

The data showed a slight lowering of performance after delay,
and at first glance could be thought surprising, given that the
6-week delay is not between the study list and test, but between the
training sessions and both study and test after the delay. A simple
application of the model would not predict this result: Activation
of training session traces adds noise that reduces overall perfor-
mance, so that a decrease in such activation caused by a 6-week
delay would reduce this noise and, if the only factor affected by
delay, would increase performance. Of course, many other factors
are likely affected by delay. For example, the choice of features to
attend and encode during list study, and to use as a probe at test,
might be less optimal than immediately following training. In the
simulation, we implemented this idea by allowing a lower encod-
ing probability after delay than for immediate testing. It is very
likely that another factor that was not incorporated in the simula-
tion produces lowered performance after delay: There is consid-
erable research, some quite recent (Criss, Malmberg, & Shiffrin,
2011; Malmberg, Criss, Gangwani, & Shiffrin, 2012; Murdock &
Anderson, 1975), showing that traces are stored during testing as
well as during study. Such traces would harm recognition perfor-
mance more and more as they accumulate. We do not have
sufficient data to look at test position effects, so that the perfor-
mance shown and modeled, for either immediate or delayed test-
ing, is in effect the average performance midway through testing.
However, when comparing immediate to delayed testing, there is
a difference: The test traces from immediate testing will tend to be
activated during delayed testing, adding noise and reducing per-
formance compared with immediate testing. In any event, what-
ever the mechanisms at work, the fact that delayed performance is
slightly lower than immediate performance indicates that the fac-
tors harming delayed recognition outweigh the factor improving
recognition.

The Experiment 2 results showed that new items, both targets
and foils, tended to elicit a higher probability of responding new
than trained items. It is possible that new test items lead partici-
pants to notice the presence of new features, causing a bias to
respond new for a given level of global familiarity. There are a
large number of complex issues regarding the coding of novel
characters, given they do not have knowledge traces. These issues
are taken up in the General Discussion.

Because Experiment 2 eliminated the interaction of character
context with frequency, the correlation of similarity differences
with frequency differences cannot be used to explain the pattern of
frequency findings for lexical decision and episodic recognition.
Thus, we introduce an explicit role for frequency per se, as
described in the next section.

SARKAE: Co-Development, Event Memory,
Knowledge Retrieval, Perception

We next build a simplified simulation of the SARKAE theory
and use it to predict the qualitative pattern of results from the two
studies. The simulation is quantitative nonetheless, thereby making
precise the assumptions in a way not possible with verbal descrip-
tions. The simplification of the simulation is intentional, because
building a model of all the relevant factors at work in five quite
different tasks would bury the essential and common elements of
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SARKAE in a forest of detail. Furthermore, SARKAE is intended
to be an evolving theory rather than a finished product. The
General Discussion takes up more realistic extensions of the the-
ory, additional applications, and new results requiring additional
components. Here, we give the “barebones” of the simulation
(simulation details are given in Appendix B), with justification and
alternatives reserved for the General Discussion.

SARKAE: Summary and Implementation of
Simulation

Representation. Memory is organized into separate traces,
each represented as a vector of feature values, values being integer
counts. The traces are classified into event traces and knowledge
traces, though there is a continuum from one to the other, because
knowledge traces form through an accumulation over many events.
At any point during training an event occurs and may cause
retrieval of one or more previously stored traces based on simi-
larity of the two vectors. Each selected trace can gain new infor-
mation (additional counts) from the current event. It is assumed
that at most one previous event trace, and at most one developing
knowledge trace, can be selected. Thus, there is only one knowl-
edge trace that develops for each class of event (in the present case,
a Chinese character).

The values in a trace vector are grouped into features (e.g.,
“size,” “color,” “orientation”) with the values specifying the kind
of feature (e.g., “huge,” “red,” “45°”). Event traces are sparse,
incomplete, and contain some values in error. Knowledge traces
develop over experience as relevant events occur, and become
replete with many feature value counts. As such traces accumu-
late information a kind of law of large numbers takes place: For
the kind of information that remains consistent over events, the
noise comes to be dominated by the “true” values so that the
distribution of feature value counts for a consistent feature has
a mode at or near the true value.

The simulation assumes that each trace vector, whether a knowl-
edge trace or event trace, has 432 vector positions, each position
encoding a count of values for some feature; O represents no values
stored, 1 represents a single value stored, 2 represents two values
stored (which must have come from two different events), and so
on. The vector is illustrated schematically in Figure 9. The vector
is divided into three parts. The first part consists of 160 positions
encoding content features (including content from items nearby in
time, space, and thought). These values are organized into eight
feature values for each of 20 features. Because the Chinese char-
acters in the studies are largely represented by physical features
(such as shape features), we often refer to the content features as
physical features. The second part consists of 32 feature values that
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encode the value for a single high level feature. The “true” repre-
sentation of a given character consists of initial values assigned to
the physical features and the high level feature; the 20 content
values are assigned randomly (so there is random content-feature
overlap between the representations of different characters).
Each of the 32 characters is assigned a different high level
feature value, because we assume that the high level feature is
chosen to make each character distinguishable from all the others.
Such a distinguishing feature is useful and perhaps necessary for
the training task of visual search. The physical matching required
in Experiment 2 does not require the use of a distinguishing
feature, but it does no harm to include such a feature in the traces
formed for that study, and it maintains consistency in the assump-
tions across the two studies. Because the high-level feature has a
unique value for every Chinese character, it is given as many
values as characters given training, a number of values that is
larger than that for each of the other features in the simulation.
The third part of a trace vector consists of 240 context feature
values, organized into 30 features each with eight values. These
values represent general list and environmental context, including
both external context (e.g., room setting, furniture, temperature,
etc.) and internal context (e.g., mood, thought processes about the
study and other matters, etc.). At the start of training, one context
value is chosen at random for each of the 30 context features.
Retrieval probe. SARKAE assumes cue dependent retrieval.
In any task or setting, access to event or knowledge traces is
carried out with use of a retrieval probe. The construction and use
of a retrieval probe occurs both during storage and testing. For
characters presented above threshold, a retrieval probe is formed
from various sources of information including the presented char-
acter, nearby characters, current context, and the knowledge trace
of the presented character. For characters presented at perceptual
threshold, the probe will consist of low level perceptual features.
In tasks and settings in which retrieval is initiated with a test cue,
the retrieval probe evolves dynamically over time as features are
extracted from the test stimulus. These retrieval dynamics are used
in the present simulation of pseudo-lexical decision in order to
produce response time predictions. However, because we analyze
only accuracy of responding for event recognition and perceptual
identification our simulation for these tasks is simplified by allow-
ing the retrieval probe to evolve to a final asymptotic state that is
then used in comparisons with the memory traces. In the General
Discussion, we take up models that use the dynamics of activations
for these tasks. The details of probe construction are given in the
sections to follow, but we note in advance that the role of pure
frequency is built into the construction of the retrieval probe.

240 (30x8) ]

Content Features

High-Level Feature

Context Features

Trace

Figure 9. Schematic example of a trace vector in SARKAE (Storing and Retrieving Knowledge and Events).
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Calculation of likelihood ratios. At essentially every stage of
processing in storage, training, study, and retrieval, probe cues are
used to activate memory traces. In our Bayesian-inspired ap-
proach, such activation is characterized for each trace, whether an
event trace or knowledge trace, as a likelihood ratio: the prob-
ability that the trace in question matches the probe, divided by
the probability that it does not. The calculation of such a
likelihood ratio could reasonably be based on the number of
counts, the pattern of counts, or both. We decided for all traces
to use the pattern of counts. Event traces have one count per
value, and the calculation uses the numbers of matching and
mismatching feature values. Knowledge traces have multiple
counts, so a single sample value is taken from the knowledge
trace for each feature, the sample being taken in proportion to
the counts in that trace for the different values. The resultant
vector of values is matched to the retrieval probe, in the same
manner as for event traces. If, for example, we would take a
given knowledge trace and exactly double every feature value
count, the likelihood ratio resulting from matching to a fixed
retrieval probe would not on average change.

The calculation of the likelihood ratio is based on the matches
and mismatches of feature values for features that have a value in
both probe and trace (this approach borrowing from the REM
model). The value for a given feature might be missing in a trace
or probe, and if so, that feature is ignored (a more elaborate and
probably better conceived approach would take missing values
into account; such an approach is taken up in the General Discus-
sion). If there is a value for a feature in both probe and trace, then
the values can either match or mismatch. The number of matching
values (k,) and the number of mismatching values (k,) are
counted. Each match increases the likelihood ratio that the trace is
that of the probe rather than some other item, and each mismatch
decreases this likelihood ratio. The likelihood ratio for the whole
trace is obtained by multiplying all the match and mismatch ratios
for that trace, as in Equation 1.

‘o [P(m I's) ]"m[P(nm I's) ]’“f

P(mld) | | P(nm|d)

()]

In this equation, the ratio for a matching feature (m) is given in
the first bracket, and for a mismatching feature (nm) in the second
bracket. In the brackets, s denotes a trace generated by the item
being tested, and d indicates a trace generated by some other item.
The superscripts are the number of matching and mismatching
features, respectively. For simpler models (like REM), the terms in
brackets can be derived in terms of the model parameters. How-
ever, the complex rules we posit for construction of the event
traces and the test probe make it difficult to derive these proba-
bilities analytically. Therefore they are instead estimated through a
simulation technique (see Appendix C for details). Once estimated
for a given set of parameters, the two ratios are fixed and used to
calculate the likelihood ratios for all activated traces. The trace
likelihood ratios are the basis for all retrieval in all tasks, as
described in the following sections.

It should be noted that training frequency affects the likelihood
ratios in a variety of direct and indirect ways. First, there are more
event traces when there is more training, obviously producing
more likelihood ratios. In addition, knowledge traces have a de-
creased number of missing values as training frequency increases.

Event traces are also stored partly on the basis of retrieval from
knowledge, thus indirectly producing frequency-dependent effects
inherited from knowledge retrieval, and retrieval probe construc-
tion depends in part on retrieval from knowledge and thus will
reflect frequency differences encoded in knowledge traces. Fi-
nally, the accuracy of knowledge retrieval is dependent on pure
frequency (as described shortly).

Context change. Situational context changes in complex and
poorly understood ways. It certainly does not change uniformly as
time passes. For the present tasks, it is nonetheless possible to
make plausible and simple assumptions and incorporate these in
the simulation. After each trial in each training session, the values
representing current context are altered: Each context value is
replaced with probability .01 by a uniformly chosen value (the
same value for both studies). Between each training session, be-
tween the last training session and the first transfer session, and
between successive transfer sessions, this context change process
is carried out N, times (estimated to be N, = 20). For the delayed
transfer tasks in Experiment 2, the context change process is
carried out an additional 36 N, times (representing the 6 weeks that
have passed—this value was set arbitrarily). The values chosen
capture the idea that context change is slow but accumulative
within session, substantial between sessions, and then quite a bit
larger during a several week delay.

SARKAE Simulation: Modeling of Training

Each presentation of a character (whether in training, or study or
testing during transfer tasks) produces an event trace, with at most
one value per feature, and also adds feature values to the vector
representing its knowledge trace. The features stored or added are
sampled from several sources and are sometimes stored incorrectly
in which case the value stored is proportional to the knowledge
base rates (obtained by summing across knowledge traces for that
feature and its values). The sources of features for both experi-
ments are the physical character features, current context (context
gradually changes over the course of training), the character stud-
ied on the previous study trial, and character features extracted
from the character’s knowledge trace. For Experiment 1, addi-
tional sources are the foils on the current trial. At the end of
training there are for each character many incomplete and error
prone event traces, and a knowledge trace that has accumulated
feature values over training. Due to accumulation over training, the
counts in the knowledge trace for each content/physical and high
level feature tend to be largest for the feature value in the repre-
sentation of that character. The values for context features are
more diffusely spread out because context changes over the course
of training.

The knowledge traces that develop during training are involved
in both storage and retrieval in many ways that will be described
in the sections to follow. The event traces that are stored during
training have a more limited use, because they do not get activated
and participate in pseudo-lexical decision or forced-choice percep-
tual identification—only knowledge trace activation determines
performance in our modeling of knowledge retrieval. The event
traces formed in the training sessions do play a role in the later
recognition task: They are activated by a recognition test probe to
the degree that they incorporate context feature values that match
those in the probe. Such activation is used to explain recognition
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frequency effects in Experiment 2. Because context keeps chang-
ing, the activated training session event traces tend to be those
most recently stored. It is slow to simulate the storage of every
event trace for 2 weeks of training and cumbersome to do so when
only the recent traces play a significant role. Thus, in our simula-
tions we allowed the knowledge traces to evolve over all training
sessions, but the simulation only stored event traces for the last
training session.

Event storage and knowledge development. For both con-
tent and context features, and for both event and knowledge traces,
the feature values stored will not necessarily match the actual
values: A value might not be stored, and if stored might be stored
incorrectly. We assume for simplicity that event traces do not have
multiple counts for a given feature, so each event trace stored will
have some features with all zeros (incomplete storage) and will
have some features with a single value marked with a one, but the
value marked might not match that in the event. As remarked
above, the knowledge trace accumulates feature values; thus, for
content and high level features, the mode of the values gradually
comes to approximate the true value of each feature. This scheme
is illustrated in Figure 10, albeit with fewer features and feature
values than in the actual simulation. The figure shows a simplified
set of features and feature values representing a presented charac-
ter (Row 1), an event trace stored for that presentation (Row 2), the
knowledge trace that includes storage due to all previous event
occurrences (including the present one) when a large amount of
training has taken place (Row 3), and when only a small amount
of training has taken place (Row 4).

Storing feature values during training. When an event oc-
curs there will be a process of storing features of the event in both
an event trace (possibly more than one event trace) and one (or
more) knowledge trace. Our simulation assumes each presentation
produces storage in one event trace and one corresponding knowl-
edge trace. Many factors affect which features are stored, and with
what probability and timing, factors such as attention, coding
strategy, and presentation time. In our training sessions, for either
Experiment 1 or 2, the task and timing remain constant throughout,
so we ignore these factors and simplify the simulation as described
in the following sections. Because we let the vector representations
of all trained characters (event and knowledge) have the same
“slots” for features and feature values, we can specify storage by

Actual Item
Item1: [00100(01000(10000[00001]

Event Trace of Item

Trace: [00100(01000(00000|00100]

Lexical Representation of item

Item1:[13902|48411(122030|12138] HF
Item1:[01201]03021(20121|00103] LF

Figure 10. Item representation and lexical entries in SARKAE (Storing
and Retrieving Knowledge and Events). HF = high frequency; LF = low
frequency.

letting each vector position have a chance at storage (in parallel).
For each position, we first choose a source for storage, and then
choose whether to store, and if something is stored, what to store.

Sources of features for storage. An important component of
SARKAE is the assumption that knowledge develops by incorpo-
rating feature values of other items in the temporal, spatial, and
mental neighborhood. We instantiate this idea by stipulating prob-
abilities for the source for storage of feature values: For context
features the only source of feature values is the vector of current
context values. For physical features the source rules vary with
experiment. For the search task (Experiment 1), the source of the
feature value is the (high or low) physical feature value of the
target with probability s, the physical feature value of the previous
target item with probability s,, a physical feature chosen from the
character’s knowledge trace (proportional to the counts there) with
probability s,, and the physical feature value of a randomly chosen
foil with probability 1— s, — s, — s, (the first three “estimated” to
be .57, .14, and .14, respectively). For Experiment 2, there are no
foils, so these three estimates were simply renormalized by divid-
ing by their sum, thereby making them add to 1.0. For Experiment
2, note that the previous target item is the same fixed character that
appears every other trial. These parameters determine sources for
storage in both knowledge and event traces, but are applied inde-
pendently.

Note on terminology. In SARKAE, one source is nearby
items, but these are not termed “context”; that term is reserved for
generalized context not dependent on the particular items studied.
Confusion is possible because several researchers have used con-
text to include features of other nearby items (e.g., as in the
temporal context model of Howard & Kahana, 2002). This differ-
ence in terminology is not by itself substantive, although of course
the detailed instantiations of the different models differ.

Storage probabilities. Assume a source for storage of a fea-
ture value has been selected. If the value is for a character’s low-
or high-level feature, some value (see below) is stored with prob-
ability u, (“estimated” to be 0.5); with probability 1— u,, no value
is stored for that feature;” if the value is for a context feature, the
storage probability is u,, (“estimated” to be 0.1), and no value is
stored with probability 1 — u, . For storage in the knowledge trace,
the probabilities of adding a feature value were set to the same
probabilities, but applied independently.?

Correct or incorrect storage of a feature value. Assuming
that a feature value is stored, there is a probability that its value it
will be copied correctly from the selected source. For all sources
but the knowledge trace, this probability, ¢, is the same value
(“estimated” to be .8). When the value is not copied correctly, the
value stored is chosen in accord with the base rates for that feature
(in proportion to the current summed counts for the values of that
feature in the knowledge base). If a feature has no values at all in

2 Conceptually, it seems appropriate to let the rate of storage differ for
high- and low-level features, and differ between the two experiments.
However, when we did allow such variation, the parameter estimates and
the fit did not differ very much.

3 Because decisions in the knowledge retrieval tasks (pseudo-lexical
decision and perceptual identification) are based only on activation of
knowledge traces, and decisions in the event retrieval task (episodic rec-
ognition) are based solely on activation of event traces, the assumption of
independence is probably not consequential in the present setting.
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the knowledge base (which happens very early in training), then a
value is chosen uniformly randomly.

Experiment 2 demonstrated that SARKAE must have a role for
“pure frequency.” There are many ways to let SARKAE include a
role for pure frequency. We chose to assume that the dependence
on trace richness of extraction of information and of subsequent
storage is reflected in the probability of copying a feature value
correctly when the source of the feature is the knowledge trace
(discussion of alternatives is deferred until the General Discus-
sion). Because trace richness is represented by the total counts, 7,
in a character’s knowledge trace, we let the copy-correct proba-
bility, p. rise with n: p.. = 1 — exp(—an).*

Similarity structures formed in the two experiments. These
storage rules, when used to develop knowledge traces, produce
different knowledge structures for the two experiments. Figure 7A
shows that training with visual search (Experiment 1) causes
knowledge traces of higher frequency characters to grow more
similar to each other. Figure 7B shows that training with character
matching (Experiment 2) does not cause similarity to vary with
training frequency.

SARKAE Simulation of the Three Transfer Tasks

There are three immediate post-training transfer tasks represent-
ing retrieval of different types: event memory, knowledge, and
perception. In Experiment 2, retrieval of event memory and knowl-
edge are repeated at 6-week delay. These tasks come close to
spanning the domain of memory, so it is a non-trivial exercise to
produce a simple simulation model that will utilize the same
processes and assumptions, and most of the same parameter values
(for conditions of “like” kinds). The generation of such a simula-
tion is nonetheless useful as a means of making concrete the core
processes of SARKAE.

Episodic recognition.

Characters with and without knowledge traces. Recognition
study and test lists included some untrained characters without
knowledge traces. Such characters would in principle be treated in
ways analogous to trained characters. However, there are several
respects in which such characters would require special assump-
tions. First, such characters would very likely contain new features
not in the set of trained characters; such new features are in fact
used in modeling pseudo-lexical decision, when untrained charac-
ters are presented. Second, new characters have no corresponding
knowledge trace, raising issues about the extraction of features
when the “source” is knowledge: Presumably similar knowledge
traces provide such features, but specifying just how would in-
volve much additional machinery. Although assumptions about
novel feature use and extraction of features from similar knowl-
edge traces could be introduced, doing so would add much com-
plexity just to predict what is in effect one data point: recognition
performance for novel characters. We therefore decided to leave
the recognition simulation model in its simpler form, predicting
only recognition performance for trained characters. Some issues
regarding novel items, and items with incipient but weak knowl-
edge traces, are taken up in the General Discussion.

List study. Event traces are stored for each character on the
study list, just as during training, with two exceptions: (1) The
source of feature storage is not allowed to be visual search foils or
prior trial visual search targets, since these do not exist during list

study for recognition. (2) Features for novel characters are re-
stricted to the same set as for trained characters (if novel features
had been included there would have been no noticeable change in
the predictions for trained items). Recognition instructions empha-
size storing for memory, so the probability that a feature will have
a feature value stored is allowed to be higher than during training.
Furthermore, we allowed the value of this study-list storage prob-
ability, u,, to differ for Experiment 1, Experiment 2, and Experi-
ment 2 delayed (“estimated” values were .85, .75, and .55, respec-
tively).

For study of words in a list, there is a long history of research
(e.g., Atkinson & Shiffrin, 1968) showing that storage occurs due
to joint rehearsal and joint coding of groups of words, usually
words in close temporal proximity. This sort of rehearsal is likely
less pronounced for the Chinese characters in the present studies,
but it would still be reasonable to allow the source of features for
encoding character j to include a nearby character, particularly the
previous one. However, because the data collected were insuffi-
ciently rich to allow sequential analyses, we did not include this
possibility in the simulations (and we did not include such a
possibility in the process of constructing a test probe, discussed
next).

Test probe construction. The test list includes targets (on the
study list) and foils (not on the study list). For each test character,
a memory probe is constructed as follows: Because the test char-
acter is available during probe construction, we assume that one
feature value is encoded for each and every character and context
feature. For content features, the encoded value is copied correctly
from its given source (physical features and the knowledge trace).
The parameters determining the source of the values are identical
to the probabilities applying during list study, renormalizing as
needed. The source of the encoded context feature value is always
the current context vector (so the context portion of the test probe
is always identical to the current context vector).

Probe to trace matching. In the general model, the test probe
is compared to all traces sufficiently strong and sufficiently similar
to the probe. For our simulation, this process was simplified: The
probe is compared in parallel to two sets of event traces: all event
traces of characters studied during list presentation, and event
traces from the last training session that have at least M context
feature matches out of the 30 possible. The criterion M is a
parameter that determines the amount of confusion from the traces
in the last training session.’ The result of matching is a likelihood
ratio for each final-training-session trace that passes the activation
threshold, and each list trace. The calculation of the likelihood
ratio was described in Equation 1.

4 This function was chosen fairly arbitrarily and was used in all our
simulation efforts; it is not unlikely that some other another monotonically
increasing function is and will eventually prove to be a better choice.

5 A better justified activation criterion would be based on both (1) the
number of feature values in a trace and (2) the trace likelihood ratio, and
applied to all extra-list and list event traces. However, the present simpli-
fication should produce similar predictions because it excludes a few
extra-list traces that would have just managed to get activated and includes
a few list traces that would not have exceeded activation threshold, but
including or excluding traces that match poorly does little to reduce
performance and tends only to change the best placement of the decision
criterion. The sum of likelihood ratios used to decide is dominated by
traces that match well.
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Recognition decision. The average of the likelihood ratios is
the odds in favor of the test character being from the list, and is
therefore used to produce a response (as in the REM model). The
odds ratio @ for old over new is given in Equation 2.

1
e = ;2?:1 A; @

In the REM model, an “optimal” Bayesian decision is made by
using a decision criterion of 1.0: If @ is greater than 1.0, then the
item is called “old,” if not, then the item is called “new.” In the
present model, it is difficult to calculate an optimal Bayesian
decision criterion, so we let the criterion be a parameter R, inde-
pendent of item frequency (“estimated” to be .5, .4. and .5 for
Experiment 1, Experiment 2, and Experiment 2 delayed, respec-
tively).®

SARKAE predictions for recognition. Figure 5 gives the sim-
ulation predictions (and data) for recognition for the two experi-
ments and the delayed test. The predictions and data are close both
qualitatively and quantitatively. Given the substantial noise in the
results caused by the small amounts of data collected, it would be
unwise to ask for additional precision. Both data and predictions
show that LF items produce better performance than HF items, in
the form of both more hits and fewer false alarms for Experiment
1 (Panel A), and fewer false alarms but no hit rate advantage in
Experiment 2 (Panel B). At 6-week delay, predicted performance
is slightly lower than immediately after training, and predicted
frequency effects are smaller, both roughly consistent with the
data.

Pseudo-lexical decision. Pseudo-lexical decision requires the
participant to judge whether a test item has ever been studied, or
instead is novel. In principle a response could be based on summed
familiarity to event traces, knowledge traces, or both. However,
because the knowledge traces are far more complete and accurate
than individual event traces they provide a much better basis for
response. We therefore assume lexical decision is based on a
comparison of the test character to all 32 knowledge traces. Each
knowledge trace contributes a likelihood ratio and these are aver-
aged to produce a decision statistic.

If measures of accuracy were the sole goal of lexical decision,
one could simply use this statistic to make a decision, but this is
not the case: The participant is asked to respond as quickly as
possible while maintaining high accuracy, conflicting goals that
can be modeled best in the context of a joint model of accuracy and
response time. SARKAE is therefore extended by assuming that
probe features are gradually extracted after presentation of the test
character, these extracted probe features accumulating as time
passes. At each point in time the current probe is compared to the
32 knowledge traces. Each comparison results in a likelihood ratio,
and these are averaged to produce an odds for “old”/“new.”

Because there is noise in the process by which the probe features
accumulate, and noise in the process of comparing the probe to
each knowledge trace, the odds moves somewhat randomly up and
down as time passes, though generally rising for old test characters
and generally falling for new test characters—this is known as a
non-homogenous random walk or diffusion.

New features for novel characters. If novel characters are
assumed to have the same features and the same distribution of
feature overlap to all other items as trained characters, then the

knowledge traces for the trained characters tend to have a fairly
large similarity to novel test characters, and the pseudo-lexical
performance is poor. To predict good performance for novel char-
acters, it is useful to make the reasonable assumption that novel
characters have some novel physical features. To introduce this
idea into the simulation, it is simplest to assume that these novel
features will occupy some of the 20 physical features in the probe,
displacing other features, and to assume that the value of these
novel features will not find a match in any of the 32 knowledge
traces. The result will be to reduce matching for a novel test item,
and thereby improve the accuracy and speed of responding. We let
a parameter nf be the proportion of features in a novel item probe
that are new; for Experiment 1, nf was estimated to be 0.6, and for
Experiment 2, immediate and delayed nf was estimated to be 0.35.

Context features. In principle, the probe should contain con-
text features. In fact, previous research has shown that context
features do join the probe: The addition of context features to
knowledge traces caused by an item presentation has been used in
previous publications (Schooler et al., 2001) to explain long-term
priming of knowledge retrieval. However, our tasks do not ma-
nipulate priming, so adding this assumption here would not change
the qualitative pattern of predictions. Thus the simulation simpli-
fies by assuming that the probe contains only physical character
features.”

Probe construction. The probe accumulates physical features
extracted from the test character. At each time step after presen-
tation of the test character, for each not-yet-encoded physical
character feature, there is a probability u, (estimated to be .75) that
that character’s actual physical feature value is encoded in the
percept/probe. If encoded, the probability of encoding the value
correctly is the standard value (.8) and otherwise it is encoded with
a value in proportion to the base rates for that feature. We assume
that the value of any feature encoded, whether correct or incorrect,
is kept as a part of the accumulating probe until a response occurs;
thus, the probe gains features as time passes, but does not revise
previously encoded features. The features that join the probe do
not do so differentially as a function of trace frequency because the
knowledge trace is yet to be contacted.

Comparing the probe to knowledge traces. At each time ¢, the
probe is compared to each knowledge trace. As usual, we assume
one sample is made from the values for a given feature in a
particular knowledge trace, in proportion to that feature’s counts in
that trace. This occurs for each feature. We assume that richer
knowledge traces are easier to contact and hence let the probability
of correctly copying that sampled feature be frequency dependent,
based on the same equation and parameter used for storage in
training: 1 — exp(—an), where n is the total counts in the trace.
The value selected given an incorrect copy is simply proportional
to the base rates for that feature’s values in knowledge. Then at
each sample moment, the incomplete probe vector is compared in
parallel to all knowledge traces, each trace being represented by

6 Using an R of 1.0 for all three gave good qualitative fits, and was not
far worse qualitatively. This insensitivity to R is related to the extreme
skewing of the distribution of odds.

7 In an expanded model, context features would be present from the start
of the feature extraction process, producing a baseline starting level for
activation. One method for adjusting for this baseline level would be an
upward adjustment of both response thresholds.
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one value per feature. The likelihood ratio for a given trace for the
probe used at time ¢ is given by Equation 1.% The odds at time ¢ that
the test character is a trained character is the average likelihood
ratio over the 32 knowledge traces produced by a probe at time 7.

Timing of the random walk. The accumulation of feature
values into the probe is simulated as a sequence of discrete steps,
each step assumed (somewhat arbitrarily) to occur every 100 ms.
Note that the sample from each knowledge trace is made indepen-
dently from one sample time to the next. This fact and the noise in
constructing the probe both make the odds fluctuate from one
sample to the next, although the value does ted to stabilize some-
what as the probe becomes more complete. Because the value of
the odds fluctuates over time, we can think of the odds as making
a type of random walk. This random walk does not start until after
an initial mean residual time (MRT; “estimated” to be 590, 780,
and 800 ms for Experiment 1, Experiment 2, and Experiment 2
delayed, respectively). The residual time was first subtracted from
all response times (RTs) in a given condition, and the model then
fit to the data to produce model RTs and accuracy—the MRT was
then added to these RT values to produce the predicted response
times.

The random walk decision process. A positive response is
given if and when the odds reaches or exceeds an “old” boundary,
R, (“estimated” to be 0.6, 0.75, and 0.75 for Experiment 1,
Experiment 2, Experiment 2 delayed, respectively), and a negative
response is given if and when the odds ratio reaches or drops
below a “new” boundary R, (“estimated” to be 0.30, 0.25, and
0.25 for Experiment 1, Experiment 2, Experiment 2 delayed,
respectively). Higher frequency “old” characters produce faster
and more accurate responses because the gathering of features
from a knowledge trace is more accurate for more highly devel-
oped knowledge traces.

SARKAE predictions for pseudo-lexical decision. The
SARKAE simulation predicts, as shown in Figure 4, that in Ex-
periment 1, Experiment 2, and Experiment 2 delayed, the HF items
are recognized both more quickly and more accurately than the LF
items. The level of performance and the effects of frequency are
not much altered by delay. These predictions match the data fairly
well.

Forced-choice perceptual recognition. Naively, one might
imagine that two-alternative perceptual-identification could be
modeled by simple visual matching: Some physical features from
the flashed stimulus could be extracted and matched directly to the
two following choices. Much research has shown that this model
is inadequate. For one thing, many studies show that the probe
consists not just of the flashed character but a variety of features
from the contextual surround (e.g., Huber, Shiffrin, Lyle, & Ruys,
2001), and that the collection of probe features is used to access the
various traces in the knowledge base (e.g., Ratcliff & McKoon,
1997; Schooler et al., 2001), producing features that are then used
in comparison to the two choices. Evidence calculations and in-
ferences can also be complex, as demonstrated by short-term
priming in which there are various forms of discounting of features
that could have been present due to the presence of the primes
(e.g., Huber et al., 2001). In our present studies, we do not use
short-term priming and do not vary most of the variables manip-
ulated in prior studies, and therefore simulate with a very simpli-
fied model.
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The model is predicated upon prior research showing that the
use of a pattern mask immediately following the flashed target
tends to inhibit the use of low-level features in forced-choice
decision making. Sanborn, Malmberg, and Shiffrin (2004; based in
part on prior research by Huber et al., 2001) demonstrated this by
showing that neither the case nor the color of a flashed word
matters when making a choice between two choice words, one of
which matches the case or color, and the other of which does not.
Instead the choice word’s spelling is critical, even when the
spelling differs by only one letter. Sanborn et al. (2004) showed
that this result held when a pattern mask was used, which is
defined as a mask containing features confusable with the target
stimulus (e.g., multiple colors for colored stimuli, and letter-like
fragments for stimuli varying in case). For more primitive masks
(e.g., uncolored or pixel noise), lower level features seemed to be
available and were used. The present task used jumbled fragments
of Chinese characters, surely a pattern mask, and very likely
reduced the use of physical features in the forced-choice decision.
For this reason, the simulation bases the decision solely on the high
level feature and its value.

High-level feature extraction. The probability of extracting a
high level feature from the flashed character is frequency depen-
dent, based on a simple linear function: ¢”’(n) = b + mn, where n
is the total number of counts in the trace, and b and m are
parameters of the linear function. If a high level feature is ex-
tracted, the probability of copying its value correctly is frequency
dependent in the same way as assumed heretofore: The probability
of copying the value correctly, ¢/(n), is assumed to be a function
of n, the total counts in the trace: ¢”(n) = 1 — exp(—an). If
copying is incorrect, a value is chosen in proportion to base rates
for the feature. The product e”(n)c”(n) gives the probability,
p(n), of extracting from the flash the higher level feature for the
flashed character.®

Discounting when guessing. If a high level feature value is
extracted and matches one of the choices, that choice is selected.
If there is no match, or if nothing is extracted, then a sophisticated
guess is made. The idea is that feature extraction is more accurate
for higher frequency targets, so the failure to extract implies that
the target probably was of lower frequency. If nl and n2 are the
number of feature counts in the knowledge traces for choices 1 and
2, the probability of guessing 1 is as follows: [1 — p”(nD)]/{[1 —
pimb] + [1 = pm2)]}.

SARKAE predictions for forced-choice identification. The
dependence upon frequency found in the data is predicted by the
model, as shown in Figure 6. The predicted increase in perfor-
mance for higher frequency targets is due to a higher probability of
extracting the correct value of the high level feature. The predicted
increase in performance for foils of higher frequency is due to the
bias to choose the lower frequency choice when guessing. This

8 As was true in recognition, the complexity of the sampling rules makes
it hard to derive analytically the feature ratio terms in Equation 1 that
produce the likelihood ratios, so again a simulation method is used to
derive them, as described in Appendix C. Once simulated for a given set of
parameters, the ratios are fixed and used for all calculations and all time
points.

? We simplify the simulation by ignoring the possibilities of contacting
the knowledge trace of some other character, and of choosing a feature
value from the base rates that happens to match the correct feature value.
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bias is based on the inference that something would have likely
been extracted had a higher frequency character been flashed.

General Discussion

Simplified Simulation Versus Theoretical Framework

The simulation of SARKAE presented in the preceding section
was not intended as a deeply developed model of any one of our
tasks, let alone other tasks, and instead was presented to make
concrete the way that the SARKAE approach could be applied to
quite distinct tasks of both event and knowledge retrieval. The
SARKAE theoretical framework is meant to guide theory devel-
opment as models are incorporated for new tasks and extended for
existing tasks, especially in light of new data. Thus, much of this
general discussion focuses on the ways SARKAE could be ex-
tended in more realistic ways and could be applied to more tasks.

Frequency Representation and Effects

Because our studies had frequency as a primary focus, and
because frequency has many and complex roles in the model, it is
worth reviewing these here. When an event is encountered the first
time, we assume it is encoded as an incomplete, impoverished, and
error prone event trace. For simplicity, we assume each feature
value has at most one count, and that extra study time fills empty
slots rather than adds counts to a given slot. This idea is extended
to the next several repetitions. However, knowledge traces develop
by accumulation of information from event traces and these do
accumulate counts in given feature value slots. Thus, a better
conceptualized model would allow count accumulation at every
stage of storage of both event traces and knowledge traces. Im-
plicitly, we are therefore assuming such count accumulation occurs
seldom enough to be ignored in typical episodic tasks.'®

In most tasks and real world settings, the accumulating infor-
mation in a knowledge trace will incorporate the statistics of the
featural context of the repeated events (including other nearby
events, and environmental context), thus naturally producing a
major role for context as a basis for frequency effects. However,
our Experiment 2 went as far as possible in reducing such context
variation over repetitions, and the studies nonetheless showed
frequency effects. We therefore included in SARKAE a role for
“pure frequency”: Knowledge trace richness was characterized in
terms of increasing number on feature value slots that have at least
one count, and in terms of increasing counts in given slots. For
retrieval of knowledge traces richness had two effects: (1) when-
ever a feature value is extracted from a knowledge trace the
probability the value will be encoded correctly, as opposed to a
random choice in accord with base rates, is assumed to increase
with total trace richness; (2) when time to process is limited, as in
perceptual identification when the target is flashed briefly and
masked, the probability of extracting any feature value (correct or
incorrect) is assumed to rise with trace richness.!! Both factors
should increase monotonically with trace richness (the present data
do not allow the form of the functions to be inferred, so the
simulation model adopted simple functions that were arbitrarily
chosen—see Appendix B).

The dependence upon trace “richness,” and the representation in
terms of knowledge trace counts and completeness, and in terms of

number of event traces, adds a great deal of structure to the simple
account of frequency effects in the REM model. The REM account
depended only on what could be described as differential distinc-
tiveness of event traces. That idea is incorporated in the present
approach, albeit in a different form, but the present approach is far
more fleshed out, and considers more factors.

It is of course the case that 2 weeks of training of Chinese
characters falls well short of the lifetime of training given to
relatively common words. Thus, we must be careful in generaliz-
ing the conclusions about the role of pure frequency from the
present studies to words. It could be the case that the relative
strength of the pure frequency factor drops as training continues to
extremely high levels. Thus, pure frequency might predict a large
difference between, say, 10 and 100 presentations, but not much
difference between, say, 1,000 and 10,000 presentations. The
present studies do not speak to this issue.

Consider next that a first stage when any item is presented for
study or test is retrieval from knowledge. Knowledge trace rich-
ness will therefore affect encoding in episodic tasks as well. Such
effects are indirect but nonetheless important. For example, in
event recognition the encoding of higher frequency items at study
and test will be less error prone. Beyond these effects is the
obvious factor that repetitions generally produce more event
traces. (We say “generally” because a repetition may sometimes
cause accumulation of information in a previous trace rather than
formation of a second trace; this process causes a repeated trace to
become less similar to others, a process we have termed differen-
tiation.) The additional event traces tend to have similar content,
but differing contexts (both in terms of other nearby events, and in
terms of environmental context, because environmental context
tends to drift over time). Episodic retrieval uses memory probes
with both content and context, and the context tends to be that
present at the time of retrieval. This produces a tendency to
discount older event traces, and favors retrieval of recent events
over older ones. Nonetheless, the existence of extra traces due to
event repetitions will interfere with episodic retrieval of other
items/events, in both tasks like recognition that rely mainly on
familiarity judgments and tasks like recall that relay on trace
sampling and recovery, to the extent that the traces share content
or context similarity.

Finally, we note that storage and retrieval may vary with pure
frequency in ways beyond those specified by SARKAE. However,
processes that improve storage and retrieval (of event and knowl-
edge traces) as pure frequency rises must be relatively weak, partly
because recognition is harmed by higher frequency, partly because
environmental frequencies vary by many orders of magnitude, and
partly because perception studies show perception (sometimes)
tends to be driven more by bottom up than top down factors (as in
Pelli, Farell, & Moore’s, 2003, studies, which are discussed soon).

19 Whether this simplifying assumption should be adjusted for studies
varying study time, spacing of repetitions, and type of encoding is an open
question, and might depend on the degree to which repeated items tend to
form a single richer trace, rather than multiple separate event traces.

""In principle, the extraction probability should also rise with trace
richness early in the processing of any presented stimulus, but this feature
is not included in our simulations of recognition or lexical decision because
it would not change the predictions significantly.
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Matching of Probe to Trace, and the Nature of
Activation

In the simulation, the activation of a trace by a probe is a
likelihood ratio calculated on the basis of matches and mismatches
of probe feature values to trace feature values, but only when there
exists a non-zero value on a given feature in both probe and trace.
If such a corresponding value is present in one but missing in the
other, no evidence is calculated. In principle, the absence of a
value is usually diagnostic, and SARKAE therefore needs to be
augmented. Suppose, for example, that an event trace is stored for
a word studied in a list, and contains word content and list context.
Suppose a dot pattern is presented at test. The dot features will not
match the word features, so will be ignored, but the context
features in the probe and trace will match, producing a large
likelihood ratio for match. We have recently developed a more
sensible matching formula that infers negative evidence (1) when
the probe has a value in a feature for which the trace has no value,
or (2) when the trace has a value in a feature for which the probe
has no value. The formula is described in Cox and Shiffrin (2012)
and is given in Appendix D. Note that our treatment of pseudo-
lexical decision assumed new feature values for novel characters;
using the new formula, one could just as well assume new features
and accomplish the same result.

The simulation of recognition and SARKAE generally assume
that only reasonably similar event traces are activated and take part
in determining the value of familiarity. The simulation imple-
mented this idea crudely by assuming all list traces and all traces
in the last training session were in the relevant set of traces. A
threshold for similarity would be a better-justified basis for acti-
vation. Whether this threshold would need to be adjusted for
different conditions (say for foils differing in similarity to targets)
remains an open question.

Representation and Features

The way in which we represent knowledge, as vectors of feature
values, is of course impoverished. Yet, one must be careful not to
enrich the representation too far, lest the theory become capable of
explaining everything, and predicting nothing. Such a concern
would apply if one broadens the concept of feature to include all
possible combinations of existing features, as attractive as such an
idea appears conceptually. Yet, some broadening of the present
vector representation is probably needed, particularly to deal with
configurality. Because our studies were rather simple, we needed
to take only one step toward configurality by assuming a single
“high level” distinguishing feature for the Chinese characters.
Mueller and Shiffrin (2006) broadened the representation to en-
compass all binary feature combinations. The system proved able
to account for a number of findings in cognition (Mueller &
Shiffrin, 2006, 2007), but at the cost of increasing the ability of the
model to explain most results.

Decision Criteria for Recognition

An advantage of using likelihood ratios to represent activations
(in SARKAE and in other similar models) is that a fixed or
close-to-fixed recognition criterion can be used despite variations
in factors like the frequency of test characters. In REM, for

example, a criterion of 1.0 did an excellent job of producing
qualitatively correct predictions across variations in item strength,
list strength, and list length (Shiffrin & Steyvers, 1997). The
present model is more complex, so the appropriate criterion no
longer lies at 1.0, but use of 1.0 nevertheless produces decent
predictions from the SARKAE simulation.

Our studies here, and indeed most studies in the literature, use a
class of stimuli that are relatively homogenous (e.g., Chinese
characters in our studies, or words in many other studies). We have
carried out recognition experiments in which the stimulus classes
differ widely (e.g., words, faces, Chinese characters, vacation
scenes, snowflakes, dot patterns) and are seen and tested once
each. Familiarity can be expected to vary widely across these
classes. The studies (Cox & Shiffrin, 2011, 2012) make it clear that
responses are made appropriately for different classes of stimuli.
For example, two-alternative force choice recognition testing gives
similar performance whether the two choices are from one class
(e.g., both words or blobs) or from different classes (e.g., a word
vs. a blob). Standard signal detection models would have trouble
with such results, given they seem to require different criteria for
each class but there is no opportunity to learn such criteria. A
possible solution is rooted in an alternative approach based on the
shape of the dynamic profile of activation, discussed next.

The Dynamics of Retrieval

The need to model response times for pseudo-lexical decision
required us to model the dynamics of activation and decision.
Logically, all tests evolve dynamically, and in principle response
times could be measured and modeled in other tasks, particularly
including event recognition. The SARKAE simulation for event
recognition did not utilize dynamic assumptions, in good part
because the data were too limited to allow reliable estimates of
response time statistics and therefore a dynamical model would
have added much complexity for little purpose.

Cox and Shiffrin (2011, 2012) have been developing dynamical
models for event recognition, and using them to predict both
accuracy and response times. The model assumes that features are
extracted from the recognition test stimulus over time. The probe
contains context features at the start of evidence accumulation, and
context features are gradually extracted from the test stimulus and
added to the growing probe. Familiarity thus changes over time,
generally rising when targets are tested, and dropping when foils
are tested. In order to deal with different familiarity levels and
profiles for differing item types (words, faces, visual objects,
blobs, dot patterns, and so forth) the model bases decisions not on
the level of familiarity itself but rather on the accumulated changes
in familiarity as time passes. There are thresholds for responding
that do not depend on the type of item tested. The response choice
depends on the threshold reached, and the response time is deter-
mined when that threshold is passed. The resultant model has the
nice property that it predicts data that Jacoby and colleagues had
interpreted as evidence for a fluency heuristic (e.g., Jacoby &
Whitehouse, 1989). The present model has the machinery to cal-
culate familiarity for a probe at a given moment in time, so it
would be reasonable to extend the model dynamically, in the way
suggested by Cox and Shiffrin.
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Stages of Processing

Detailed models of perceptual processing almost always assume
stages of processing. Such an approach is not in debate, though
there remain many questions about the roles of top-down feedback
processes. Just one of numerous examples showing the importance
of stages (albeit in this case minimizing the role of top-down
processes) is research by Pelli and colleagues on visual word
perception. For example, Pelli et al. (2003) showed that word
length does not improve word perception at threshold to the degree
one would expect from an ideal observer model, by which thresh-
old should drop strongly with word length. Instead, the threshold
for words of differing lengths seemed determined largely by the
threshold for individual letters, leading to a bottom-up stage model
in which letter perception is a prior stage to word perception.

The need for stages of processing is clear, and these should be
incorporated in SARKAE as the theory is further developed. We
explicitly modeled pseudo-lexical decision as a dynamic process,
and in the previous section discussed modeling event recognition
dynamically, but the current forms of these dynamic models at
most incorporate stages of processing in implicit fashion. Consider
visually presented words. Notwithstanding top down feedback, it
is very likely that processing begins with primitive features such as
line edges, shape, and color; at a later point in time, processing will
occur for higher order features such as letters; at that time or even
later, the lexicon will be contacted and meaning features retrieved,
and so on. These stages likely overlap, and likely have recurrence.
The timing of these stages could well vary as well.

The picture is further complicated in the SARKAE framework
because the stages in accessing knowledge produce features that
are added (over time) to any probe of event memory, a process that
then evolves over time in accord with the changing probe. The data
from the present studies do not require a model with stages of
processing, especially because the recognition testing was too
minimal to produce reliable response times, so such modeling was
not included in the simulation. The augmentation of SARKAE
with stages of processing is left for future development.

Factors That Determine Recognition Performance

We have discussed several factors that affect (harm) recognition
performance, including activation of non-target traces from the
study list (termed item noise by Dennis & Humphreys, 2001) and
activation of traces of the test item itself that were stored on the
basis of study events other than the list presentation (termed
context noise by Dennis & Humphreys, 2001). The distinction
between context noise and item noise is actually not a sharp one in
the SARKAE framework because the event trace of an item
contains features of other items that are co-rehearsed. Thus, ac-
cording to a context noise model, the activation of an item’s list
trace will act partially as if the co-rehearsed item had been acti-
vated. The distinction then becomes a subtle one in which the
critical issue is whether a tested item activates traces of other items
that were never co-rehearsed. In any event, SARKAE assumes that
activation of all types of traces is a matter of degree depending on
similarity to the retrieval probe.

Another important factor is the successive storage of the event
traces of the successive items tested (given that essentially all
studies use multiple tests): The context for the n-th test following
a given study list is surely very similar to that for the traces of the
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prior n — 1 tests, leading to high likelihood ratios for those test
traces. Since context likely changes between list study and the
subsequent test sequence, the traces of list items will contribute
smaller likelihood ratios. This would have two implications: Rec-
ognition performance should drop as testing proceeds following
study of a given list, and the size of this effect should be larger than
the effect of list length. Several recent studies demonstrate these
effects and assertions (see Criss et al., 2011; Malmberg et al.,
2012). We have not included this factor in our present simulations
largely because the studies produced too little data to analyze the
effects of test position. Had test traces been included in the
simulations, predicted performance would have been lower, so our
listed parameter estimates are surely a little too low. In addition, if
storage of test traces had been included in the simulation, then that
would have added another factor lowering predicted performance
after a 2-week delay in Experiment 2. However, the qualitative
pattern of the present predictions should be unchanged if test trace
storage had been included.

In SARKAE, the way that extra and larger trace activations
operate to harm performance is a technically tricky matter. At first
glance, it appears that lowered performance is caused by the
increased variance produced by extra and stronger traces. How-
ever, the recognition decision is based on the average likelihood
ratio, and the average requires division by the number of activated
traces. These factors together produce effects that turn out to be
controlled largely by the skewing of the distribution of the average
likelihood ratio. Shiffrin and Steyvers (1997) discussed how this
works (albeit in a different version of the model, and one simpler
in many ways). This picture is further complicated when one wants
to understand the predicted effects of training frequency. The
effects of training frequency depend on (a) number of training
session event traces, (b) knowledge trace access whose accuracy
depends on trace richness (and therefore affects both storage
during list study and retrieval at test), and (c) changes in similarity
of knowledge traces to each other that are induced by the visual
search paradigm in Experiment 1. The interaction of these various
factors makes it hard to gain an intuitive understanding of the basis
for the model’s predictions. After writing several long and convo-
luted verbal explanations, none of which clarified matters very
much, we have decided to omit these and let the simulated pre-
dictions speak for themselves. It suffices to note that activation of
traces other than those due to list study of the test item, whether
those traces are from the list or from personal history and experi-
ence, and whether those traces are of other items (similar in
content and context) or traces of the test item itself (in other but
similar contexts), will reduce recognition performance. The harm
caused by such activations is, however, largely caused by the few
very similar traces (i.e., the tail of the similarity distribution) rather
the average familiarity of the activated traces.

High Level Distinctive Features

The process by which one or more unique features are identified
and learned are an interesting subject of research. For example,
Shiffrin and Lightfoot (1997) showed that training gradually
causes the separate features of a novel object to cohere into a
unified whole, so that search that starts by dealing with several
features of a given stimulus changes to the point where a given
character can be dealt with as a single feature. The end result
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would be a whole character code that could serve as a unique
distinguishing feature. That study used simple three-feature stimuli
but search was difficult because a conjunction of features was
needed to identify a target. The difficulty was high enough that
serial terminating search continued to be used throughout 30
sessions of training. The training did, however, produce consider-
able learning: search at the outset of training operated by joint
operation of two sequential comparisons—sequential comparisons
of features within each object (to determine whether a given object
is a target) and sequential comparisons across the display objects.
As training proceeded, the features defining a given object grad-
ually coalesced into a single whole-character code that uniquely
identified each object. Search therefore gradually switched (over
many sessions) from sequential comparisons of features to sequen-
tial comparisons of whole objects. Because the time needed for a
feature comparison was similar to that needed for an object com-
parison, search speed increased by a factor of three as training
continued.

For the case of visual search for quite complex Chinese char-
acters, the process of finding and learning unique features would
likely be more complex, but not necessarily difficult, because
some feature of each character already coded by our visual system
might well be a unique identifier. For this reason, and because the
learning of unique character codes is not the goal of the present
investigations, we simply assumed that such a high level feature is
present from the start of training. This simplifying assumption is
unlikely to distort the modeling effort because training went on for
a few weeks, and the distinguishing features were very likely
learned early in training. The main function served by such a high
level feature is its use in the two-alternative forced-choice (2AFC)
perception task (we have described earlier why this feature alone
governs choices). Unique identifying features would not be re-
quired for the matching tasks in Experiment 2, though there is no
reason why they could not be noticed, learned and utilized. Given
that there is no direct evidence from Experiment 2 concerning this
possibility (partly because there were no 2AFC data from that
study), we simply carried over the Experiment 1 assumption and
assumed that a unique feature was available for the outset of
training.

In the general framework, we intend “feature” to include refer-
ences to other traces in the knowledge base: A knowledge trace
develops based on a set of events, but then can itself be a feature
stored in other event and knowledge traces.

Modeling Recall

Recall tasks are a major class of memory paradigms that we did
not explore in our studies and hence did not model with SARKAE.
The model we have in mind for recall essentially adopts that of the
SAM model (Raaijmakers & Shiffrin, 1980, 1981). The general
idea is that recall uses a probe that does not “contain” the answer
being sought. Such a probe and subsequent changes to that probe
are used in what can be and often is an extended search of memory.
Each step of the search consists of sampling a trace, recovering the
contents to the degree possible, assessing the validity of the infor-
mation recovered (akin to the “recognize” part of the “generate and
recognize” heuristic) and outputting the desired response, continu-
ing the search, or ending the search unsuccessfully. The trace
sampling process begins with trace activation as in SARKAE,

likelihood ratios being the result for all activated traces. Sampling
from these traces is made in proportion to the strength of the
likelihood ratio for a given trace. Recovery of information from a
trace is based in part on the value of the likelihood ratio for that
trace (see the next paragraph). A decision whether the trace con-
tains the information sought is based on the recovered information.
Decisions whether to continue sampling and whether to change the
probe cue are based both on the information recovered and the
history of the search to that moment.

Performance in both cued recall and free recall is generally
higher for higher frequency words, especially for knowledge tasks,
but also for event memory. Cued recall studies generally show
performance is higher for targets of higher frequency (probably
due to the higher probability of “recovery”; e.g., Gillund & Shif-
frin, 1984), but the effects of cue frequency vary from study to
study. The factors in SARKAE that are frequency dependent must
also operate in event recall. Any factors that increase the likelihood
ratio between the probe and a given trace will affect recall in two
primary ways. First, an increase in the ratio of the likelihood ratio
for a given trace to the sum of likelihood ratios across all activated
traces will increase the probability of sampling that trace. Second,
recovery of information from the sampled trace will be higher for
a trace with a higher likelihood ratio. The recovery process is
frequency dependent for two reasons. A first stage of recovery will
depend on extraction of features from the sampled trace, and more
features will generally be extracted when the likelihood ratio is
higher for that trace. However, the extracted features by them-
selves will typically be few in number, and error prone, and
therefore insufficient to govern decisions and produce responses.
Thus, a second stage of recovery will compare the sampled fea-
tures to knowledge, in the hope of inferring what items are en-
coded in the trace. The process of comparing the trace features to
knowledge traces will produce strong frequency effects in the
recovery process (for the same reasons such frequency effects are
expected in knowledge retrieval, such as lexical decision).

Recollection and Familiarity

SARKAE posits that a probe of memory has dual consequences:
The cue itself engenders a feeling of familiarity (in the form of an
average trace likelihood ratio), and the cue starts a process of
sampling traces from memory (in proportion to the trace likelihood
ratios), thereby allowing recall to occur. Thus, it is a logical and
conceptual necessity in the SARKAE framework that recognition
testing would involve both familiarity and recall. Demonstrating
that this is the case is however no easy matter. In the thousands of
studies that collect only old/new judgments, and the lesser number
that (also) collect confidence judgments, the data are relatively
sparse, making definitive conclusions difficult. Wixted and Mickes
(2010) have a recent review of this research and conclude that a
continuous version of the unequal variance signal detection model
can account well for both familiarity and recollection. The ade-
quacy of this model may reflect the relative paucity of accuracy
data.

SARKAE requires both familiarity and recall processes to op-
erate in recognition, but implicit in its architecture is a complex
inter-relation of these two components. Not only SARKAE but
almost any plausible model would have to predict a positive
correlation between recognition and recall processes, because any
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factor that makes a trace stronger and more accurate would lead to
improvement of both familiarity-based and recall-based perfor-
mance. The complexities arise in the details. If the task is such that
decisions based on familiarity and recall are highly correlated
when recall occurs, then a strategy might be adopted to ignore
recall and base all decisions on familiarity. Many recognition
models adopt this position either explicitly or implicitly. However,
it might well be the case that decisions are based on the joint
outcome of both processes. Some recognition tasks might even
make recall the preferred basis for decisions, if foils are so similar
to targets that targets and foils produce similar distributions of
familiarity (e.g., when plural and single word forms must be
discriminated—see Malmberg, Holden, & Shiffrin, 2004). If fa-
miliarity and recall are used jointly, then one needs to consider the
different information that is used in the two cases. Event recall is
characterized as a series of samples from memory. Recall sampling
is characterized as proportional sampling from the likelihood ratios
whose average is “familiarity.” Suppose a recognition test results
in some information being recovered from a sampled trace. There
is not at present data that would allow a determination of the way
that such recalled information is combined with familiarity. It
might be simplest to assume that a positive decision based on
recovered information from a recall sample dominates familiarity
when the two differ. However, cases when the two sources differ
might be low in number, making the various possible models
indistinguishable. A number of investigators pursuing this issue
have asked for two recognition judgments, one often termed know
(presumably aligned with familiarity) and the other termed remem-
ber (presumably aligned with recall). Unfortunately, it turns out to
be the case that most such data are consistent with the view that
remember judgments are simply familiarity judgments with a
higher criterion.

It may be that more definitive inferences can be achieved with
studies analyzing other forms of data such as response times and
measurements of neural activity. However, simply obtaining such
measures will not necessarily provide easy answers. Consider
response times: One might think that recall response times would
sometimes be longer than those produced by familiarity judg-
ments, due to extended sampling. However, such an inference
requires strong knowledge of the shape of the slow tail of the
distribution of familiarity judgments, and this knowledge would
likely be model dependent. In addition, typical recognition tasks
might well cause a curtailing of the recall process to just a single
sample; if so, the comparisons of the response time distributions
produced by a familiarity process and a single cycle of the recall
search process would surely be dependent on assumptions of the
models used for each.

The inference difficulties are only increased when considering
dynamic models for recognition judgments. For example, in our
new dynamic model for recognition familiarity judgments, famil-
iarity will change over time, but there is no evidence that tells us
when during this time the sampling process begins and ends. Given
that successful recovery will usually occur for “target traces”
whose familiarity tends to rise over time, and given that recovery
is posited to depend on the value of the likelihood ratio for the
sampled trace, success in sampling will be higher if the (first)
sample occurs relatively late in the dynamic process of familiarity
change. This could make it reasonable to assume as a first approx-
imation that the timing of recognition responses is determined by

the familiarity decision process even if the decision is sometimes
based on recall.

In summary, we believe and the SARKAE approach assumes
that recognition testing will usually involve both familiarity and
recall components, but very precise and clever studies combined
with careful modeling will likely be needed to assess the relative
contributions of each.

Context

Features from the general surround of an event are added to both
event traces and knowledge. Such context features include general
internal states, the environmental surround, and other nearby
events (similar to the ideas posited in the temporal context model
of Howard & Kahana, 2002). One consequence of incorporating
context into event traces is an increasing complexity of the struc-
ture of knowledge; another is the tendency for knowledge traces
formed from events nearby in time and space to become increas-
ingly similar to each other, and thereby to reflect the co-occurrence
statistics of the environment. Both context due to nearby events
(often varied experimentally) and general context are important. A
variety of studies have been carried out in which the environmental
context is changed from study to test, and these changes can have
substantial effects, especially in recall tests (e.g., Godden & Bad-
deley, 1975; Smith, Glenberg, & Bjork, 1978).

The SARKAE simulation modeling of context and content
storage during event study is very simple and bypasses many of the
complexities that are associated with different storage strategies
and different allocations of attention. A detailed treatment of these
matters is outside the scope of this article, but we believe that
storage of a given element of context will be important and affect
performance to the degree that that element is (1) attended and (2)
integrated with other aspects of the event. These elements should
also be important in encoding context for a probe of memory. In
many situations, a given element of environmental context, such as
aspects of the room environment, will not be attended or coded
explicitly, and storage will be incidental. Changing that context
element between study and test would therefore produce small
effects, and those observed might be characterized as changes of
“bias.” However, when instructions or task lead to a binding of
context to content, then larger effects and changes in accuracy can
be expected (Murnane & Phelps, 1993, 1994, 1995; Murnane,
Phelps, & Malmberg, 1999).

One type of context that may be very important but not much
studied heretofore is “task context.” An example is found in recent
research by Annis, Malmberg, Criss and Shiffrin (in press): Fol-
lowing study of a word list, successive tests of words for recog-
nition produce increasing output interference (Criss et al., 2011),
but interpolating tests of words for lexical decision produces little
if any interference for event recognition (even though those same
words are stored, as demonstrated in a separate and later event
recognition test). The simplest interpretation holds that the task
context is a major part of the attended and stored information
during testing. Then a recognition probe for item presence on the
study list would contain recognition task context that would be
quite dissimilar from the lexical decision task context in the lexical
decision test traces. The lexical decision test traces would then not
be activated and would not interfere.
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Incidental context nonetheless plays in role in storage and
retrieval, even when not in the focus of attention. In earlier
writings (using the REM modeling framework), we suggested and
obtained evidence for the “one-shot-of-context” hypothesis. The
basic idea is that the explicit focus of storage is on content
(particularly semantic content in the case of words). In contrast,
storage of generic list context occurs incidentally at the time of
presentation and only lasts for a short period of time. Thus,
extended study does not add to context storage but only adds to
content storage. Evidence for this view was obtained in several
studies (Malmberg & Shiffrin, 2005). The SARKAE modeling did
not explicitly incorporate this hypothesis because the studies we
carried out did not vary study time and did not explore the
attendant issues. Nonetheless, the hypothesis is very important for
understanding of certain types of dissociations (e.g., massed study
time affecting event memory but not knowledge retrieval). Disso-
ciations are the subject of the next section.

Dissociations

In the eyes of many theorists, dissociations provide a major part
of the rationale for separate event traces and knowledge traces. In
this context, dissociations refer to an experimental variable that
produces one pattern of outcomes when event memory is tested,
but a different pattern when knowledge is tested (e.g., Roediger,
Weldon, & Challis, 1989). To take another example than study
time, “depth” of processing of a word is often manipulated (say,
judgments of pleasantness, “deep,” vs. judgments of word length,
“shallow”); deeper processing produces better event memory but
does not produce better knowledge retrieval (e.g., naming times
may be the same for deep and shallow processing). The REM
model has been used previously to explain dissociations (e.g.,
Malmberg & Shiffrin, 2005; Shiffrin & Steyvers, 1997); SARKAE
predicts dissociations in conceptually similar fashion although the
details differ from the REM account. In SARKAE, study of an
event adds feature values to a new event trace and also adds (some
of the same) values to the relevant knowledge trace. The effects of
this addition are quite different, however, because for event traces,
each feature value occurs once (if at all) and in this sense all such
values are equivalent. However, the knowledge trace already has
numerous feature value counts, so adding one more can have a
negligible effect: If we know that fire engines are red, study of a
red fire engine may add one more count to a large number of
counts in the fire engine knowledge trace, but this will not change
the knowledge trace appreciatively. On the other hand, novel or
relatively novel information added to knowledge can produce a
noticeable effect. For example, suppose one sees a green fire truck,
adding “green” for the first time to the “fire truck” knowledge
trace. If one is later asked to name a fire truck presented in green,
the match of the color green in the test probe to the added green
feature in the knowledge trace would be expected to speed re-
sponding. This example is artificial; more commonly context will
produce the new information added to knowledge. Context gener-
ally keeps changing, so a new encounter with an instance of an
established knowledge trace (say, study of a word in a study list)
will add new context to that knowledge trace. The novel context
features added to the knowledge trace can produce additional
matching when (some of) those same new context feature values
are used in probing knowledge a short time later. The additional

matching can produce significant priming. In other cases, when the
addition to knowledge is only a negligible increment, then priming
will not occur. These are cases in which dissociations can be
expected. To return to our examples, consider the account of
Malmberg and Shiffrin (2005). They provide evidence that context
features are stored in the first second or two of study, in somewhat
automatic fashion, but not thereafter (they term this the one shot of
context hypothesis). Suppose, therefore, that both “deep” and
“shallow” processing of a word produce equal context storage in
the word’s event trace and the word’s knowledge trace. As a result,
“depth” of processing will not produce a difference in knowledge
access due to context. What depth of processing will do is cause
more storage (in both event and knowledge traces) of semantic
feature values, because the depth manipulation will change the
amount of elaborative semantic processing that takes place. The
extra semantic information due to deep processing will improve
event memory. However, the extra semantic processing will add
more semantic features to a huge number of those features that
already exist in the knowledge trace, the effect being a negligible
change in knowledge access.

The preceding discussion is based on the assumption that the
test item has a corresponding knowledge trace. What will occur
when there is no corresponding knowledge trace, or such a trace is
in early stages of formation, is largely unexplored territory. Some
of the key issues are discussed next.

Weak or Missing Knowledge Traces

There are many unknowns concerning test items that have no
corresponding knowledge trace, or a corresponding knowledge
trace that is in early stages of development (such a trace lies in
descriptive limbo, not clearly best described as either event or
knowledge). When a presented item has a missing or weak corre-
sponding knowledge trace, then it is reasonable to assume that the
item will be encoded in terms of (1) lower level features that are
represented in knowledge (e.g., for a random geometric line shape:
lines, junctions, edges), and (2) one (or more) knowledge trace(s)
that are retrieved based on similarity to the presented item. Thus,
a visual “blob” might be novel and have no corresponding knowl-
edge trace but be encoded in terms of textures, and in terms of
other knowledge traces such as those for “cloud” or “ink stain”; a
pseudoword like “event” might be encoded in terms of orthogra-
phy and phonology, and also cause retrieval of the phonetically
similar lexical trace “event.” For event trace access in such cases,
the features that result from the access to knowledge, whichever
traces are the source of those features, will join the evolving probe
of event traces. Beyond these reasonable assumptions, there is at
present little empirical or theoretical basis for modeling in greater
detail. In access to knowledge, how strongly does a weakly devel-
oped corresponding knowledge trace compete with similar but
different knowledge traces? Should this process of knowledge
access be modeled as the first sample of our general model for
recall? Suppose the task involves activation of event traces: Should
the incipient knowledge trace be treated as just another event trace,
albeit one with more filled in values, and perhaps one with mul-
tiple counts per value? What sorts of priming and dissociations
could be expected in such cases? These sorts of questions are good
ones for future research. At the moment, however, it would really
be a matter of guesswork for us to attempt to formulate a model for
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items with missing knowledge traces (this was a good part of our
decision not to model episodic recognition of untrained charac-
ters).

Forgetting From Long-Term Memory

In the following discussion, complexities due to possible differ-
ences in retention due to storage in the medial temporal lobes
versus cortex are ignored—this issue will be raised briefly in the
following section.

As a general rule, retrieval is better to the degree that there is a
better match between the retrieval probe cue(s) and the trace(s)
sought in memory. This principle applies both to event traces and
knowledge traces. It is an old concept that was termed encoding
specificity and was highlighted by Tulving and Thompson (1973).
It has been a key principle in most theories of memory, including
SARKAE and its predecessors such as SAM and REM. Forgetting
is then expected to the degree that there is a reduction of the match
of probe cue to stored trace. Thus, for example, given the expec-
tation that context generally changes over time, and given that
present context will either explicitly or implicitly be part of both
the event trace and the probe, the match of probe to trace deter-
mined in part by context feature matching will decrease over time
and produce forgetting.

In SARKAE (and other similar models), this general principal
must be refined because the absolute value of the match to the
desired trace is only one factor governing retrieval, another being
this strength relative to the sum of the matches to other traces. For
recognition, for example, the decision statistic is based on famil-
iarity defined as an average likelihood ratio; the average is deter-
mined in part by the match of the probe to other traces. The more
other traces are similar, the more likely the test item will be
recognized, and conversely. This factor is important in predicting
and explaining “false memory” effects (e.g., Brainerd & Reyna,
2002; Deese, 1959; Roediger & McDermott, 1995) and interfer-
ence effects (Mensink & Raaijmakers, 1988). Turning to recall,
note that one stage in the search process is the sampling of a trace
in proportion to its likelihood ratio, again a relative measure (one
closely related to that critical for recognition). However, once a
trace is sampled, then recovery will depend mostly on the match
(likelihood ratio) of the probe to the sampled trace.

These principles are fairly commonly used to explain forgetting,
although some other factors could also play a role, such as trace
degradation or retrieval inhibition (RI; e.g., M. C. Anderson,
Bjork, & Bjork, 1994). RI is said to occur when there are several
traces competing for retrieval to a probe; when one “wins” the
others are inhibited. There has been much debate concerning RI,
with some researchers claiming much of forgetting is due to its
action, and others claiming the findings supporting RI can be
explained by the factors discussed earlier in this section (e.g.,
Raaijmakers & Jacob, 2013). We have not included RI in our
simulation and suspect it plays at most a small role in forgetting,
but note that it could be incorporated in the general SARKAE
theory without much distortion.

The discussion in the last few paragraphs considers forgetting as
a unitary phenomenon, not distinguishing the type of materials or
features retrievable at different time points. However, there is good
reason to think that certain high level information is retained better
than more superficial types of information. This idea has been

formalized most carefully by Brainerd and Reyna (e.g., Brainerd et
al., 1999; and used to explain developmental differences in false
memory—e.g., Brainerd & Reyna, 2007), who distinguished
“gist” information from verbatim information and who argued for
longer survival of “gist.” These ideas also accord with everyday
subjective experience—the day after a research talk, we remember
many details, but as time passes, we gradually seem to lose these
details and perhaps eventually retain only a sense of whether the
talk was “good” or “bad.”

Brainerd and Reyna have explored recognition judgments of
verbatim versus gist matches, obtaining parameter estimates in
their quantitative model suggesting longer retention of gist. What
could explain selective retention of high level “gist”? There are a
number of possibilities, and these might differ somewhat for
recognition and recall. One factor likely involves probe encoding.
Each time an item is presented the current context could help
govern the choice of features for encoding, but the superficial
features might vary more as time passes than the core “meaning”
features. For example the word “apple” might be encoded with a
mental image of a green apple if one had consumed a green apple
a few hours previously; a few days later, the encoding is likely to
be red. In both cases, the core meaning of apple may be the same.
By itself this factor would simply produce forgetting, but use of a
probe that emphasizes the higher level gist features would tend to
produce better retrieval than a probe that emphasizes superficial
features, due to better matching to the stored trace. Such a factor
is easy to incorporate into SARKAE. In recall, the factor of
recovery from a sampled trace comes into play: We have assumed
recovery improves as a function of the overall match of the
retrieval probe to the sampled event trace, but this is likely too
simple a view. It seems likely that what is recovered from a
sampled trace will depend on the internal structure of the infor-
mation in the trace, and that superficial detail may be more
recoverable when the probe context matches the stored context
well, and less recoverable when the context shifts. On the other
hand, gist information in the trace may be recovered well due to
matches to similar information in the probe even when context has
changed. Such ideas are not yet incorporated in SARKAE and
must be left for future studies and implementation.

A third possibility is based on the idea that “gist” features are
more important and stored more strongly than “verbatim” features.
The present simulation allows such strength to be represented by a
higher probability of storing one kind of feature than another. This
approach would require an elaborated representation of event
traces, since the simulation of SARKAE assumed at most one
count per feature. Of course it makes perfect sense, and accords
with the representation of knowledge traces, to allow features that
are given more coding and attention to be stored with more than a
single count. If so, then matching of probe to event traces could be
simulated in the way that this is done for knowledge traces: One
trace feature value is sampled per feature class, in proportion to the
counts in that feature class. It is a very complex issue whether a
mere increase in gist counts would lead to selective retention of
gist. It could be that proportional sampling of counts would have
to be replaced by sampling that selectively chooses stronger fea-
ture values as delay increases and trace likelihood ratio decreases.
For recall tasks and settings, all the above factors could be playing
a role, but in addition, recovery of features from a sampled trace
might selectively favor stronger feature values when the trace
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likelihood ratio drops. The usual way to arrange this is through a
non-linearity. For example, the lower a trace’s overall likelihood
ratio, the higher could be the feature-value-count threshold for
accurate recovery of that feature value. These various possibilities
have to be left for future exploration.

Neural Implementations of SARKAE

The role of the hippocampus and the medial temporal lobes
(MTL) in encoding and establishing memories has been a topic of
immense research interest, becoming especially prominent with
Brenda Milner’s research in the middle of the last century (e.g.,
Milner, 1970). It is clear that this region need not be intact to allow
normal cognitive functioning in the present, but must be working
properly to allow encoding of event configurations, and re-
trieval of those events once attention has been diverted for a
few minutes. This superficial summary obscures the many
issues that are continuing targets of research, such as the nature
of events for which the MTL is uniquely required (as opposed
to direct cortical storage), the time course and nature of transfer
to cortical storage, the lability of MTL encoding, the degree to
which MTL traces and cortical traces can be independent, and
much more. This article is not the place for discussions of the
many issues, but there are a few points worth raising.

One involves a puzzle that is essentially unanswered in all
memory models including SARKAE: If retrieval is cue dependent,
why do not the knowledge traces that strongly match the probe
dominate retrieval, and prevent retrieval of the much weaker event
traces? In some earlier writings, the second author speculated that
the knowledge trace activation that occurs quickly might be tem-
porarily inhibited, thereby allowing the weaker event traces to be
accessed. A different idea is worth considering, that recent events
stored in the MTL regions can be accessed to some degree inde-
pendently of traces in the other brain regions (even when some
start has been made at transferring those events to cortical traces).
In such a view, knowledge access is largely from cortical regions
and episodic access would be from MTL. This is of course too
simple an idea. Given an intact MTL, event or episodic traces will
gradually lead to the formation of a corresponding event trace in
cortex, and event trace access might be some combination of
retrieval from both. One might also be led to form a distinction
between relatively short term event memories stored in MTL and
much longer term event memories stored in cortical regions. This
distinction is not often highlighted, because laboratory studies of
event memories tend to focus almost exclusively on quite recent
events whose recall might well be subserved by MTL (“what was
on the just studied list?”’) but not events in the distant past (“what
did you do on the day after your twelfth birthday?”).

It is quite common to describe memory in terms of two “sys-
tems.” Let us put aside the obvious proviso that our memory is
extraordinarily complex and any binary division would be a gross
oversimplification. A division of memory into a small number of
systems can nonetheless be helpful as an aid to understanding and
as a guide to ongoing and future research. One common division
is described as implicit versus explicit (or other similar terms), and
this binary division is at least partly motivated by the different
memory functions for MTL versus other brain regions. Such a
division is however unsurprisingly characterized differently in the
hands of different theorists, making it difficult for us to relate the

idea to our model. In addition, the division is often stated not in
precise model terms, but in a fashion that leaves open many
possibilities for interpretation. We have decided therefore to de-
scribe SARKAE as precisely as we can, and leave interpretation of
the relation to various binary system frameworks in the hands of
the theorists who either proposed or use them.

One interesting and very recent set of research findings on
memory storage, and on the building of knowledge, is termed
reconsolidation (e.g., Schiller et al., 2010). It seems clear that the
formation of knowledge requires additions to existing memories—
this concept lies at the core of the present theory. Further, it seems
clear that additions to an existing memory require accessing, or
calling to mind, that memory. This is termed reminding in recon-
solidation research. The importance of the reconsolidation research
lies in the idea that such reminding may place the recovered
memory in a plastic state, and that the augmented memory would
then require re-storage in order to be again available. Chemical
intervention to prevent such re-storage seems to eliminate the
memory (or its access). It seems likely to us that this finding and
process, if further confirmed by ongoing research, would be lim-
ited to new memories still primarily stored in MTL.

There are many other issues that relate to the neural correlates of
the SARKAE approach. Previous studies show that training of
novel objects (even for periods as short as one hour) produce
measurable neurological changes. For example, a study by Ros-
sion, Gauthier, Goffaux, Tarr, and Crommelinck (2002) utilized
training of a novel set of objects (greebles). When faces were
tested in upright or inverted fashion (inverted being ‘“novel”),
subjects showed an N170 effect: delayed and enhanced N170 for
inverted versus upright faces. Prior to training, this inversion was
not seen for greebles, but following 2 weeks of training, the N170
(at least in the left hemisphere) was delayed and enhanced for
inverted versus upright greebles. Furthermore, James and Atwood
(2009) found that training on pseudoletters (letter-like stimuli) can
produce activation in areas known to be involved in letter process-
ing. Presumably, these pseudoletters are not receiving higher level
feedback (as they have no linguistic association), and yet they are
showing expertise effects similar to roman letters. Such studies
provide one way to use neural measures to link established knowl-
edge with the learning of new knowledge.

The Nature of Events

Related to these discussions is the concept of “event.” For
simplified experimental tasks, such as the study and test of a list of
words or characters, it is possible to think of events as separate and
discrete sets of information corresponding to the separate task
elements. This approach is obviously inadequate when experience
is continuous and complex—for example, what are the “events”
when we are carrying out a conversation while walking to school,
or playing a tennis match, or reading a book? With few exceptions,
the field has not explored the issue (see Zacks & Tversky, 2001).
It seems likely and perhaps necessary that events exist at many
levels of abstraction, overlap in complex and structured ways, and
contain information with different temporal spatial extent. For
example, events occurring while reading a book could include a
word, a paragraph, a casual story element, a character, a character
plot interaction, and the book itself, among many other possibili-
ties. Surely the representation of events must involve the way our
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cognitive system uses attention to parse experience, but the way in
which this might operate goes well beyond the scope of this article.
If one does adopt such an elaborated idea of “event,” then an
“association” probably ought to be elaborated similarly, perhaps as
a hierarchy with an association event subsuming two item events.
If the concept of event is generalized in such a way, then it would
be natural to assume that knowledge traces could be structured
similarly, given that knowledge traces form through event accu-
mulation.

Separate Traces

The use of a representation in which traces are “separate” is a
convenient heuristic and an aid to understanding. The last 30 years
especially have seen substantial progress in development of neural
net models in which numerous elements or nodes are linked by
weights in networks, and various forms of events and knowledge
are encoded by the weights. Given high enough dimensionality of
the network, and/or recurrence in the network, many different
types of information can be encoded in mixed fashion in the
weights. This approach is particularly compelling for descriptions
at the level of neural processes. For descriptions at the behavioral
level, separate traces can provide a better avenue for understand-
ing. Neither approach is “right,” given the extraordinary complex-
ities of mind and brain, but each aids understanding in different
ways. Some sorts of knowledge appear quite discrete, such as
words in our lexicon, lending themselves more naturally to sepa-
rate representations (indeed, many models using composite and
distributed representations for word events nonetheless instantiate
word knowledge with a lexicon of separate traces). Other forms of
knowledge are far more continuous, such as “the actions of playing
tennis,” and may lend themselves better to composite and distrib-
uted representations. Our choice of separate traces is useful for
behavioral modeling, but we certainly do not mean to argue for
purely separate neural representations for events or for knowledge,
something that is almost certainly impossible.

Structured Knowledge

Our studies used novel stimuli with no designed structure of
their features. The knowledge traces that resulted from training had
relatively little structure. According to SARKAE, the trial struc-
ture in Experiment 1 caused the similarity between knowledge
traces to rise with their frequency, but that structure is highly
impoverished compared to knowledge generally. Many neural net
models are designed to produce sophisticated structure as their
weights adjust over time to continued inputs. This is typically
caused by the decisions about the sizes of the banks of nodes and
their connectivity. For example, when feedforward connections are
forced through a “choke point,” the system will end up performing
a kind of discriminative learning, separating groups of inputs into
classes defined by similarity. There are far too many types of
neural net models to try to characterize them as a group, but this
sort of discriminative learning can and does produce sophisticated
structure in the resultant sets of connection weights (a good ex-
ample is found in the modeling of Rogers & McClelland, 2004).

In its simplest form, SARKAE is limited in its ability to form
structured knowledge because it simply aggregates features of
events. However, the present description of SARKAE has left out
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any serious discussion of attention and short-term memory. All
storage of events and knowledge goes through active memory
(variously called short term memory or working memory) where a
variety of attention processes operate on the then contents of active
memory. This article is not the place to describe these attention
processes, but in the SARKAE framework, they are a major source
of the eventual structure of knowledge. Discriminative learning
will occur for example when attention is focused on the features in
active memory that are most useful for separating classes of events
important for the given task. We admit that this approach is just a
promissory note at this point, because we have not yet attempted
to apply the model to tasks in which highly structured knowledge
forms. In addition, even if the approach is carried out, it is not clear
that it will produce structured knowledge in as elegant a fashion as
many neural net models.

Summary and Final Remarks

The research presented here is important on both conceptual and
empirical grounds. Conceptually, it provides a traditional memory
framework and model that shows how knowledge grows from
events, and how knowledge informs the coding of events. Empir-
ically, it provides some closure about the ways that frequency of
occurrence affects storage and retrieval of event memory and
knowledge: We demonstrated separate roles for the contexts in
which items of different frequency appear, and frequency per se
(represented as trace “richness”). Although few variables were
manipulated, the studies are useful because it is unusual to com-
bine in one study a variety of tasks: training (different types in the
two studies), event memory, perception, and knowledge retrieval,
thus coming close to spanning memory studies. Such an approach
is more typical of applications of cognitive architectures (e.g.,
SOAR, e.g., Laird, 2012; ACT-R, e.g., Anderson, 1993; EPIC,
e.g., Meyer & Kieras, 1997), but those architectures tend to focus
upon established knowledge, whereas our focus is on the mecha-
nisms by which event memory and knowledge co-evolve, and
inform each other in the process.

SARKAE is obviously not the only way to implement the
conceptual ideas presented here, but is a natural outgrowth of the
second author’s prior research, starting with Atkinson and Shif-
frin’s (1968) model, continuing through the SAM models of Raai-
jmakers and Shiffrin (1980, 1981) and Gillund and Shiffrin (1984)
and continuing further through the REM modeling of Shiffrin and
Steyvers (1997) and subsequent applications of that Bayesian-
inspired approach to perception and knowledge retrieval (e.g.,
Huber et al., 2001; Schooler et al., 2001; Wagenmakers et al.,
2004).

According to SARKAE, the key to the storage of events and the
development of knowledge is the assumption that an event causes
two types of memory storage: An event is stored as an incomplete
and error prone trace, including both content and context informa-
tion. The event also causes addition of the same sorts of informa-
tion (again in incomplete and error prone fashion) to an already
stored trace that is brought to mind by similarity of features to the
present event). The already stored trace can be an earlier event
trace—this mechanism allows the development of knowledge
traces. When the trace brought to mind is an already rich knowl-
edge trace, the addition of new event information makes only a
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small change, but nevertheless is sufficient to produce long term
priming.

The converse of storage in knowledge is coding by knowledge:
Whenever an event is encountered, and whenever a probe of
memory is formed or constructed, the knowledge base is consulted
and relevant information retrieved: Most of the way an event is
coded beyond infancy is based on learned features in the knowl-
edge base.

In conclusion, the SARKAE model presented in this article
provides one principled way of thinking about the co-evolution
and interactive nature of human knowledge, event memory, and
perceptual systems. This theory, and others of a similar character,
might join other recent developments that focus research increas-
ingly on the ways that cognitive, behavioral, and neural systems
evolve together and interrelate in highly dependent fashion.
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Appendix A

Analysis and Statistics

Experiment 1

Lexical decision. The significance of the trends in the be-
havioral data was assessed by conducting contrast analyses. For
each subject, two dot products were computed: one between the
vector of accuracy rates and the contrast vector [—3, —1, 1, 3],
and another between the vector of response times and the same
contrast vector. A t-test was used to examine whether the
accuracy dot products were significantly different than zero,
and found that there was a significant positive relationship
between frequency and accuracy, #(7) = 2.27, p = .057. The
same analysis was applied to response times, and found a
significant negative relationship between frequency and re-
sponse time, #(7) = -2.30, p = .055.

Episodic recognition. A contrast analysis was conducted to
examine the significance of the effects. For each subject, a dot
product was taken of the vector of hit rates by frequency and the
contrast vector [—3, —1, 1, 3]. A dot product was also computed
for false alarm rates and the contrast vector. A t-test was performed
on the hit dot products and false alarm rate dot products to test
whether they were significantly different than 0. The hit rate
analysis showed a significant negative relationship between
frequency and hit rates, #(7) = -2.32, p = .059, and the false
alarm rate analysis showed a marginally significant positive
relationship between frequency and false alarm rates, #(7) =
1.96, p = .097.

Forced-choice perceptual identification. A contrast analysis
was run to examine the significance of the effect of target fre-
quency and of foil frequency. For each subject, two dot products
were computed: one between the vector of accuracy rates by target
frequency and the contrast vector [—3, —1, 0, 1, 3], and another
between the vector of accuracy rates by foil frequency and the
same contrast vector. A t-test was used to examine whether the dot
products were significantly different than zero. The results showed
that the increase in performance due to target frequency was
marginally significant, #(5) = 1.94, p = .11, as was the increase
due to foil frequency, #(5) = 1.73, p = .14.

Experiment 2

Lexical decision. A contrast analysis was used to look for
consistent trends of frequency on accuracy and response time. For
each subject, two dot products were computed: one between the
vector of accuracy rates and the contrast vector [—3, —1, 1, 3], and
another between the vector of response times and the same contrast
vector. A r-test was used to examine whether the accuracy dot
products were significantly different than zero, and found that
there was a significant positive relationship between frequency and
accuracy, #(6) = 2.90, p = .03. The same analysis was applied to
response times, and found a significant negative relationship be-
tween frequency and response time, #6) = —2.97, p = .03.

A linear regression analysis was also run on each subjects
response times and accuracy. Each analysis produced a value (3
representing the slope of the best fitting regression line. The 3
values for accuracy (one 3 from each subject) were then tested for
significance using a #-test. The analysis showed that the slopes of
the regressions on accuracy were significantly greater than zero,
#6) = 259, p = .04. An analysis of the slopes from the
regressions on response time were shown to be significantly
less than zero, 1(6) = —2.45, p = .05. These two results are in
agreement with the contrast analyses above.

In addition to testing for consistent trends in each subject’s data,
a linear regression analysis was also used to analyze trends in the
averaged data. The results of this analysis of group means showed
a (non-significant) negative effect of frequency for response time
(B = -.002, ¥* = .054, p = .23), and a significant positive effect
of frequency on accuracy (B = .004, r* = .147, p < .05).

Response time and accuracy were measured again approxi-
mately 6 weeks after the previous test session. The results followed
the same pattern as they did 6 weeks prior: There was a significant
positive relationship between accuracy and frequency for both the
contrast analysis, #(5) = 2.44, p = .059, and individual regression
b analysis, #(5) = 2.54, p = .05, and a significant negative
relationship between response time and frequency for both the
contrast analysis, #(5) = —-2.36, p = .06, and individual regression
b analysis, #(5) = —2.45, p = .058. Furthermore, a contrast analysis
comparing the results of the delayed test to the immediate test
showed that there was no significant decrease in the magnitude of
the effects, either for accuracy, #(5) = 1.14, p = .31, or for
response time, #5) = 0.51, p = .63.

Episodic recognition. A contrast analysis was performed to
test whether consistent effects of frequency were present in each
subject’s data. For each subject, a dot product was taken of the
vector of hit rates by frequency and the contrast vector [—3, —1,
1, 3]. A dot product was also computed for false alarm rates and
the contrast vector. A t-test was performed on the hit dot products
and false alarm rate dot products to test whether they were signif-
icantly different than 0. The hit rate analysis showed no significant
difference from zero, #(6) = —0.387, p = .71, but the false alarm
rate analysis showed a significant positive relationship between
frequency and false alarm rates, #6) = 3.19, p = .02.

A linear regression analysis was also run to examine trends in
the group data. This analysis showed a marginally significant
positive relationship between frequency and false alarm rates (> =
113, p = .08). There was no significant correlation between hit
rates and frequency (2 = .008, p = .66).

The results were also examined by analyzing effects of fre-
quency on d'. A contrast analysis was conducted to look for
consistent trends over subjects, and found a marginally significant
decrease in d’ due to increased frequency, #(6) = —1.86, p = .11.
A linear regression on the group d' data did not show a significant
relationship (% = .053, p = .24).

(Appendices follow)
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Six of the seven subjects were tested again following a 6-week
delay. Linear regression found no significant relationship between
hit rates and frequency (P = .041, p = .34), or false alarm rates
and frequency (* = .023, p = .48). Furthermore, a contrast
analysis showed that there was no significant effect of frequency
on hit rates, #(5) = —1.12, p = .31, or on false alarm rates, #(5) =
0.605, p = .57. Analysis of d' after delay found no significant
effect in the contrast analysis, #(5) = —0.989, p = .37, or in the
linear regression analysis (#* = .017, p = .54). A contrast analysis
was also used to examine the change in magnitude for the delayed
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test versus immediate test. This analysis showed that there was no
significant difference in the magnitude of the hit rate effect, #(5) =
0.30, p = .77, but there was a marginally significant change in the
false alarm rate effect, #(5) = 2.11, p = .09.

Lastly, a t-test (of non-paired samples) was conducted examin-
ing the change in magnitude of effects from Experiment 1 to
Experiment 2. This analysis found that there was no significant
difference in the magnitude of the hit rate effect, #(13) = —0.27,
p = .79, but there was a significant change in the false alarm rate
effect, #(13) = -2.24, p = .04.

Appendix B

Parameter Descriptions and Values

Tables B1 and B2 give the value and a description, respectively,
of each parameter used in the SARKAE (Storing and Retrieving
Knowledge and Events) simulations described in this article.
Where the same value is used for the three conditions, that value

Table B1
Parameter Values

was assumed not to vary. Parameter estimation was carried out by
inspection, and the results we show are not necessarily the best
possible but are sufficient to show that the approach captures at
least the qualitative patterns seen in the data.

Lexical decision

Episodic recognition 2AFC

Experiment 2

Experiment 2

Parameter Experiment 1 Experiment 2 with delay Experiment 1 Experiment 2 with delay Experiment 1
s, 571 .667 .667 571 .667 .667 571
Sk .143 167 167 .143 167 .167 .143
s, .143 167 .167 .143 .167 .167 .143

. 1 1 1 .1 1 .1 1

Uy 5 5 5 5 5 5

u, 75 75 75 .85 75 .55

c .8 8 .8 .8 .8 .8

R .30/.60 .251.75 .25/.75 .6 .35 .6

a .0008 .0008 .0008 1 .1 1 100

timestep 1 .1 1

MRT .59 78 .80

nf .60 .35 .35

S; 7 7 7

5 25 25 25

M. 15 15 15

N, 20 20 20

m .0075

b .70
Note. 2AFC = two-alternative forced-choice; MRT = mean residual time.
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Table B2

Parameter Descriptions

Parameter Description

Sy Probability of storing target item features into knowledge trace

Sk Probability of storing existing knowledge features of item into knowledge trace

S, Probability of storing previous target item features into knowledge trace

u, Rate of storage for context features into knowledge trace

Uy Rate of storage for non-context features into knowledge trace

u, Rate of storage for all features into event trace/percept

c Probability of copying a feature value correctly from non-knowledge sources

R Odds criterion for a response (R, = old criterion; R, = new criterion in lexical decision)

a Parameter that governs copy probability when contacting a knowledge trace

timestep  Number of milliseconds assumed to pass with the completion of one evidence gathering/comparison time-step in the lexical decision model

MRT Mean residual time—non-decision time in the response times for lexical decision

nf Number of new features in novel (unstudied) pseudo-lexical decision test items

S; Probability of storing from target item during construction of event trace

s, Probability of storing from item’s knowledge trace during construction of event trace

M, Number of context features of an extra-list trace that must match in order for the trace to be activated and included in the episodic memory
decision calculations

N, Number of times context change process is run between training sessions

m Slope of the linear function used to determine high-level feature extraction in two-alternative forced-choice

b Intercept of the linear function used to determine high-level feature extraction in two-alternative forced-choice

Appendix C

Probability Estimation Through Simulation

At the core of the SARKAE (Storing and Retrieving Knowledge
and Events) model is the equation giving the likelihood ratio for a
match of probe to trace: Equation 1. In this equation, there are two
ratios expressing the feature likelihood ratios for matches and
mismatches. There are four terms needed to calculate these ratios:
P(mls), P(mld), P(nmls), and P(nmld). In the retrieving effectively
from memory (REM) model (Shiffrin & Steyvers, 1997), these
ratios could be written in simple form in terms of the model’s
parameters. Unfortunately, the complex construction of the traces,
percepts, and test probes used in SARKAE does not allow us to
write a closed form expression for these ratios in terms of the
model parameters. As an alternative, the ratios were estimated for
a given set of parameter values through a simulation process: We

used a given set of parameter values to produce memory traces and
target and foil probes for a large number of simulation runs. From
these, we counted average numbers of matches (m) and mis-
matches (nm) for the two relevant cases: when an episodic trace or
a percept is being compared to its own trace (s), and when it is
being compared to a different trace (d). The resultant proportions
were then used as “empirical” estimates of the four probabilities in
Equation 1. This process must be carried out for each set of
parameter values. We verified the accuracy of this procedure by
testing it on predictions for the REM model, because that model is
simple enough that explicit expressions were available for the
same terms. The two approaches matched closely, as shown for
one set of REM parameter values in Figure CI.

(Appendices follow)
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Figure CI.

Retrieving effectively from memory (REM) model (Shiffrin & Steyvers, 1997): Estimated (Est.)

probabilities (Prob.) compared to probabilities calculated by formula (For.) when an item is compared to its own
trace (Panel A) or some other trace (Panel B). Note that the estimated probabilities in Panel A differ from the
formula probabilities only for large feature values, due to the extremely low occurrence of these very low

frequency values.

Appendix D

Calculation of Probe-Trace Matching

Cox and Shiffrin (2012) suggested a much improved method for
calculating the similarity/match between a probe and memory
trace, and we give here a slightly generalized variant of that
method. For the special and limited conditions of the studies in this
article, the better method was not needed, but a general theory
needs to have a well-tuned and coherent calculation. The improved

calculation takes into account the evidence against a match when
a feature (a feature class, like “color,” not a feature value, like
“red”) is present in probe or trace but not present in the other. In
addition, the method allows appropriate similarity calculation re-
gardless of the size of the trace and size of the probe (size referring
to the number of features with values), an essential property

(Appendices follow)
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because the probe grows over time and the trace size varies with
factors like study time. The exposition is clearer if we assume the
following equation applies to the matching of a probe to an event
trace (the extension to knowledge trace is described later). This
equation applies to the current status of a probe, either at a time t
after the presentation of the test item, or as limited by perceptual
properties of test presentation. To produce the given equation, we
assume that there is at most one value per feature in the trace and
in the probe.

In principle, each event or knowledge trace can have a different
number of features. However, in a given situation the limited
capacity of short-term memory and the limited study time will
mean that only a sample of these features will be involved in
storage of an event (or added to a developing knowledge trace).
Similar limitations will mean that only a sample of potential
features will be available for incorporating in a dynamically de-
veloping memory probe. These limiting factors are represented
(implicitly) in the parameters as defined below. We assume that
the parameters are the same for each trace that is matched to the
probe, and for each probe.

Also, in principle, the number of feature values per feature, and
the base rates of those feature values, should vary. In the present
applications, we do not know the features or the feature values, so
we assume for simplicity that there is the same number of values
per feature, with equal base rates. It is not unreasonable to assume
that the system has “knowledge” of the number of feature values
and their base rates, for each given feature. If so, the equations
given would be easy to modify accordingly, although the expres-
sions would be rather long to write out.

n(T) = number of features in a trace that have no corresponding
feature in the probe.

n(P) = number of features in the probe that have no correspond-
ing feature in the trace.

n(M) = number of matching values for a common feature in
both probe and trace, summed across all features.

n(Q) = number of mismatching values for a common feature in
both probe and trace, summed across all features.

K(s) = number of features that are in short-term memory during
event study, and potentially available for storage. K(s) is a param-
eter to be estimated, but we assume it is fixed across conditions
and items. If a very long study occurs, and new features are added
to short-term memory as time passes, then it is unlikely but
possible that the number of feature values stored in an event trace
will exceed K(s). When this happens, a random sample of K(s)
features is selected and used for comparison.

K(p) = number of features potentially available for encoding
into the test probe. K(p) is a parameter that is estimated but fixed
across conditions and items. We usually set K(p) = K(s).

o = probability that a given feature will be present in both the
K(s) and K(p) features when the trace and test item match. This
parameter will be high but less than 1.0 due to fluctuation in the
process of selecting features to join short-term memory.

vy = probability that a given feature will be present in both the
K(s) and K(p) features when the trace and test item do not match.
This parameter represents feature overlap between different items.

The longer the delay and the greater the context change between
study and test, the higher the true degree of fluctuation should be
when probe and trace match. When probe and trace mismatch, the
greater the similarity between the test item and the trace, the
greater should be the true degree of feature overlap. It is an open
question whether the system or participant can adjust these values
for different experimental conditions.

J + 1 = number of values per feature, for every feature,
assumed to have equal base rates.

¢ = probability of copying a studied feature value correctly,
given a value is stored, assumed to be the same value for all
features and values.

u = probability that a given feature value had been stored in the
trace being compared = [n(T) + n(M) + n(Q)V/K(s).

v = probability that a given feature value had been encoded in
the current probe = [n(P) + n(M) + n(Q)/K(p).

There are five free parameters: «, vy, ¢, K, J:

Mismatch
a(l =) "l a1 +Je) ™[ 1 — au "D 1 — o "D
[ ki ] [ Y ] [l—w] [I—W]

The larger the first and last two exponents, the less is the evidence
of matching; the larger the second exponent the more is the
evidence for matching. The fewer the number of feature values
stored in a trace, the smaller will be the value of u; small # moves
the third term toward 1.0 reducing its effect upon the likelihood
ratio. The fewer the number of feature values in the probe, the
smaller will the value of v; small v moves the fourth term toward
1.0 reducing its effect upon the likelihood ratio. Thus, features
present in the probe or trace and not present in the other will
reduce the likelihood ratio more to the extent that both are rich in
feature values.

This equation can also be used to calculate similarity/likelihood
ratio for a knowledge trace, under the following assumptions. A
knowledge trace will often have more than K(s) features; when this
is the case, assume a sample of K(s) features is made in proportion
to the summed number of values stored in that feature. In addition,
a knowledge trace will often have many values per feature; when
this is the case, choose a single value for that feature in proportion
to the number of values stored.

Finally, it should be emphasized that this equation is the method
for calculating the probe trace match (activation, likelihood ratio).
It says almost nothing about the factors that determine which
features and values are selected for short-term memory, for storage
in the event trace and knowledge trace, and for incorporation into
the developing probe of memory. That selection will be a mixture
of automatic and attentive processes and will reflect factors such as
context, strategies, perceptual factors, and goals.

Match
)\[—ln(T), n(P), (M), N(Q)} =
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