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Abstract – This paper presents a stochastic program-

ming approach for calculating the operating cost of an 
autonomous photovoltaic-fuel cell power system with 
battery storage under uncertainties. The significant uncer-
tainties include the electrical and thermal demand of a 
single household and the power generation capability of 
the photovoltaic. A new uncertainty modeling technique 
using particle swarm optimization is proposed to improve 
the quality of the stochastic solution. The system is mod-
eled as a multi-stage nonlinear mixed-integer stochastic 
cost model and is solved using adaptive particle swarm 
optimization.  

Keywords: Autonomous Power System, Hybrid PV-
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1 INTRODUCTION 
The growing concern about global warming and the 

huge incentives for renewable energy generation from 
government policies have prompted residential consum-
ers to opt for the most elegant and environmentally 
benign energy sources like photovoltaic and the fuel 
cell. This paper proposes an optimization approach to 
reduce the daily operating costs of an autonomous hy-
brid PV/Fuel cell system with energy storage device 
supplying a residential load under demand and genera-
tion uncertainties. An economic model describing the 
various production costs of energy and the associated 
operating constraints of the hybrid system is developed. 
The uncertainties associated with the economic model 
are the electrical & thermal demand of the single resi-
dential house and the generation capacity of the PV.  

The generation capacity of the PV depends to a great 
extent on the insolation and temperature. The electrical 
& thermal demand is very sensitive to climatic changes. 
The total daily energy consumption of a single house-
hold can be estimated to some extent from historical 
data. But the daily load profile is highly unpredictable. 
The average load profile depends on the type of the day, 
the number of inhabitants and their availability at each 
hour and also on their life style. Since these dependen-
cies can not be mathematically modeled, the evolution 
of these variables should be considered as random proc-
esses.  All possible outcomes of these random processes 
should be taken care while planning for the optimal 
operation of the hybrid system. The evolution of these 

random processes which represents the future realiza-
tions of the uncertainties is modeled as a suitable sce-
nario tree [1]. Each scenario is an instance of the future 
realizations for the uncertainties. This tree gives the 
complete information of the uncertainties prevailing in 
the cost model. The better the scenario tree, the better 
will be the stochastic solution for the cost model.  

A very huge number of scenarios are required to 
completely describe the stochastic nature of these un-
certain variables. This huge set of scenarios should first 
be reduced without losing the information. The cur-
rently available scenario reduction techniques [2] could 
not handle this enormously huge number of initial sce-
narios. Hence a new method is proposed to solve this 
problem and also to improve the quality of the scenario 
tree, reduce the modeling error and improve the sto-
chastic solution.  

This method starts with a fixed number of scenarios 
and explores the entire search space until it finds the 
best set of scenarios. The reduction technique is formu-
lated as an optimization problem and is solved using the 
particle swarm optimization method (PSO). PSO [3], [4] 
is a population based searching algorithm. It consists of 
particles (solution to a given problem) which explore 
the entire search space until it finds the global solution. 
But for scenario reduction technique, the objective of 
the optimization is to maximize the fitness of each par-
ticle. Here each particle represents a scenario. The fit-
ness of each particle is the minimum weighted Euclid-
ean distance from the other particles in the swarm. The 
particle’s flight is influenced by its own performance as 
well its nearest neighbour. The particles are guided so 
as to move away from their neighbours and thereby 
increasing their fitness value. Towards the end of the 
optimization process, the particles are distributed in the 
search space so that the distance from their neighbours 
is significant. Since the particles represent the scenarios, 
we are left with only the distinct scenarios. 

The scenario tree modeling transforms the cost model 
into a multistage nonlinear stochastic cost model. The 
aim of this stochastic model is to minimize the average 
operating costs over this scenario tree. The resulting 
stochastic model is solved without decomposition [5], 
[6] by stochastic programming approach using adaptive 
particle swarm optimization technique [7]. 



 

2 PROBLEM FORMULATION 

2.1 Deterministic Model 
The deterministic cost model consists of a photo-

voltaic (PV), fuel cell, gas boiler and a lead acid storage 
battery supplying both electrical and thermal energy to  
a single household. The planning horizon is of 24 hours 
and is split into 24 equal subintervals. The operation 
cost of the system consists of the daily fuel cost (DFC), 
start-up cost (STC), maintenance cost (MC) of the fuel 
cell and the cost of gas (CG) for the boiler. The boiler 
operates only then the fuel cell could not meet the ther-
mal demand. There are no costs involved in the opera-
tion of the PV and the battery storage. 

The daily fuel cost (DFC) includes the natural gas 
price (CFC) for generating active power P and the cost 
of the power used by the auxiliary devices (Pa) and is 
formulated as shown below: 
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Here Ut∈{0, 1} indicates the commitment decision (1 if 
on, 0 if off) variable of the unit at time t. The fuel cost 
[8] is dependent on the efficiency (η) of the fuel cell 
which is a polynomial function of the active power 
generation. 
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The start-up cost, STC (3) depends on the hot and 
cold start-up costs (α, β) and the off time of the unit. 
The maintenance cost, MC (4) is proportional to the 
power generation and is therefore constant for kWh. 
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 The operation cost, CG of the boiler is modeled as 

follows: 
)0,max( ,, tthtthG PDCCG −=                  (5) 

Where CG is the gas price, Dth,t is the thermal demand 
and Pth,t is the thermal power generated by the fuel cell. 
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The aim of the optimization is to find an operating 
schedule for the system with minimum operation costs. 
The objective function is as follows: 
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The unit constraints include 
− The minimum and maximum unit rated capacities 

The operation levels of the fuel cell and battery are 
limited by the lower bounds Pmin , BLmin and upper 
bounds PP

max , BLmax 
.  

ttt UPPUP maxmin ≤≤                   (8) 

( ) maxmin BLtBLBL ≤≤                   (9) 
− Ramp rates 

Utttt PUPUP Δ≤− −− 11                 (10) 

Dtttt PUPUP Δ≤−−− 11                 (11) 
ΔPU and ΔPD are the upper and lower limits for the 
ramp rate. 

− Minimum up/down time limits of the units 
0))(( 11 ≥−− −− tt
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Where Tt-1

on, Tt-1
off are the unit on and off times at 

interval (t-1), MUT, MDT are the minimum up and 
down time limits.  

− Switching frequency of the fuel cell 
The maximum number of times the fuel cell can be 

switched on /off is controlled by the following con-
straint. 

maxNn stopstart ≤−                 (14) 

− Initial and final charge levels for the battery 
( ) 00 BLBL =                  (15) 

( ) TBLTBL =                  (16) 
The charge and discharge of the battery [9] can be 

calculated from the following equations. 
( ) CtBDtBLtBL η*)()1( −=+                (17) 
( ) DtBDtBLtBL η/)()1( −=+                (18) 

where BLt and BLt-1 are the battery levels at the be-
ginning and end of the interval t respectively, BD(t) is 
the power delivered to/from the battery. It is positive if 
power is delivered from the battery and is negative if 
power is delivered to the battery. ηD and ηC are the bat-
tery discharging and charging efficiencies respectively. 

To meet the electrical load (PL), the system has to op-
timally operate in one of the following modes. 

(a) Fuel cell only 
PL,t=Pt                         (19) 

(b) PV only 
PL,t=PPV,t                         (20) 

(c) Battery only 
PL,t=BD(t)                 (21) 

(d) Fuel cell and PV supplying load 
PL,t=Pt + PPV,t                        (22) 

(e) Fuel cell and Battery supplying load 
PL,t=Pt + BD(t)                (23) 

(f) Battery and PV supplying load 
PL,t=BD(t)+ PPV,t                        (24) 

(g) Fuel cell, battery and PV supplying load 
PL,t=Pt + PPV,t + BD(t)                (25) 

2.2 Stochastic Extension  
The deterministic model described above assumes 

that the information regarding the load profile and PV 
generation can be either estimated or forecasted. How-
ever in real time these variables can not forecasted ac-
curately. For instance the electrical power utilization of 
a single household over a 24 hour planning horizon is 
highly unpredictable. The inhabitants may follow regu-
lar activities that involve the use of stove, oven, coffee 



 

maker, refrigerator, dishwasher, television, computer, 
lighting etc but the time when these devices will be used 
during the day can’t be estimated with any degree of 
precision. This depends on the life-style and personal 
behavioral characteristics [10] of the inhabitants. These 
characteristics can not be mathematically modeled. The 
only way to model this uncertainty is to use the scenario 
tree analysis where all possible occurrences of the un-
certainty are considered. The basic cost model has to be 
reformulated as a multistage stochastic cost model.  
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Where ω indicates stochasticity. The stochastic load 
balance equation is as follows: 

( ) ( ) BD(t)  P  PPL PVt ++= ωω                 (27) 
This model aims at minimizing the expectation of the 

operating costs of the system. 

3 SCENARIOS 

3.1 Initial Scenarios 
The significant uncertainties associated with the 

above cost model are the electrical, thermal demand and 
PV generation. They are considered as a multi-variant 
random process. The uncertainty is assumed to increase 
with time. The increase in uncertainty of electrical de-
mand and PV generation is as shown in the following 
figures.  
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Figure 1:  The evolution of the electrical demand with time 
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Figure 2:  The evolution of the PV generation with time 

The deviation of the forecasted uncertain variables 
(electrical, thermal demand and PV generation) is 20% 
and increases to 45% of the forecast with time. The bold 
curve in figure 1 shows the forecasted electrical de-
mand. The other two curves show the confidence inter-
val of the forecasted demand. The marginal distribution 
for each of these variables is assumed to be uniform 
distribution. For simplicity, each marginal distribution 
is approximated to five discrete samples at every time 
step. Hence the random process has 125 samples at each 
time stage. Each of these samples has equal probability.  
The information regarding the three random variables is 
completely defined at t=1. The evolution of the random 
process for the next 23 hours has to be modeled using 
scenario analysis. Hence there are 23 branching stages 
and the random process evolves into 23125 scenarios. 
Each of these scenarios represents a future realization of 
the random process. This type of uncertainty modeling 
results in a multistage scenario tree with 23 branching 
stages and 125 samples at each stage. So each node (n) 
of the scenario tree has 125 equally probable successor 
nodes (n+). To solve this stochastic model, the random 
process with huge set of scenarios has to be approxi-
mated to a simple random process with finite set of 
scenarios and should be as close as possible to the origi-
nal process. 

The currently available scenario reduction techniques 
use heuristic methods to select the best scenarios from 
initial set using some probabilistic metrics. These meth-
ods could not handle the models with extremely huge 
number of scenarios. Hence a new technique to develop 
a scenario reduction algorithm for huge models is sug-
gested. By considering all possible outcomes of the 
random process, the stochastic nature of the multivariate 
random process can be completely captured. This will 
help to develop better stochastic cost models which will 
help in planning and operation of the system. Hence 
there is a need to develop such algorithm which could 
handle extremely huge number of scenarios. 

3.2 Optimal Scenario Reduction 
The scenario reduction is formulated as an optimiza-

tion problem and is solved using the particle swarm 
optimization (PSO) technique. PSO simulates the social 
behavior of bird flocking or fish schooling in search of 
food. During their search process, the birds/fish interact 
with its neighbors and exchange information regarding 
their personal performances and behavior which helps 
them to find an optimal solution. PSO is initialized by a 
population of random solutions called particles and the 
population is called a swarm. The particles explore the 
multidimensional search space in search of an optimal 
solution. Their flight is guided by their own experiences 
and also by the social behavior of its neighbors. PSO is 
an evolutionary algorithm. At each iteration the position 
xjk and velocity vjk of the particles are updated by equa-
tions (28) and (29). 

))()()(()1( 21 jkkjkjkjkjk xgbestxpbesttwvtv −+−+=+ φφχ    (28) 
( ) ( ) ( )11 ++=+ tvtxtx jkjkjk                 (29) 



 

The velocity of particle j at kth dimension depends on 
its previous velocity vjk(t), its best performance so far 
(pbestjk) and on the performance of its best neighbor 
(gbestjk). The inertia weight w controls the impact of the 
previous velocity on the current velocity. This is as-
sumed to be a linear decreasing function to provide a 
good balance between local and global exploration 
capability of the particles. ϕ1 and ϕ2 are the acceleration 
coefficients which regulate the relative velocity towards 
local and global best particle. The constriction factor χ 
enables faster convergence and better exploitation of the 
search space. The newer versions of this algorithm are 
parameter free, can adapt the optimal swarm size and 
quite simple to implement. This makes it the best global 
search algorithm for engineering applications.  

The scenario reduction process is formulated as an 
integer optimization problem. The standard optimiza-
tion problems aim to find a global optimal solution. But 
this special optimization problem has to explore the 
given search space in order to improve the fitness of 
each particle in the swarm. The problem formulation 
looks similar to multi-objective optimization. For a 
swarm of size NP, there are NP objectives. The NP objec-
tives are the fitness values of the NP particles. The fit-
ness of the particle is the minimum aggregated normal-
ized multivariate Euclidean distance from the other 
particles in the swarm. Which implies that as one parti-
cle changes its position; its update will affect the fitness 
of other particles in the swarm.  

The three random variables considered in this paper 
are measured to the same unit but have different scales. 
The electrical demand has larger values compared to PV 
generation or thermal demand. If real coded fitness 
function is used for solving the problem then the dis-
tance measure will be biased. Hence the distance metric 
of a random variable has to be normalized by a suitable 
factor so that the distance measures of all the three ran-
dom variables are equally valued. In real coded PSO, 
after the particle position is updated, each dimension of 
the particle has to be discretized. This discretization is 
much simple with integer coding. 

The multivariate scenario is a realization of three 
random variables i.e. each node of the scenario tree 
represents a three dimension vector corresponding to 
the three random variables. The particle represents a 
scenario. Each dimension p of the scenario corresponds 
to p, T + p and 2T + p dimension of the particle. Hence 
if the scenario happens to be N dimension, the corre-
sponding particle will be 3N dimension vector. The five 
discrete samples of a random variable at every time 
stage are normalized to integers between one and five.  
The lower and upper bound of the random variables at 
all stages corresponds to one and five respectively. The 
process of scenario reduction can be explained by the 
following steps. 

Step1: Initialize the swarm 
The swarm size which represents the number of pre-

served scenarios is fixed before the start of the reduc-
tion process. The position and velocity of each particle 

in the swarm is randomly initialized between the nor-
malized lower and upper bound. The particles best per-
formance so far measured, pbest is initialized to the 
current position. 

Step2: Calculate scenario probability 
Each node of the initial scenario tree has 125 succes-

sor nodes. Each successor has a transition probability of 
0.008. The current swarm is visualized as a reduced 
scenario tree and is compared to the initial tree. If any 
of the successor is missing then the transition probabil-
ity of that missing successor is added to its nearest 
neighbor. The probability of the successor node is its 
transition probability multiplied to its parent node prob-
ability. The node probability of the leaf node or the 
successor nodes of the last branching stage gives the 
scenario or particle probability.

Step3: Fitness evaluation 
A fitness value is assigned to each particle based on 

its distance with its neighboring particles. Convert the 
position vector back to measured scale. Calculate the 
Euclidean distance corresponding to particle m from the 
other particles in the swarm as shown below. 
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Here NT is the total number of branching stages, NP is 
the swarm size, Ai,j

m is the value of the random variable 
i corresponding to particle m at jth dimension in meas-
ured scale. The Euclidean distance is then normalized 
by Ni.  Similarly the distance corresponding to other 
random variables is also calculated. The sum is again 
normalized by ND, the total number of random vari-
ables. The aggregated distance is weighted by the sce-
nario or particle probability πm. The fitness of the parti-
cle will be the aggregated multivariate Euclidean dis-
tance with its nearest neighbor weighted by its probabil-
ity. 

Step4: Evaluate pbest and gmin 
If the current fitness value of a particle is better than 

the current pbest of the particle, the pbest value is re-
placed by the current value. The position and fitness of 
the nearest neighbor to a particle is stored in gmin. 

Step5: Update position and velocity 
The update equations are similar to the standard PSO 

update equations as in (28) and (29). But the social 
information term in the velocity update equation is 
modified as shown below. 

)min()()(()1( 21 jkkjkjkjkjk xgxpbesttwvtv −−−+=+ φφχ  (31) 
The particle’s velocity is guided in the direction of its 
previous velocity (vjk), its previous best performance 
(pbestjk) and in the direction opposite to its nearest 
neighbor (gmink). By doing so, the particle will move 
farther away from its nearest neighbor. This will im-
prove the Euclidean distance and also its fitness value.  
The calculated velocity is then added to the current 



 

position to obtain the new position for the particle. The 
real valued position vector is rounded of to its nearest 
integers. 

Step6: check for the boundaries 
Make sure that the particle is in the designated search 

space. If a particle crosses the boundaries, then make 
the particle to stay on the search space boundary.  

Step7: Turbulence 
During the early process of the optimization, turbulence 
is added in the form of velocity to each particle to avoid 
premature convergence. After a particles position has 
been updated, check if this update has degraded the 
fitness of the worst member of the swarm. If it does so, 
then the velocity of that particle is randomly initialized. 

Step8: Check the exit condition 
If the current iteration number reaches the maximum 

iteration number, then exit. Otherwise   go to Step2. 
The particle’s fitness is improved at each iteration 

and towards the end of optimization process we are left 
with particles with best fitness values. It means we are 
left with best particles or distinct scenarios. The optimi-
zation process explores the entire search space or the 
huge set of initial scenarios to find the best set of Np 
scenarios.   

4 SOLUTION PROCEDURE 
The deterministic cost model is solved using the 

adaptive particle swarm optimization (APSO). Using 
the above mentioned scenario tree modeling for the 
uncertainties, the basic cost model can be remodeled 
using stochastic programming approach [12], [13] as 
shown below.  
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 Where, N represents total number of nodes of the 
reduced scenario tree. The above model is subjected to 
the constraints (8)-(18). The stochastic load balance 
equation reads as follows. 

nn
PV

nn BD  P  PPL ++=                 (33) 
The aim of this model is to find a unit commitment 
schedule for the fuel cell common to all scenarios, to 
find an optimal operation mode (19)-(25) for the hybrid 
system at each time step and to minimize the expecta-
tion of the operation cost of the model over the whole 
scenario tree. This model is solved by stochastic pro-
gramming approach using APSO. This solution tech-
nique requires a decision variable at each node of the 
scenario tree. Therefore the size of the optimization 
increases with the size of the scenario tree. APSO 
solves above problem without using the decomposition 
technique. 

5 NUMERICAL RESULTS 

5.1 Deterministic Model 
The test system consists of a fuel cell (1.5kW), PV 

(1.5kW), gas boiler (2.5kW) and a storage battery 

(5kW) supplying a residential load. The objective of 
this deterministic optimization problem is to use the 
basic cost model to find the solution vectors of the fuel 
cell commitment schedule U, the power output levels of 
the fuel cell P and the battery schedule BD. There is no 
thermal storage, so the gas boiler will operate only 
when the fuel cell thermal output is unable to meet the 
thermal demand. The optimization is carried out at each 
time step of one hour, over a scheduling period of 24 
hours, so that the total operating costs are minimized 
subjected to unit and system operating constraints. The 
charging and discharging efficiency of the battery is 
assumed to be 66%. The load profiles correspond to a 
single household on a working day in July at Baden-
Württemberg, Germany. The insolation profile is for the 
month of July. The PV generation is available from 
5AM to 7PM. 
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Figure 3:  Hourly scheduling of PV/Fuel cell/Battery units 
based on deterministic optimisation 

The hourly scheduling of PV/Fuel cell/ Battery 
system is shown in figure 3. In this figure, positive 
discharge BD corresponds to hours when battery is 
discharging, while negative discharge corresponds to 
charging hours of the battery. The fuel cell charges the 
battery during the off-peak period. The excess PV 
generation during the day also charges the battery. The 
battery supports the peak demand in the morning and 
evening. The use of battery smoothens the load profile. 
The new load profile has no peaks. This is shown by the 
curve with triangle bullets. The fuel cell operates in the 
early hours of the morning when there is no PV 
generation to supply the load and also to charge the 
battery. It is switched off when PV is in operation. In 
the evening when the load is high and PV generation is 
scarce, the fuel cell is again switched on. The total 
operating cost for the whole day amounts to 2.09euro or 
0.16euro/kWh. 

5.2 Scenario reduction 
Unlike the conventional scenario reduction methods, 

the proposed method does not go through each and 
every scenario in picking the best scenarios. The parti-
cles use the experience gained from their exploration to 
select the scenarios. The algorithm needs only 100 itera-



 

tions to pick the best Np scenarios from a set of 23125 

scenarios. 
The evolution of the uncertainties is modeled as a 

multistage scenario tree with 23 branching stages. The 
scenario reduction algorithm is run with a swarm size 
equal to five. The performance of the particles during 
the evolutionary process is shown in figure 4. During 
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Figure 4:  Performance of the particles  

the first few iterations, the particle have huge 
improvements in their fitness value. The performance of 
particle 1 coincides with that of particle 2. This means 
that particle one is always the closest neighbor to 
particle two. The fitness of the particles never 
deteriorate. This implies that each particle has sufficient 
knowledge regarding the  direction of motion of its 
neighbors and is capable of moving in a direction away 
from its neighbors. Thereby improving their individual 
performances. This algorithm therefore has the ability to 
select the best scenarios from a huge collection of initial 
scenarios. 

 

24211815129631
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Figure 5:  Scenario tree for stochastic electrical, thermal 
demand and PV generation generated by PSO for 24 
branching stages and 5 branches at each stage. 

5.3 Stochastic Extension  
Multistage stochastic programming approach is used 

to solve the stochastic cost model. The optimization was 
solved using adaptive particle swarm optimization. The 
initial set of scenarios was reduced to fifty scenarios as 
shown in figure 5 using the proposed scenario reduction 
algorithm. This reduced set of scenarios is used in the 

stochastic model to represent the uncertainties. Table 1 
shows the increased problem size for stochastic model. 
Huge forecast errors about 45% are considered for all 
the random variables. For this reason we need a higher 
rated battery and boiler although not required for the 
basic cost model. The unit commitment schedule of the 
fuel cell for the stochastic model is depicted in Table II.  

 
 Deterministic 

Model 
Stochastic 

Model 
Scenarios 1 50 
Binary variables (U) 24 24 
Decision variables (P) 24 990 
Bounds 24 990 
Constraints 146 4899 
 

Table 1:  Problem dimensions 

 State (Hours 1-24) 
Deterministic 
Model 

111100000000000011111111 

Stochastic Model 000111000000110000111111 
 

Table 2:  Unit commitment results for basic and stochastic 
model 

In stochastic model a single UC schedule has to 
satisfy all the load profile scenarios. For a scenario that 
has high load profiles and low PV generation, the fuel 
cell has to operate at high levels whereas for a scenario 
with low load profile, the fuel cell has to use the same 
UC schedule but should operate at low operating level. 
The operating cost associated with this model amounts 
to 3.06euro. The effect of uncertainties on the cost 
model has increased the costs by 33%. So ignoring the 
influence of the uncertainties would drastically effect 
the planning and operation of the system.  

6 CONCLUSION 
The proposed uncertainty modeling algorithm is a 

new method for handling huge number of scenarios. 
This provides the basis for the development of new 
robust modeling tools that can handle enormously huge 
number of scenarios.  This modeling technique does not 
impose any restriction on the number of branching 
stages and number of samples at each stage. Hence this 
method can be used to capture the complete stochastic 
nature of the random process.  

This paper presented a solution for a day-ahead op-
eration of a PV-Fuel system with battery storage con-
sidering the electrical & thermal demand and PV gen-
eration uncertainties. The stochastic cost model can be 
used to predict a unit commitment schedule for the 
optimal operation of the system with unpredictable 
uncertainties.  

The uncertainty modeling and stochastic program-
ming approach presented in this paper can be very use-



 

ful for planning and operation of the power system 
subjected to the influence of many uncertainties. 
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