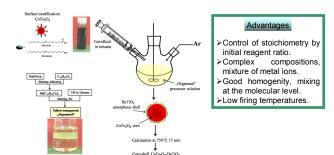
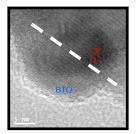
TP2 "Synthesis of magneto-electric composites"

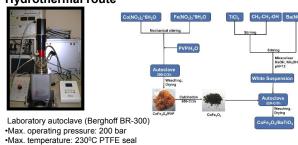

Introduction


- •Multiferroic materials have drawn much attention because they display the coexistence of ferroelectric and magnetic properties. Spinel/perovskite multiferroic composites $CoFe_2O_4/BaTiO_3$ were prepared by both organosol and hydrothermal
- ■Combining the organosol and co-precipitation methods we have successfully synthesized CoFe₂O₄/BaTiO₃ (CFO-BTO) core-shell nanoparticles, where cobalt iron
- oxide nanoparticles are cores and barium titanate forms a shell.

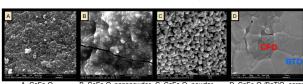
 By hydrothermal technique in the first step CFO was prepared by co-precipitation of salts of cobalt and iron with different concentrations of the capping agent polyvinylpyrolidone (PVP). Polyvinylpyrolidone (PVP) was used to stabilize the particles and prevent them from agglomeration. The BTO shell was synthesized by the hydrothermal method. The electron microscopy of CFO-BTO showed two-phase composite nanostructures of cobalt ferrite cores coated with a $BaTiO_3$ shell.
- •The converse magnetoelectric coefficient measured for sintered ceramics reaches the

Value 4.4 x 10⁻¹² s/m. Organosol route

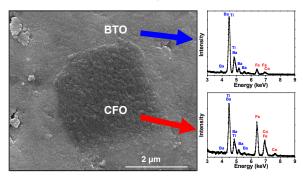
"Organosol"- precipitation: Intimate mixing of components in solution, precipitation, filtration, washing, drying, and calcination.



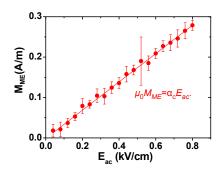
HRTEM of a single CFO-BTO particle indicating its core-shell


Intensity (Counts 100 150 Distance (nm)

Distribution of Ba, Ti, Co, Fe elements across a single CFO-BTO particle measured using **EDS**.


Hydrothermal route

SEM Analysis CoFe₂O₄- BaTiO₃ (50-50)

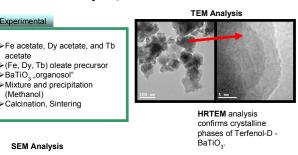


Ceramic CoFe₂O₄- BaTiO₃ (20-80)

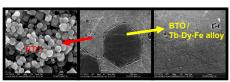
SEM micrograph of the polished surface of a $\mathrm{CoFe_2O_4}$ - $\mathrm{BaTiO_3}$ ceramic sintered at 1200°C show a $\mathrm{CoFe_2O_4}$ grain (size \sim 2 microns) in a $\mathrm{BaTiO_3}$ matrix. The dark and bright areas correspond to $\mathrm{CoFe_2O_4}$ and $\mathrm{BaTiO_3}$ phases.

ME Measurements SQUID

Electric field dependence of the electrically induced magnetization, $M_{\rm ME}$ for the CoFe₂O₄-BaTiO₃ (20-80) ceramic composite measured at $\mu_0H_{\rm ac}$ = 0.15 T and T= 285 K follows well a linear law. The best fit yields the value of the ME coefficient $\alpha_{\rm c}$ = 4.4 \times 10-12 s/m.


M. Etier et al. Ferroelectrics 2013

Outlook


Experimental

Terfenol - D / BaTiO₃ composite

>(Fe, Dy, Tb) oleate precursor >BaTiO₃ "organosol" Mixture and precipitation (Methanol) Calcination, Sintering

SEM Analysis

I. Anusca, Y. Gao, M. Etier, V.V. Shvartsman, D.C. Lupascu University of Duisburg-Essen Institute for Materials Science Essen, Germany