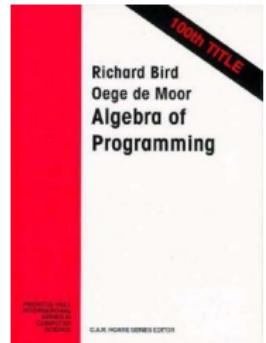


Category theory concepts appearing in functional programming

Janis Voigtlander

07.08.2019



- “Functional languages excel at wholemeal programming, a term coined by Geraint Jones. Wholemeal programming means to think big: work with an entire list, rather than a sequence of elements; ...”

Ralf Hinze

- “Wholemeal programming is good for you: it helps to prevent a disease called indexitis, and encourages lawful program construction.”

Richard Bird

- Algebraic data types can be recursive. For example:

```
data Nat = Zero | Succ Nat
```

- Values of this type:

```
Zero, Succ Zero, Succ (Succ Zero), ...
```

- Computation by recursive function definitions:

```
add :: Nat -> Nat -> Nat
add Zero      m = m
add (Succ n) m = Succ (add n m)
```

- With several recursive occurrences, tree structures:

```
data Tree = Leaf | Node Tree Integer Tree
```

- Values: Leaf, Node Leaf 2 Leaf, ...
- Computation:

```
height :: Tree -> Integer
height Leaf
  = 0
height (Node left _ right)
  = 1 + max (height left) (height right)
```

What is “algebraic data” about these types?

Recall:

$$\text{data Nat} = \text{Zero} \mid \text{Succ Nat}$$
$$\text{data Tree} = \text{Leaf} \mid \text{Node Tree Integer Tree}$$

Each has an underlying (polynomial) functor in **Set**:

$$\mathbf{F}_{\text{Nat}} A = \{\text{Zero}\} \cup \{(\text{Succ}, a) \mid a \in A\}$$
$$\mathbf{F}_{\text{Nat}} h : \text{Zero} \mapsto \text{Zero}$$
$$(\text{Succ}, a) \mapsto (\text{Succ}, h(a))$$
$$\mathbf{F}_{\text{Tree}} A = \{\text{Leaf}\} \cup \{(\text{Node}, a_1, z, a_2) \mid a_1 \in A, z \in \mathbb{Z}, a_2 \in A\}$$
$$\mathbf{F}_{\text{Tree}} h : \text{Leaf} \mapsto \text{Leaf}$$
$$(\text{Node}, a_1, z, a_2) \mapsto (\text{Node}, h(a_1), z, h(a_2))$$

For these we can consider algebras, that is, arrows in **Set** of types

$$\mathbf{F}_{\text{Nat}} A \rightarrow A \text{ and } \mathbf{F}_{\text{Tree}} A \rightarrow A.$$

What is “algebraic data” about these types?

Let us consider two such algebras as examples:

- ▶ For \mathbf{F}_{Nat} , an algebra with carrier $\mathbb{B} = \{ \text{ff}, \text{tt} \}$:

$$\begin{aligned} \text{alg}_1 : \text{Zero} &\mapsto \text{ff} \\ (\text{Succ}, b) &\mapsto \neg b \end{aligned}$$

- ▶ For \mathbf{F}_{Tree} , an algebra with carrier \mathbb{Z} :

$$\begin{aligned} \text{alg}_2 : \text{Leaf} &\mapsto 1 \\ (\text{Node}, z_1, z, z_2) &\mapsto z_1 * z * z_2 \end{aligned}$$

Between two algebras for the same functor, there is a notion of homomorphism:

$$\begin{array}{ccc} B & \xleftarrow{g} & \mathbf{F}B \\ h \downarrow & & \downarrow \mathbf{F}h \\ A & \xleftarrow{f} & \mathbf{F}A \end{array}$$

What is “algebraic data” about these types?

Beside the \mathbf{F}_{Nat} -algebra alg_1 with carrier \mathbb{B} and

$$\begin{aligned}\text{alg}_1 : \text{Zero} &\mapsto \text{ff} \\ (\text{Succ}, b) &\mapsto \neg b\end{aligned}$$

let us also consider the \mathbf{F}_{Nat} -algebra alg_3 with carrier \mathbb{Z} and

$$\begin{aligned}\text{alg}_3 : \text{Zero} &\mapsto 0 \\ (\text{Succ}, z) &\mapsto z + 2\end{aligned}$$

Exercise:

How many algebra homomorphisms are there

- ▶ ... from alg_1 to alg_3 ?
- ▶ ... from alg_3 to alg_1 ?

What is “algebraic data” about these types?

Beside the \mathbf{F}_{Tree} -algebra alg_2 with carrier \mathbb{Z} and

$$\begin{aligned}\text{alg}_2 : \text{Leaf} &\mapsto 1 \\ (\text{Node}, z_1, z, z_2) &\mapsto z_1 * z * z_2\end{aligned}$$

let us also consider the \mathbf{F}_{Tree} -algebra alg_4 with carrier \mathbb{B} and

$$\begin{aligned}\text{alg}_4 : \text{Leaf} &\mapsto \text{tt} \\ (\text{Node}, b_1, z, b_2) &\mapsto b_1 \wedge \text{isOdd}(z) \wedge b_2\end{aligned}$$

Exercise:

How many algebra homomorphisms are there

- ▶ ... from alg_2 to alg_4 ?
- ▶ ... from alg_4 to alg_2 ?

What is “algebraic data” about these types?

Since identity arrows are homomorphisms and the composition of two homomorphisms is again a homomorphism, the algebras for a functor \mathbf{F} form a category, $\mathbf{Alg}(\mathbf{F})$.

Often, in particular for polynomial functors in \mathbf{Set} , this category has an initial object, that is, an \mathbf{F} -algebra α such that for each \mathbf{F} -algebra there is exactly one algebra homomorphism from α to it.

$$\begin{array}{ccc} T & \xleftarrow{\alpha} & \mathbf{F}T \\ \downarrow (f) & & \downarrow \mathbf{F}(f) \\ A & \xleftarrow{f} & \mathbf{F}A \end{array}$$

In the setting considered here, the carrier of the initial algebra can always be obtained (up to isomorphism) from the following construction:

$$T = \mathbf{F}\emptyset \cup \mathbf{F}(\mathbf{F}\emptyset) \cup \mathbf{F}(\mathbf{F}(\mathbf{F}\emptyset)) \cup \dots$$

What is “algebraic data” about these types?

Let us instantiate this for \mathbf{F}_{Nat} :

$$\begin{aligned}T_{\text{Nat}} &= \mathbf{F}_{\text{Nat}} \emptyset \cup \mathbf{F}_{\text{Nat}} (\mathbf{F}_{\text{Nat}} \emptyset) \cup \mathbf{F}_{\text{Nat}} (\mathbf{F}_{\text{Nat}} (\mathbf{F}_{\text{Nat}} \emptyset)) \cup \dots \\&= \{\text{Zero}\} \cup \mathbf{F}_{\text{Nat}} (\{\text{Zero}\}) \cup \mathbf{F}_{\text{Nat}} (\mathbf{F}_{\text{Nat}} (\{\text{Zero}\})) \cup \dots \\&= \{\text{Zero}, (\text{Succ}, \text{Zero})\} \cup \mathbf{F}_{\text{Nat}} (\{\text{Zero}, (\text{Succ}, \text{Zero})\}) \cup \dots \\&= \{\text{Zero}, (\text{Succ}, \text{Zero}), (\text{Succ}, (\text{Succ}, \text{Zero}))\} \cup \dots \\&\vdots\end{aligned}$$

Modulo syntax, this corresponds to

Zero, Succ Zero, Succ (Succ Zero), ...

as the values for the algebraic data type

data Nat = Zero | Succ Nat

Similarly,

$$T_{\text{Tree}} = \mathbf{F}_{\text{Tree}} \emptyset \cup \mathbf{F}_{\text{Tree}} (\mathbf{F}_{\text{Tree}} \emptyset) \cup \mathbf{F}_{\text{Tree}} (\mathbf{F}_{\text{Tree}} (\mathbf{F}_{\text{Tree}} \emptyset)) \cup \dots$$

explains what the values are for the algebraic data type Tree.

What is “algebraic data” about these types?

But there is other data in

$$\begin{array}{ccc} T & \xleftarrow{\alpha} & \mathbf{F}T \\ \Downarrow (f) \quad & & \Downarrow \mathbf{F}(f) \\ A & \xleftarrow{f} & \mathbf{F}A \end{array}$$

than just the T . In particular, to every algebra f we get a unique homomorphism from the initial algebra, called “catamorphism”.

Let us look at this for \mathbf{F}_{Nat} and our alg_1 of type $\mathbf{F}_{\text{Nat}} \mathbb{B} \rightarrow \mathbb{B}$ with

$$\text{alg}_1 : \text{Zero} \mapsto ff, (\text{Succ}, b) \mapsto \neg b$$

What is (alg_1) ?

The unique k of type $T_{\text{Nat}} \rightarrow \mathbb{B}$ such that $k \circ \alpha = \text{alg}_1 \circ \mathbf{F}_{\text{Nat}} k$.

But that means we first have to work out what α of type $\mathbf{F}_{\text{Nat}} T_{\text{Nat}} \rightarrow T_{\text{Nat}}$ is? Spoiler: It is syntactic identity!

What is “algebraic data” about these types?

So, to determine what $\langle\text{alg}_1\rangle$ is, as the unique k of type $T_{\text{Nat}} \rightarrow \mathbb{B}$ such that $k \circ \alpha = \text{alg}_1 \circ \mathbf{F}_{\text{Nat}} k$, we can look at what the diagram

$$\begin{array}{ccc} T & \xleftarrow{\alpha} & \mathbf{F}T \\ \downarrow \langle f \rangle & & \downarrow \mathbf{F}\langle f \rangle \\ A & \xleftarrow{f} & \mathbf{F}A \end{array}$$

requires for elements of $T = T_{\text{Nat}} = \mathbf{F}_{\text{Nat}} T_{\text{Nat}}$.

Recall that

$$\mathbf{F}_{\text{Nat}} k : \text{Zero} \mapsto \text{Zero}, (\text{Succ}, a) \mapsto (\text{Succ}, k(a))$$

and

$$\text{alg}_1 : \text{Zero} \mapsto ff, (\text{Succ}, b) \mapsto \neg b$$

So we get:

$$k : \text{Zero} \mapsto ff, (\text{Succ}, a) \mapsto \neg k(a)$$

What is “algebraic data” about these types?

In Haskell syntax, we get that $\langle\!\langle alg_1\rangle\!\rangle$ is the following function:

$$k :: \text{Nat} \rightarrow \text{Bool}$$
$$k \text{ Zero} = \text{False}$$
$$k (\text{Succ } a) = \text{not } (k a)$$

Analogously, we get that $\langle\!\langle alg_3\rangle\!\rangle$ is the following function:

$$k :: \text{Nat} \rightarrow \text{Integer}$$
$$k \text{ Zero} = 0$$
$$k (\text{Succ } a) = (k a) + 2$$

What is “algebraic data” about these types?

And $\langle\text{alg}_2\rangle$, for \mathbf{F}_{Tree} instead of \mathbf{F}_{Nat} , is the following function:

$$k :: \text{Tree} \rightarrow \text{Integer}$$
$$k \text{ Leaf} = 1$$
$$k (\text{Node } a_1 z a_2) = (k a_1) * z * (k a_2)$$

While $\langle\text{alg}_4\rangle$ is the following function:

$$k :: \text{Tree} \rightarrow \text{Bool}$$
$$k \text{ Leaf} = \text{True}$$
$$k (\text{Node } a_1 z a_2) = (k a_1) \&\& (\text{isOdd } z) \&\& (k a_2)$$

Indeed every structurally recursive function arises as a catamorphism.

For example, the function $\text{height} :: \text{Tree} \rightarrow \text{Integer}$ that appeared on the lecture slide is the catamorphism for the \mathbf{F}_{Tree} -algebra mapping Leaf to 0 and $(\text{Node}, z_1, \dots, z_2)$ to $1 + \max z_1 z_2$.

Is any of this actually useful in programming?

Well, for one thing, the constructions can be expressed in Haskell itself, e.g.

```
data F a = ZeroF | SuccF a
```

as representation of

$$\mathbf{F}_{\text{Nat}} A = \{\text{Zero}\} \cup \{(\text{Succ}, a) \mid a \in A\}$$

and

$$\text{cata} :: (F a \rightarrow a) \rightarrow (\text{Nat} \rightarrow a)$$
$$\text{cata } f = k$$
$$\text{where } k \text{ Zero} = f \text{ ZeroF}$$
$$k (\text{Succ } a) = f (\text{SuccF} (k a))$$

as the realisation of (\cdot) .

Which does not, in this form, look particularly appealing. But if we recognise that $F a \rightarrow a$, for “`data F a = ZeroF | SuccF a`”, is actually isomorphic to $(a, a \rightarrow a)$, then ...

Is any of this actually useful in programming?

... we arrive at this version:

$$\text{cata} :: (a, a \rightarrow a) \rightarrow (\text{Nat} \rightarrow a)$$

$$\text{cata} (z, s) = k$$

$$\text{where } k \text{ Zero} = z$$

$$k (\text{Succ } a) = s (k a)$$

and can then abbreviate

$$k :: \text{Nat} \rightarrow \text{Bool}$$

$$k \text{ Zero} = \text{False}$$

$$k (\text{Succ } a) = \text{not} (k a)$$

to just $\text{cata} (\text{False}, \text{not})$ — essentially (alg_1) , as well as abbreviate

$$k :: \text{Nat} \rightarrow \text{Integer}$$

$$k \text{ Zero} = 0$$

$$k (\text{Succ } a) = (k a) + 2$$

to just $\text{cata} (0, \lambda z \rightarrow z + 2)$ — essentially (alg_3) .

Is any of this actually useful in programming?

Likewise, for “data Tree = Leaf | Node Tree Integer Tree” we have

$$cata :: (a, a \rightarrow \text{Integer} \rightarrow a \rightarrow a) \rightarrow (\text{Tree} \rightarrow a)$$
$$cata (l, n) = k$$

where $k \text{ Leaf} = l$

$$k (\text{Node } a_1 z a_2) = n (k a_1) z (k a_2)$$

and can then abbreviate the three structurally recursive functions on Tree we saw, to just:

- ▶ $cata (1, \lambda z_1 z z_2 \rightarrow z_1 * z * z_2)$ — for (alg_2)
- ▶ $cata (\text{True}, \lambda b_1 z b_2 \rightarrow b_1 \&\& (\text{isOdd } z) \&\& b_2)$ — for (alg_4)
- ▶ $cata (0, \lambda z_1 z z_2 \rightarrow 1 + \max z_1 z_2)$ — for $height$

Moreover, it is not really necessary to explicitly program the different versions of *cata* for Nat, Tree, etc. The principles are so generic that the compiler can be made to support catamorphisms automatically for any algebraic data type (of a polynomial functor).

- Also remember the function

```
foldl1 :: (a -> a -> a) -> [a] -> a
```

which puts a (left-associative) function/operator between all elements of a non-empty list.

- It is a member of a whole family of related functions, the most prominent of which is `foldr`, defined thus:

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ n []      = n
foldr c n (x:xs) = c x (foldr c n xs)
```

What about “lawful program construction”?

Recall:

$$\begin{array}{ccc} T & \xleftarrow{\alpha} & FT \\ \Downarrow (f) \downarrow & & \downarrow F(f) \\ A & \xleftarrow{f} & FA \end{array}$$

The universal property $k = (f) \Leftrightarrow k \circ \alpha = f \circ F k$ has further useful consequences.

In particular, there is the fusion law:

$$\begin{array}{ccc} T & \xleftarrow{\alpha} & FT \\ \Downarrow (f) \downarrow & & \downarrow F(f) \\ A & \xleftarrow{f} & FA \\ \downarrow h & & \downarrow Fh \\ B & \xleftarrow{g} & FB \end{array}$$

$$h \circ (f) = (g) \Leftrightarrow h \circ f = g \circ F h$$

What about “lawful program construction”?

So, since $isOdd$ was identified as an algebra homomorphism from alg_2 to alg_4 , we know that $isOdd \circ (\lambda alg_2) = (\lambda alg_4)$.

Put differently, for functions

$product :: Tree \rightarrow \mathbb{Z}$

$product \text{ Leaf} = 1$

$product (\text{Node } a_1 \ z \ a_2) = (product \ a_1) * z * (product \ a_2)$

and

$allOdd :: Tree \rightarrow \text{Bool}$

$allOdd \text{ Leaf} = \text{True}$

$allOdd (\text{Node } a_1 \ z \ a_2) = (allOdd \ a_1) \ \&\& \ (isOdd \ z) \ \&\& \ (allOdd \ a_2)$

it holds: $isOdd \circ product = allOdd$.

This can be used for proving properties, or for deriving programs from specifications, or for optimising the efficiency of programs, . . . , for explicitly recursive functions or for functions expressed as catamorphisms, . . . , generically for different algebraic data types.

Some comments on duality

All we have seen can be dualised:

- ▶ coalgebras, arrows of types like $A \rightarrow \mathbf{F}_{\text{Nat}} A$ and $A \rightarrow \mathbf{F}_{\text{Tree}} A$
- ▶ coalgebra homomorphisms
- ▶ category of coalgebras
- ▶ the final coalgebra for a functor — What will be the carrier?
- ▶ unique homomorphisms to the final coalgebra, called “anamorphisms” or “unfolds”
- ▶ a fusion law

Concretely, functions like

$$k :: \text{Integer} \rightarrow \text{Nat}$$

$$k \ 1 = \text{Zero}$$

$$k \ z = \text{Succ} \ (k \ (\text{div} \ z \ 2))$$

and

$$k :: (\text{Integer}, \text{Integer}) \rightarrow \text{List Integer}$$

$$k \ (a, b) = \text{Cons} \ a \ (k \ (b, a + b))$$

More direct appearances of functors

Data types can be polymorphic, that is, instead of

```
data Tree = Leaf | Node Tree Integer Tree
```

we can have

```
data Tree a = Leaf | Node (Tree a) a (Tree a)
```

That is an action on objects in **Set**. Is there also a corresponding action on arrows that turns Tree into a functor?

Indeed, laws like

$$(treeMap f) \circ (treeMap g) = treeMap (f \circ g)$$

hold, and can also be used for program calculation etc.

Also, as another example of a function we have used:

```
map :: (a -> b) -> [a] -> [b]
map h []      = []
map h (x:xs) = h x : map h xs
```

And indeed related:

```
treeMap :: (a -> b) -> Tree a -> Tree b
treeMap h Leaf = Leaf
treeMap h (Node left x right)
  = Node (treeMap h left)
        (h x)
        (treeMap h right)
```

- Another useful function:

```
map :: (a -> b) -> [a] -> [b]
```

which applies a function to all elements of a list.

- For example:

```
map even [1..10]
```

```
map (dilated 5) [ pic1, pic2, pic3 ]
```

Semantic consequences of polymorphism

Moreover, functions of polymorphic type satisfy interesting laws, having to do with the concept of natural transformation:

$$\begin{array}{ccc} FB & \xleftarrow{\phi_B} & GB \\ \downarrow Fh & & \downarrow Gh \\ FA & \xleftarrow{\phi_A} & GA \end{array}$$

which we will look at in a moment.

Of course we do not in the lecture, but what we do consider there are instances in disguise . . .

- In contrast, it is not remotely true that in an imperative language we can always replace a piece of code written like this:

```
for (a = 0; a <= n; a++)
    result[a] = h(a);
```

by this:

```
for (a = n; a >= 0; a--)
    result[a] = h(a);
```

- And even for the cases where commands as above are equivalent, a formulation given that way is less useful than the Haskell equation we saw, or indeed its more general version:

$$\begin{aligned} & [h a \mid a \leftarrow \text{reverse list}] \\ \equiv & \text{reverse} [h a \mid a \leftarrow \text{list}] \end{aligned}$$

- Polymorphism has really interesting semantic consequences.
- For example, in the lecture last week, I mentioned that always:

$$\begin{aligned} & [\mathbf{h} \mathbf{a} \mid \mathbf{a} \leftarrow \mathbf{r e v e r s e} \mathbf{ \; l i s t} \;] \\ \equiv & \mathbf{r e v e r s e} \; [\mathbf{h} \mathbf{a} \mid \mathbf{a} \leftarrow \mathbf{l i s t} \;] \end{aligned}$$

- What if I told you that this holds, for arbitrary \mathbf{h} and \mathbf{list} , not only for $\mathbf{reverse}$, but for any function with type $[\mathbf{a}] \rightarrow [\mathbf{a}]$, no matter how it is defined?
- Can you give some such functions (and check the above claim)?

Semantic consequences of polymorphism

So what is it that *reverse* and other functions of type $[a] \rightarrow [a]$ have in common?

A natural transformation, between two functors **F** and **G** (both of the same kind, in terms of source and target categories), is an indexed collection of arrows ϕ_A of types $\mathbf{G} A \rightarrow \mathbf{F} A$ such that for every arrow h (in the source category) this diagram commutes:

$$\begin{array}{ccc} \mathbf{F} B & \xleftarrow{\phi_B} & \mathbf{G} B \\ \mathbf{F} h \downarrow & & \downarrow \mathbf{G} h \\ \mathbf{F} A & \xleftarrow{\phi_A} & \mathbf{G} A \end{array}$$

Let us instantiate this for $\phi = \text{reverse}$ and $\mathbf{F} = \mathbf{G} = [\cdot]$.

The condition becomes that for every function h of type $B \rightarrow A$ it holds:

$$\text{map } h \circ \text{reverse}_B = \text{reverse}_A \circ \text{map } h$$

- We have already seen a lot of functions that fit this pattern:

```
head    :: [a] -> a
tail    :: [a] -> [a]
last    :: [a] -> a
init    :: [a] -> [a]
length  :: [a] -> Int
null    :: [a] -> Bool
concat   :: [[a]] -> [a]
```

- In concrete applications, the type variable gets instantiated appropriately: `head "abc" :: Char.`

Semantic consequences of polymorphism

However, not every polymorphic function can be made to fit the pattern $\mathbf{G} A \rightarrow \mathbf{F} A$ for some functors \mathbf{F} and \mathbf{G} .

For example, consider $filter :: (a \rightarrow \text{Bool}) \rightarrow [a] \rightarrow [a]$.

What is some naturality-like property that every function of $filter$'s type satisfies?

A dinatural transformation, between two bifunctors \mathbf{F} and \mathbf{G} of the same mixed contravariant/covariant kind over the same source category, is an indexed collection of arrows ϕ_A of types $\mathbf{G}(A, A) \rightarrow \mathbf{F}(A, A)$ such that for every h this diagram commutes:

$$\begin{array}{ccc} \mathbf{G}(B, B) & \xrightarrow{\phi_B} & \mathbf{F}(B, B) \\ \mathbf{G}(A, B) \swarrow G(h, \text{id}_B) & & \searrow F(\text{id}_B, h) \\ & & \mathbf{F}(B, A) \\ \mathbf{G}(A, A) & \xrightarrow{\phi_A} & \mathbf{F}(A, A) \\ \mathbf{G}(A, A) \swarrow G(\text{id}_A, h) & & \searrow F(h, \text{id}_A) \end{array}$$

- And another one:

```
filter :: (a -> Bool) -> [a] -> [a]
```

which selects list elements that satisfy a certain predicate.

- For example,

```
filter isPalindrome completeDictionary
```

```
filter (> 0.5) bonusPercentageList
```

- While the following are not the actual definitions of `map` and `filter`, we can think of them as such:

```
map :: (a -> b) -> [a] -> [b]
map h list = [ h a | a <- list ]
```

```
filter :: (a -> Bool) -> [a] -> [a]
filter p list = [ a | a <- list, p a ]
```

- Conversely, every list comprehension expression, no matter how complicated with several generators, guards, etc., can be implemented via `map`, `filter`, and `concat`.

- Also, a law like (mentioned earlier):

$$\begin{aligned} & [h \ a \mid a \leftarrow \text{reverse list}] \\ \equiv & \text{reverse} [h \ a \mid a \leftarrow \text{list}] \end{aligned}$$

can nicely be expressed as:

$$\text{map } h \ . \ \text{reverse} \ \equiv \ \text{reverse} \ . \ \text{map } h$$

- Then we can also ask under which conditions this holds:

$$\text{map } h \ . \ \text{filter } p \ \equiv \ \text{filter } q \ . \ \text{map } h$$

- Generally, higher-order functions are a boon for “lawful program construction” (see the Richard Bird quote).

Semantic consequences of polymorphism

Let us instantiate this for $\phi = \text{filter}$. There are actually at least two ways to consider the type $(a \rightarrow \text{Bool}) \rightarrow [a] \rightarrow [a]$ as something like $\mathbf{G}(A, A) \rightarrow \mathbf{F}(A, A)$ for bifunctors of the required kind.

One possibility is:

- ▶ $\mathbf{G}(X, Y) = \text{Hom}(X, \text{Bool})$
- ▶ $\mathbf{F}(X, Y) = \text{Hom}([X], [Y])$

Now we can take an element q of $\mathbf{G}(A, B) = \text{Hom}(A, \text{Bool})$, that is, a function $q :: A \rightarrow \text{Bool}$, and chase it around the diagram (while taking into account that the action of Hom on arrows is that $\text{Hom}(f, g)$ is the function $k \mapsto g \circ k \circ f$) ... on the whiteboard.