Category theory concepts appearing in

functional programming

Janis Voigtlander

07.08.2019

nicmm
Oege de Moor

Algebra of
Programming

UNIVERSITAT
DUISBURG

Wholemeal programming N CeSeR
Dpen-Minded

* “Functional languages excel at wholemeal
programming, a term coined by Geraint Jones.
Wholemeal programming means to think big: work with
an entire list, rather than a sequence of elements; ...”

Ralf Hinze

* “Wholemeal programming is good for you: it helps to
prevent a disease called indexitis, and encourages
lawful program construction.”

Richard Bird

www.uni-due.de/en 07.08.2019 94

uuuuuuu AT

' DU ISBYURG

Recursive types

» Algebraic data types can be recursive. For example:

data Nat = Zero | Succ Nat

» Values of this type:

Zero, Succ Zero, Succ (Succ Zero), ...

» Computation by recursive function definitions:

add :: Nat -> Nat -> Nat
add Zero m
add (Succ n) m

m
Succ (add n m)

www.uni-due.de/en 07.08.2019 144

uuuuuuu AT

. DUISBURG

Recursive types

* With several recursive occurrences, tree structures:

data Tree = Leaf | Node Tree Integer Tree
* Values: Leaf, Node Leaf 2 Leaf, ...

o Computation:

height :: Tree -> Integer
height Leaf
=0
height (Node left _ right)
= 1 + max (height left) (height right)

www.uni-due.de/en 07.08.2019 145

What is “algebraic data” about these types?
Recall:

data Nat = Zero | Succ Nat

data Tree = Leaf | Node Tree Integer Tree

Each has an underlying (polynomial) functor in Set:

Fnat A = {Zero} U {(Succ,a) | a€ A}
Fnat b 2 Zero — Zero
(Succ, a) — (Succ, h(a))

Free A= {Leaf } U{(Node,a1,z,a2) | a1 € A,z€ Z,ay € A}
Friee h : Leaf — Leaf
(Node, a1, z, a2) — (Node, h(a1), z, h(az))

For these we can consider algebras, that is, arrows in Set of types
Fnat A — Aand Free A — A

What is “algebraic data” about these types?
Let us consider two such algebras as examples:

» For Fyat, an algebra with carrier B = { ff, tt}:

algy : Zero — ff
(Succ, b) — —b

» For Free, an algebra with carrier Z:

alg, : Leaf — 1
(Node, z1,z,2) — z1 *x z % 2

Between two algebras for the same functor, there is a notion of
homomorphism:
B2 B

| e

A+—FA
f

What is “algebraic data” about these types?

Beside the Fya,t-algebra alg; with carrier B and

algy : Zero — ff
(Succ, b) — —b

let us also consider the Fy,¢-algebra alg; with carrier Z and

algs : Zero — 0
(Succ,z) — z+2

Exercise:

How many algebra homomorphisms are there
> ... from alg; to alg3?
> ... from alg; to alg;?

What is “algebraic data” about these types?

Beside the Fyec-algebra alg, with carrier Z and

alg, : Leaf — 1
(Node, z1,z,2) = z1 x z % 2

let us also consider the Fr.e-algebra alg, with carrier B and

alg, : Leaf — tt
(Node, b1, z, b2) — b1 A /SOdd(Z) A by

Exercise:

How many algebra homomorphisms are there
> ... from alg, to alg,?
> ... from alg, to alg,?

What is “algebraic data” about these types?

Since identity arrows are homomorphisms and the composition of
two homomorphisms is again a homomorphism, the algebras for a
functor F form a category, Alg(F).

Often, in particular for polynomial functors in Set, this category
has an initial object, that is, an F-algebra « such that for each
F-algebra there is exactly one algebra homomorphism from « to it.

T2 FT

([fl)l \F(If])

A<—FA
f

In the setting considered here, the carrier of the initial algebra can
always be obtained (up to isomorphism) from the following
construction:

T=FgUF(Fg)UF(F(F2))U---

What is “algebraic data” about these types?

Let us instantiate this for Fyai:
TNat = I:Nat U I:Nat (FNat @) U I:Nat (FNat (FNat @)) U.--

— {Zero} U Fye ({Zero}) U Frvsy (Fre ({Zero})) U+
= {Zero, (Succ, Zero) } U Fat ({ Zero, (Succ, Zero) }) U - - -

= {Zero, (Succ, Zero), (Succ, (Succ, Zero)) } U - - -

Modulo syntax, this corresponds to
Zero, Succ Zero, Succ (Succ Zero), ...
as the values for the algebraic data type

data Nat = Zero | Succ Nat

Similarly,

7-Tree = FTree U FTree (FTree @) U FTree (FTree (FTree @)) U

explains what the values are for the algebraic data type Tree.

10

What is “algebraic data” about these types?

But there is other data in
T2 FT

(If])l LF([fD

A<——FA
f

than just the T. In particular, to every algebra f we get a unique
homomorphism from the initial algebra, called “catamorphism”.

Let us look at this for Fy,¢ and our alg; of type Fyat B — B with
algy : Zerow ff, (Succ, b) — —b

What is (alg;)?
The unique k of type Tnat — B such that k o o = alg o Fyat k.

But that means we first have to work out what « of type
Fnat Tnat — Tnat is? Spoiler: It is syntactic identity!

11

What is “algebraic data” about these types?

So, to determine what (alg4)) is, as the unique k of type Tnat — B
such that k o o = alg; o Fnat k, we can look at what the diagram

T2 FT

([f])l \F(Lf])

A<—FA
f

requires for elements of T = Tnat = Fnat TNat-
Recall that

Fnat kK @ Zero — Zero, (Succ, a) — (Succ, k(a))
and

alg; : Zerow ff, (Succ, b) — —b

So we get:
k : Zero — ff, (Succ,a) — —k(a)

12

What is “algebraic data” about these types?

In Haskell syntax, we get that (alg;) is the following function:

k :: Nat — Bool
k Zero = False
k (Succ a) = not (k a)

Analogously, we get that (algs) is the following function:

k :: Nat — Integer
k Zero =0
k (Succ a) = (k a) +2

13

What is “algebraic data” about these types?

And (alg,), for Fryee instead of Fyy, is the following function:

k :: Tree — Integer
k Leaf =1
k (Node a; z ap) = (k a1) * z x (k a2)

While (alg,) is the following function:

k :: Tree — Bool
k Leaf = True
k (Node a1 z ap) = (k a1) && (isOdd z) && (k a»)

Indeed every structurally recursive function arises as a
catamorphism.

For example, the function height :: Tree — Integer that appeared
on the lecture slide is the catamorphism for the Fr,.-algebra

mapping Leaf to 0 and (Node, z1, _, z0) to 1 + max z; z.
14

Is any of this actually useful in programming?

Well, for one thing, the constructions can be expressed in Haskell
itself, e.g.

data F a = ZeroF | SuccF a
as representation of

Fnat A = {Zero} U {(Succ,a) | ac A}
and

cata:: (F a— a) — (Nat — a)
cataf = k
where k Zero = f ZeroF
k (Succ a) = f (SuccF (k a))

as the realisation of ().

Which does not, in this form, look particularly appealing. But if we
recognise that F a — a, for “data F a = ZeroF | SuccF a”, is
actually isomorphic to (a,a — a), then ...

15

Is any of this actually useful in programming?
. we arrive at this version:
cata:: (a,a — a) — (Nat — a)
cata (z,s) = k
where k Zero =z
k (Succ a) = s (k a)
and can then abbreviate

k :: Nat — Bool
k Zero = False
k (Succ a) = not (k a)

to just cata (False, not) — essentially (alg;), as well as abbreviate

k :: Nat — Integer
k Zero =0
k (Succ a) = (k a) +2

to just cata (0, \z — z + 2) — essentially (algs).
16

Is any of this actually useful in programming?

Likewise, for “data Tree = Leaf | Node Tree Integer Tree” we have

cata:: (a,a — Integer — a — a) — (Tree — a)
cata (I,n) = k
where k Leaf =1
k (Node a1 z a2) = n (k a1) z (k a7)

and can then abbreviate the three structurally recursive functions
on Tree we saw, to just:
» cata (1,\z1 z zp — z1 * z x zp) — for (alg,)
» cata (True, \by z by — by && (isOdd z) && by) — for (alg,)
» cata (0, \z1 _zp — 1+ max z; zp) — for height

Moreover, it is not really necessary to explicitly program the
different versions of cata for Nat, Tree, etc. The principles are so
generic that the compiler can be made to support catamorphisms

automatically for any algebraic data type (of a polynomial functor).
17

UNIVERSITAT

. DU ISBYURG

Higher-order examples

Open-Minded

* Also remember the function
foldll :: (a -> a ->a) -> [a] -> a

which puts a (left-associative) function/operator
between all elements of a non-empty list.

* Itis a member of a whole family of related functions,
the most prominent of which is foldr, defined thus:

foldr :2- (a->b ->b) ->b ->[a] -> b
foldr _ n [1 =n
foldr ¢ n (x:xs) = ¢ x (foldr c n xs)

www.uni-due.de/en 07.08.2019 155

What about “lawful program construction”?
Recall:
y
(If])l \F([f])

A<——FA
f

The universal property k = (f) < koa = foF k has further
useful consequences.

In particular, there is the fusion law:
y Py
(lf])l lF([f])
A <—f— FA

|

B~L_FB

ho(f) =(g) < hof=goFh

19

What about “lawful program construction”?

So, since isOdd was identified as an algebra homomorphism from
alg, to alg,, we know that isOdd o (alg,) = (alg4).

Put differently, for functions

product :: Tree — Integer
product Leaf =1
product (Node a1 z ap) = (product a1) * z * (product az)

and

allodd :: Tree — Bool
allOdd Leaf = True
allOdd (Node a1 z a2) = (allOdd a1) && (isOdd z) && (allOdd ay)

it holds: isOdd o product = allOdd.

This can be used for proving properties, or for deriving programs

from specifications, or for optimising the efficiency of programs,

..., for explicitly recursive functions or for functions expressed as
catamorphisms, ..., generically for different algebraic data types. 20

Some comments on duality

All we have seen can be dualised:

>
| 2
>
| 2
>

>

coalgebras, arrows of types like A — Fnat A and A — Fyee A
coalgebra homomorphisms

category of coalgebras

the final coalgebra for a functor — What will be the carrier?
unique homomorphisms to the final coalgebra,

called “anamorphisms” or “unfolds”

a fusion law

Concretely, functions like

and

k :: Integer — Nat
k1= Zero
k z = Succ (k (div z 2))

k :: (Integer, Integer) — List Integer
k (a,b) = Cons a (k (b,a+ b))

21

More direct appearances of functors

Data types can be polymorphic, that is, instead of

data Tree = Leaf | Node Tree Integer Tree
we can have

data Tree a = Leaf | Node (Tree a) a (Tree a)
That is an action on objects in Set. Is there also a corresponding
action on arrows that turns Tree into a functor?
Indeed, laws like

(treeMap f) o (treeMap g) = treeMap (f o g)

hold, and can also be used for program calculation etc.

22

DUISBURG

Higher-order examples W %S

Also, as another example of a function we have used:

map :: (a -> b) -> [a] -> [b]

map h [] = []
map h (x:xs) = h x - map h xs

And indeed related:

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap h Leaf = Leaf
treeMap h (Node left x right)
= Node (treeMap h left)
(h x)
(treeMap h right)

www.uni-due.de/en 07.08.2019 154

UNIVERSITAT

. DU ISBYURG

Higher-order functions on lists

e Another useful function:
map :: (a -> b) -> [a] -> [b]

which applies a function to all elements of a list.

* For example:
map even [1..10]

map (dilated 5) [picl, pic2, pic3]

www.uni-due.de/en 07.08.2019 129

Semantic consequences of polymorphism

Moreover, functions of polymorphic type satisfy interesting laws,
having to do with the concept of natural transformation:
kB P2 g

S

FA «— GA
4

which we will look at in a moment.

Of course we do not in the lecture, but what we do consider there
are instances in disguise . ..

25

UNIVERSITAT
DUISBURG

Contrast to for-loops in Java, C, etc. N TS
Open-Minded

* In contrast, it is not remotely true that in an imperative
language we can always replace a piece of code written like
this:

for (a = 0; a <= n; at+)
result[a] = h(a);
by this:
for (a = n; a >= 0; a--)
result[a] = h(a);

* And even for the cases where commands as above are
equivalent, a formulation given that way is less useful than
the Haskell equation we saw, or indeed its more general
version:

[ha] a<- reverse list]
= reverse [ha | a <- list]

www.uni-due.de/en 07.08.2019

97

UNIVERSITAT
. DUISBURG

Consequences of polymorphic types
Open-Minded

» Polymorphism has really interesting semantic
consequences.

» For example, in the lecture last week, | mentioned that
always:
[ha] a<- reverse list]
= vreverse [ha | a<- list]

 What if | told you that this holds, for arbitrary h and
list, not only for reverse, but for any function with
type [a] -> [a], no matter how it is defined?

e Can you give some such functions (and check the
above claim)?

www.uni-due.de/en 07.08.2019

116

Semantic consequences of polymorphism

So what is it that reverse and other functions of type [a] — [a]
have in common?

A natural transformation, between two functors F and G (both of
the same kind, in terms of source and target categories), is an
indexed collection of arrows ¢4 of types G A — F A such that for
every arrow h (in the source category) this diagram commutes:

FB."’iGB

S

FA «— GA
o4

Let us instantiate this for ¢ = reverse and F = G = [].

The condition becomes that for every function h of type B — A it
holds:
map h o reverseg = reversea o map h

28

uuuuuuu AT

Polymorphic functions on lists W IS R E

* We have already seen a lot of functions that fit this

pattern:
head o [a] -> a
tail o [a] -> [a]
last o [a] -> a
init 2 [a] -> [a]
length :: [a] -> Int
null :: [a] -> Bool

concat :: [[a]l]l -> [a]

* In concrete applications, the type variable gets
instantiated appropriately: head "‘abc™ :: Char.

www.uni-due.de/en 07.08.2019 110

Semantic consequences of polymorphism

However, not every polymorphic function can be made to fit the
pattern G A — F A for some functors F and G.

For example, consider filter :: (a — Bool) — [a] — [a].

What is some naturality-like property that every function of filter's
type satisfies?

A dinatural transformation, between two bifunctors F and G of the
same mixed contravariant/covariant kind over the same source
category, is an indexed collection of arrows ¢4 of types

G (A, A) — F (A, A) such that for every h this diagram commutes:

R —* o rme)
a(u:\y” \\f Getg W)
G (A4, B) F(%.A)
\ 2
EERN Alt«,:om
G (A A > F(AA)

30

ba

UNIVERSITAT

' DU ISBYURG

Higher-order functions on lists

 And another one:
filter -: (a -> Bool) -> [a] -> [a]

which selects list elements that satisfy a certain
predicate.

* For example,
filter isPalindrome completeDictionary

filter (> 0.5) bonusPercentagelList

www.uni-due.de/en 07.08.2019 130

UNIVERSITAT
Relationship to list comprehensions W IS RO
Open-Minded

* While the following are not the actual definitions of map
and Filter, we can think of them as such:

map :: (a -> b) -> [a] -> [b]
map h list = [h a | a <- list]

filter -: (a -> Bool) -> [a] -> [a]
filter p list = [a | a <- list, p a]

» Conversely, every list comprehension expression, no
matter how complicated with several generators,
guards, etc., can be implemented via map, Filter, and
concat.

www.uni-due.de/en 07.08.2019 131

UNIVERSITAT

Expressing laws N OIS R
Open-Minded

» Also, alaw like (mentioned earlier):

[ha | a<- reverse list]
iIst

= reverse [ha|] ac<-1 1
can nicely be expressed as:
map h . reverse = reverse . map h

e Then we can also ask under which conditions this holds:

map h . Ffilter p = filter g . map h

* Generally, higher-order functions are a boon for “lawful
program construction” (see the Richard Bird quote).

www.uni-due.de/en 07.08.2019 134

Semantic consequences of polymorphism

Let us instantiate this for ¢ = filter. There are actually at least two
ways to consider the type (a — Bool) — [a] — [a] as something
like G(A, A) — F (A, A) for bifunctors of the required kind.

One possibility is:
» G(X,Y)= Hom(X,Bool)
> F(X,Y)= Hom([X],[Y])

Now we can take an element g of G (A, B) = Hom(A, Bool), that
is, a function q :: A — Bool, and chase it around the diagram
(while taking into account that the action of Hom on arrows is that
Hom(f, g) is the function k — go ko f) ... on the whiteboard.

34

