
Exercise Task Generation for UML
Class/Object Diagrams, via Alloy
Model Instance Finding
Violet Kafa, Marcellus Siegburg, Janis Voigtländer � 16 July 2019

Motivation: UML (class diagram example)

Department

name: string

Office

address: string
voice : integer

Headquarter

Company

1..*1..*

0..*0..*

0..*

1..*

Person

name: string
employeeID : integer

getContactInformations() : string
getPersonalRecords() : string

Class

Attributes
Multiplicity

Composition

Inheritance

Operations

Association

16 July 2019 2

Motivation: UML (object diagram example)

c : Company

d1 : Department

name : R&D

o : Office

address : Hauptstr.

voice : 888

p : Person

name : Erin

employeeID : 1234

Object Link

Attribute values

Object name

This object diagram (OD) conforms to the class diagram (CD) from
the previous slide.

Such conformance is an important concept for students to
understand, so we want to teach it effectively.

16 July 2019 3

In exercises: examples and counterexamples

A typical exercise task, deliberately using artificial names for classes
and objects, and a reduced feature set:Task 1 Object diagrams (10 points)

Let the following class diagrams be given, each of which shows connections between the classes
A, B, C and D.

(1.)

A B

C D
0..* 0..*

1 1 (2.)

A B

C D
0..* 2

Indicate, for each of the following object diagrams, whether it is valid for the above class
diagrams (ten answers altogether). Where that is not the case according to you, explain why
and give all reasons.

(a) a:A

c:C

(b) b:B

c:C d:D

(c) :A :B

c:C d:D

(d) a:A

c:C d:D

(e) a:A

d1:D d2:D

16 July 2019 4

In exercises: examples and counterexamples

What we want of our exercise tasks:

Diverse examples, in particular variation along the axes of difficulty
as well as of specific relationships (and their aspects) covered.

Verified correctness (respecting all subtleties of the UML standard),
to enable reliable grading and feedback to students.

Targeted attribution of errors/deviations in counterexamples.

Our aim: Automatic generation of many different, but suitably analogous,
tasks, ideally per student, along with tailoring for difficulty etc.

16 July 2019 5

Automatic exercise task generation

The general idea:

1. Randomly generate CDs respecting configuration options set by the
lecturer (how many classes and objects, which types of relationships
to involve, additional complexity constraints).

2. /////////////Randomly////////////generate//////ODs/////. . .

Translate each CD to a logical specification in the Alloy language,
which allows model instance finding via SAT solving.

3. Interpret found solution instances as (positive) OD examples.

Crucially, devise a strategy for generating negative OD examples as well!

16 July 2019 6

Automatic exercise task generation

The general idea:

1. Randomly generate CDs respecting configuration options set by the
lecturer (how many classes and objects, which types of relationships
to involve, additional complexity constraints).

2. Translate each CD to a logical specification in the Alloy language,
which allows model instance finding via SAT solving.

3. Interpret found solution instances as (positive) OD examples.

Crucially, devise a strategy for generating negative OD examples as well!

16 July 2019 7

On using Alloy, specifically CD2Alloy

CD2Alloy, Maoz et al. (2011):

translating CDs to Alloy specifications

interpreting found instances as ODs

A

B

y

1

0..1

C

D

z
1..*

0..1
⇒

. . .
one sig y extends FName { }
. . .
fun ASubsCD : set Obj { A }
fun BSubsCD : set Obj { B + CSubsCD }
fun CSubsCD : set Obj { C + ASubsCD }
. . .
ObjLUAt t r ib [ASubsCD, y , BSubsCD, 1 , 1]
ObjLU [BSubsCD, y , ASubsCD, 0 , 1]
. . .

⇒

d : D

: D

a : A

z

a1 : A

y

z

y

Originally for software developers (Eclipse plugin), here repurposed by us.
16 July 2019 8

But what about counterexample generation?

Unfortunately, this approach does not lend itself immediately to generating
useful negative OD examples as well.

The problem is that, continuing the case from the previous slide,

while Alloy command run {cd} for 4 Obj gave plenty useful positive
examples (such as the one just seen),

a naive attempt at counterexample generation, by using command
run {not cd} for 4 Obj, gives not so useful results, such as this one:

d : D

: D

z y

d2 : D
z

y

c : C

z

y
y

y

y

y
z

z
z

z

16 July 2019 9

But what about counterexample generation?

Additional idea:

1. Mutate a given CD slightly, for example by removing a relationship,
changing a multiplicity, etc.

2. Translate both original CD and mutated CD to Alloy specifications.

3. Use conjunctive expressions, e.g. run {(not cd1) and cd2}, to search
for instances in the difference of the sets of respective models.

What this achieves:

More interesting/challenging exercise tasks, because
counterexamples are not “obviously off” at first sight.

Precise targeting of deviations, focusing on specific aspects.

Potential for fine control over the task generation.
16 July 2019 10

Our task generation strategy in more detail

Arrived at after quite some experimentation and engineering:

Concrete algorithm (if failing at any step, start over)

1. Generate a random CD0 (respecting the configuration options).

2. Mutate CD0 randomly three times, creating CD1, CD2, and CD3 (but
such that at least one of CD1/2 does not contain only inheritances).

3. Find OD instances by running Alloy with each of:
(not cd1) and cd2
cd1 and (not cd2)
cd1 and cd2
(not cd1) and (not cd2)and cd3

while imposing additional criteria like “not too many isolated objects”.

4. Select randomly 5 of the found ODs (but at most 2 from each case).

5. Put CD1, CD2, and those 5 ODs into an exercise task.

16 July 2019 11

Integration into an e-learning system

https://autotool.fmi.iw.uni-due.de/alloy-cd-od:

16 July 2019 12

https://autotool.fmi.iw.uni-due.de/alloy-cd-od

Conclusion and outlook

The presented task generator . . .

creates CD/OD exercise tasks along with their solutions

generates individual tasks for every student

allows for task customisation by the lecturer

Next steps (possible)

empirical evaluation with student cohorts

other exercise task types, e.g., letting students identify deviations

generating (constrained) CDs via Alloy as well, from meta-model

handling further CD/OD features, and other UML diagrams

using real world entity names (for classes, objects, . . .)

16 July 2019 13

References

Oliver Kautz, Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe.
CD2Alloy: A translation of class diagrams to Alloy. Techn. Rep.
AIB-2017-06, RWTH Aachen University, 2017.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class
diagrams analysis using Alloy revisited. In Model Driven Engineering
Languages and Systems, Proceedings, volume 6981 of LNCS, pages
592–607. Springer, 2011.

Johannes Waldmann. Generating and grading exercises on algorithms
and data structures automatically. In Automatische Bewertung von
Programmieraufgaben, Proceedings, volume 2015 of CEUR Workshop
Proceedings. CEUR-WS.org, 2017.

16 July 2019 14

