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The Sorting Problem

Task: Given a list and an order on the type of elements of
this list, produce a sorted list (with same content)!

Example:

12f7]9[s[a]6] = [4]6][7[s]9]12]

Many Solutions:

» Quicksort

» Insertion Sort
» Merge Sort
» Bubble Sort
>
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Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:

» one containing all elements smaller than x, and

P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.
4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.
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Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
» one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K n-1
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Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:

» one containing all elements smaller than x, and

P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K

Example:

[2]15[ 7] 9]12]4 [11]
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Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K n-1
[ —i j— ]
Example:
[2]15]7]9]12[ 4 11]
! :
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Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation:

Example:

[2]15]7]9]12[ 4 11]
1 t

1

2-17/19



Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation:

Example:

[2]15]7]9]12[ 4 11]
1 t

1
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Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K n-1
[ —i j— ]
Example:
[2]4]7]9]12[15]11]
1 g
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Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K n-1
[ —i j— ]
Example:
[2]4]7]9]12[15]11]
Foy
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Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation:

Example:

[2]4]7]9]12[15]11]
i
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Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation:

Example:

[2]4]7]9]12[15]11]
i
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Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation:

Example:

[2]4]7]9]12[15]11]

£
J i
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Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:

» one containing all elements smaller than x, and

P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K

Example:

120479 12[15]11]
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Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:

» one containing all elements smaller than x, and

P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K

Example:
2] 4]7]9]12][15]11]
Py
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Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:

» one containing all elements smaller than x, and

P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K

Example:

2] 4]7]9]12][15]11]
Y
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Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:

» one containing all elements smaller than x, and

P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K

Example:

2] 4]7]9]12][15]11]
;3
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Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
» one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K n-1

Example:

2] 4]7]9]12][15]11]
b

1
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Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
» one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation:
0

Example:
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Alternatives

Note:  » The Quicksort algorithm uses the following as
key operation (to drive the partitioning):

compare :: (1,7) — Bool
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Alternatives

Note:  » The Quicksort algorithm uses the following as
key operation (to drive the partitioning):

compare :: (1,7) — Bool

» The same is true for algorithms like
Insertion Sort, Merge Sort, ...
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Alternatives

Note:  » The Quicksort algorithm uses the following as
key operation (to drive the partitioning):

compare :: (1,7) — Bool

» The same is true for algorithms like
Insertion Sort, Merge Sort, ...

But: Knuth also considered a more restricted class of
sorting algorithms, based instead on the following
operation:

cswap i (1,7) = (7,7)
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Alternatives

Note:  » The Quicksort algorithm uses the following as
key operation (to drive the partitioning):

compare :: (1,7) — Bool

» The same is true for algorithms like
Insertion Sort, Merge Sort, ...

But: Knuth also considered a more restricted class of
sorting algorithms, based instead on the following
operation:

cswap i (1,7) = (7,7)
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Bitonic Sort

1. Split the input list into two sublists of equal length.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively

4 - 28/67



Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:
3.1 Apply cswap to pairs of elements at corresponding positions.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:
3.1 Apply cswap to pairs of elements at corresponding positions.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.
3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

[TH
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.
3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

[TH
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

[TH
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 - 38/67



Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
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2. Sort the two sublists recursively, the second one in
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
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1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
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Bitonic Sort

1. Split the input list into two sublists of equal length.
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Bitonic Sort
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3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 - 53/67



Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 — 5467



Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
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Bitonic Sort
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3. Merge the sorted sublists as follows:
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3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 —57/67



Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

3.3 Merge the resulting pairs of lists recursively.

3.4 Concatenate the results.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

3.3 Merge the resulting pairs of lists recursively.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

Note:

Sort the two sublists recursively, the second one in
reverse order.
Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

3.3 Merge the resulting pairs of lists recursively.

3.4 Concatenate the results.

» works only for lists whose length is a power of two
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Bitonic Sort

1. Split the input list into two sublists of equal length.
2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

3.3 Merge the resulting pairs of lists recursively.

3.4 Concatenate the results.

Note: P works only for lists whose length is a power of two
> complexity is O(n - log(n)?)
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Bitonic Sort

1. Split the input list into two sublists of equal length.

Note:

Sort the two sublists recursively, the second one in
reverse order.
Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

3.3 Merge the resulting pairs of lists recursively.

3.4 Concatenate the results.

» works only for lists whose length is a power of two
> complexity is O(n - log(n)?)
» particularly suitable for hardware and parallel implementations
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Bitonic Sort

1. Split the input list into two sublists of equal length.

Note:

Sort the two sublists recursively, the second one in
reverse order.
Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

3.3 Merge the resulting pairs of lists recursively.

3.4 Concatenate the results.

works only for lists whose length is a power of two

complexity is O(n - log(n)?)

particularly suitable for hardware and parallel implementations
correctness is not obvious
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:
3.1 Apply cswap to pairs of elements at corresponding positions.
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2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:
3.1 Apply cswap to pairs of elements at corresponding positions.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.
3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

[TH
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.
3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

[TH
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

[TH

5—73/74



Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.
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Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
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Bitonic Sort

1. Split the input list into two sublists of equal length.
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Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.
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Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
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g :: (Bool, Bool) — (Bool, Bool)
g (xy)=Kx&&y x|y

If ¥xs :: [Bool], ys = sort g xs. P(xs,ys) A Q(ys),
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Using a Free Theorems Generator

Input: sort::((a,a)->(a,a))->[a]l->[al
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Using a Free Theorems Generator

Input: sort::((a,a)->(a,a))->[al->[a]

Output: forall t1,t2 in TYPES, h::t1->t2.
forall f::(t1,t1)->(t1,t1).
forall g::(£2,t2)->(t2,t2).
(forall (x,y) in 1lift_{(,)}(h,h).
(f x,g y) in 1ift_{(,)}(h,h))
==> (forall xs::[t1].
map h (sort f xs) = sort g (map h xs))

lift_{(,)}(,h)

= {((x1,x2),(y1,y2)) | (h x1 = y1)
%& (h x2 = y2)}
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More Specific (and Intuitive)

For every sort :: ((a, ) = (o, ) = [a] — [a],
f :: (Int,Int) — (Int,Int), g :: (Bool, Bool) — (Bool, Bool), and
h :: Int — Bool:

(Int, Int) ——F— (Int, Int) [Int] —SOTLf o [Int]
h X h = h X h = map h = map h
(Bool, Bool) 5 (Bool, Bool) [Bool] —SoTt g [Bool]
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If f and g are as defined before, then the precondition is fulfilled
for any h of the form h x = n < x for some n :: Int.
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Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity
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Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
Formally: Use Haskell. Let

sort 1 ((a, ) = (o, ) = [a] = [a]

f 2 (Int,Int) — (Int, Int)
f (x,y)=if x>y then (y,x) else (x,y)

g :: (Bool, Bool) — (Bool, Bool)
g (xy)=Kx&&y x|y

If for every xs :: [Bool], sort g xs gives the correct
result, then for every xs :: [Int], sort f xs gives the
correct result.
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And Beyond?

» Knuth's 0-1-Principle allows to reduce algorithm correctness,
for comparison-swap sorting, for inputs over an infinite range
to correctness over a finite range of values.
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And Beyond?

» Knuth's 0-1-Principle allows to reduce algorithm correctness,
for comparison-swap sorting, for inputs over an infinite range
to correctness over a finite range of values.

» Free theorems allow for a particularly elegant proof of this
principle. (This was not my idea: [Day et al. 1999]!)

» Can we do something similar for other algorithm classes?

» Good candidates: algorithms parametrised over some
operation, like cswap :: (o, ) — (o, @) in the case of sorting.
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