Knuth’s 0-1-Principle

Janis Voigtlander

May 19th, 2020

The Sorting Problem

Task: Given a list and an order on the type of elements of
this list, produce a sorted list (with same content)!

Example:

12f7]9[s[a]6] = [4]6][7[s]9]12]

Many Solutions:

» Quicksort

» Insertion Sort
» Merge Sort
» Bubble Sort
>

1-2/2

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:

» one containing all elements smaller than x, and

P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.
4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

2 —-3/19

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
» one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K n-1

2 —4/19

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:

» one containing all elements smaller than x, and

P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K

Example:

[2]15[7] 9]12]4 [11]

2 —-5/19

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K n-1
[—i j—]
Example:
[2]15]7]9]12[4 11]
! :

2 —-6/19

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation:

Example:

[2]15]7]9]12[4 11]
1 t

1

2-17/19

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation:

Example:

[2]15]7]9]12[4 11]
1 t

1

2 —8/19

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K n-1
[—i j—]
Example:
[2]4]7]9]12[15]11]
1 g

2-9/19

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:
> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K n-1
[—i j—]
Example:
[2]4]7]9]12[15]11]
Foy

2 - 10/19

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation:

Example:

[2]4]7]9]12[15]11]
i

2 -11/19

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation:

Example:

[2]4]7]9]12[15]11]
i

2 -12/19

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation:

Example:

[2]4]7]9]12[15]11]

£
J i

2 - 13/19

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:

» one containing all elements smaller than x, and

P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K

Example:

120479 12[15]11]

2 —14/19

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:

» one containing all elements smaller than x, and

P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K

Example:
2] 4]7]9]12][15]11]
Py

2 - 15/19

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:

» one containing all elements smaller than x, and

P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K

Example:

2] 4]7]9]12][15]11]
Y

2 - 16/19

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:

» one containing all elements smaller than x, and

P one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K

Example:

2] 4]7]9]12][15]11]
;3

2 - 17/19

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
» one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation: 0 K n-1

Example:

2] 4]7]9]12][15]11]
b

1

2 —18/19

Quicksort

1. Choose an element x from the input list.

2. Partition the remaining elements into two sublists:
» one containing all elements smaller than x, and
» one containing all elements greater or equal to x.

3. Sort the two sublists recursively.

4. The ouput list is the concatenation of:

> the sorted first sublist,
» the element x, and
» the sorted second sublist.

Realisation:
0

Example:

2 - 19/19

Alternatives

Note: » The Quicksort algorithm uses the following as
key operation (to drive the partitioning):

compare :: (1,7) — Bool

3 —20/23

Alternatives

Note: » The Quicksort algorithm uses the following as
key operation (to drive the partitioning):

compare :: (1,7) — Bool

» The same is true for algorithms like
Insertion Sort, Merge Sort, ...

3 -121/23

Alternatives

Note: » The Quicksort algorithm uses the following as
key operation (to drive the partitioning):

compare :: (1,7) — Bool

» The same is true for algorithms like
Insertion Sort, Merge Sort, ...

But: Knuth also considered a more restricted class of
sorting algorithms, based instead on the following
operation:

cswap i (1,7) = (7,7)

3 —22/23

Alternatives

Note: » The Quicksort algorithm uses the following as
key operation (to drive the partitioning):

compare :: (1,7) — Bool

» The same is true for algorithms like
Insertion Sort, Merge Sort, ...

But: Knuth also considered a more restricted class of
sorting algorithms, based instead on the following
operation:

cswap i (1,7) = (7,7)

3 —23/23

Bitonic Sort

1. Split the input list into two sublists of equal length.

4 —24/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

4 — 25/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

4 - 26/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively

4 —27/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively

4 - 28/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

4 - 29/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:
3.1 Apply cswap to pairs of elements at corresponding positions.

4 —30/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:
3.1 Apply cswap to pairs of elements at corresponding positions.

4 —31/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.

4 —32/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.
3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

[TH

4 - 33/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.
3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

[TH

4 - 34/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

[TH

4 - 35/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 - 36/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 - 37/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 - 38/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 - 39/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 - 40/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 —41/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 — 42/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 — 43/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 — aa/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 — 45/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 - 46/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 — 47/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 — 48/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 — 49/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 - 50/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 - 51/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 - 52/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 - 53/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 — 5467

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 — 55/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 - 56/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 —57/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 - 58/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 - 59/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 - 60/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

4 - 61/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

3.3 Merge the resulting pairs of lists recursively.

3.4 Concatenate the results.

4 - 62/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

3.3 Merge the resulting pairs of lists recursively.

3.4 Concatenate the results.

4 - 63/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

Note:

Sort the two sublists recursively, the second one in
reverse order.
Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

3.3 Merge the resulting pairs of lists recursively.

3.4 Concatenate the results.

» works only for lists whose length is a power of two

4 — 64/67

Bitonic Sort

1. Split the input list into two sublists of equal length.
2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

3.3 Merge the resulting pairs of lists recursively.

3.4 Concatenate the results.

Note: P works only for lists whose length is a power of two
> complexity is O(n - log(n)?)

4 — 65/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

Note:

Sort the two sublists recursively, the second one in
reverse order.
Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

3.3 Merge the resulting pairs of lists recursively.

3.4 Concatenate the results.

» works only for lists whose length is a power of two
> complexity is O(n - log(n)?)
» particularly suitable for hardware and parallel implementations

4 — 66/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

Note:

Sort the two sublists recursively, the second one in
reverse order.
Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

3.3 Merge the resulting pairs of lists recursively.

3.4 Concatenate the results.

works only for lists whose length is a power of two

complexity is O(n - log(n)?)

particularly suitable for hardware and parallel implementations
correctness is not obvious

4 —67/67

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:
3.1 Apply cswap to pairs of elements at corresponding positions.

5 — 68/74

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:
3.1 Apply cswap to pairs of elements at corresponding positions.

5 - 69/74

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.

5—170/74

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.
3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

[TH

5—71/74

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.
3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

[TH

5—72/74

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

[TH

5—73/74

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

5—74/74

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

6 — 75/75

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.

7 —176/76

Bitonic Sort

1. Split the input list into two sublists of equal length.

8 — 77/92

Bitonic Sort

1. Split the input list into two sublists of equal length.

8 — 78/92

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

8 — 79/92

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

8 — 80/92

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:
3.1 Apply cswap to pairs of elements at corresponding positions.

8 — 81/92

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:
3.1 Apply cswap to pairs of elements at corresponding positions.

8 — 82/92

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.

8 — 83/92

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.

8 — 84/92

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

8 — 85/92

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

8 — 86/92

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

8 — 87/92

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

8 — 88/92

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

8 — 89/92

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

8 — 90/92

Bitonic Sort

1. Split the input list into two sublists of equal length.
2. Sort the two sublists recursively, the second one in

reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

3.4 Concatenate the results.

8 — 91/92

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.

3.3 Merge the resulting pairs of lists recursively.

3.4 Concatenate the results.

8 — 92/92

Bitonic Sort

1. Split the input list into two sublists of equal length.

9 — 93/106

Bitonic Sort

1. Split the input list into two sublists of equal length.

9 — 94/106

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

9 — 95/106

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

9 — 96/106

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:
3.1 Apply cswap to pairs of elements at corresponding positions.

9 — 97/106

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:
3.1 Apply cswap to pairs of elements at corresponding positions.

9 — 98/106

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.

9 — 99/106

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.

9 — 100/106

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

9 — 101/106

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

9 — 102/106

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

9 — 103/106

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.

3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

9 — 104/106

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

9 — 105/106

Bitonic Sort

1. Split the input list into two sublists of equal length.

2. Sort the two sublists recursively, the second one in
reverse order.

3. Merge the sorted sublists as follows:

3.1 Apply cswap to pairs of elements at corresponding positions.
3.2 Split each of the resulting lists in the middle.
3.3 Merge the resulting pairs of lists recursively.

9 — 106/106

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.

10 — 107/113

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
Formally: 777

10 — 108/113

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
Formally: Use Haskell.

10 — 109/113

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
Formally: Use Haskell. Let

sort 1 ((a,) = (o,) = [a] = [a]

10 — 110/113

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
Formally: Use Haskell. Let

sort 1 ((a,) = (o,) = [a] = [a]

f 2 (Int,Int) — (Int, Int)
f (x,y)=if x>y then (y,x) else (x,y)

g :: (Bool, Bool) — (Bool, Bool)
g (xy)=Kx&&y x|y

10 — 111/113

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
Formally: Use Haskell. Let

sort 1 ((a,) = (o,) = [a] = [a]

f 2 (Int,Int) — (Int, Int)
f (x,y)=if x>y then (y,x) else (x,y)

g :: (Bool, Bool) — (Bool, Bool)
g (xy)=Kx&&y x|y

If for every xs :: [Bool], sort g xs gives the correct
result, then for every xs :: [Int], sort f xs gives the
correct result.

10 — 112/113

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
Formally: Use Haskell. Let

sort 1 ((a,) = (o,) = [a] = [a]

f 2 (Int,Int) — (Int, Int)
f (x,y)=if x>y then (y,x) else (x,y)

g :: (Bool, Bool) — (Bool, Bool)
g (xy)=Kx&&y x|y

If ¥xs :: [Bool], ys = sort g xs. P(xs,ys) A Q(ys),
then Vxs :: [Int],ys = sort f xs. P(xs,ys) A Q(ys),
where P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity
Q(ys) := ys is sorted

10 — 113/113

Using a Free Theorems Generator

Input: sort::((a,a)->(a,a))->[a]l->[al

11 — 114/115

Using a Free Theorems Generator

Input: sort::((a,a)->(a,a))->[al->[a]

Output: forall t1,t2 in TYPES, h::t1->t2.
forall f::(t1,t1)->(t1,t1).
forall g::(£2,t2)->(t2,t2).
(forall (x,y) in 1lift_{(,)}(h,h).
(f x,g y) in 1ift_{(,)}(h,h))
==> (forall xs::[t1].
map h (sort f xs) = sort g (map h xs))

lift_{(,)}(,h)

= {((x1,x2),(y1,y2)) | (h x1 = y1)
%& (h x2 = y2)}

11 - 115/115

More Specific (and Intuitive)

For every sort :: ((a,) = (o,) = [a] — [a],
f :: (Int,Int) — (Int,Int), g :: (Bool, Bool) — (Bool, Bool), and
h :: Int — Bool:

(Int, Int) ——F— (Int, Int) [Int] —SOTLf o [Int]
h X h = h X h = map h = map h
(Bool, Bool) 5 (Bool, Bool) [Bool] —SoTt g [Bool]

12 — 116/117

More Specific (and Intuitive)

For every sort :: ((a,) = (o,) = [a] — [a],
f :: (Int,Int) — (Int, Int), g :: (Bool, Bool) — (Bool, Bool), and
h :: Int — Bool:

(Int, Int) ——F— (Int, Int) [Int] —SOTLf o [Int]
h X h = h X h = map h = map h
(Bool, Bool) 5 (Bool, Bool) [Bool] —SoTt g [Bool]

If f and g are as defined before, then the precondition is fulfilled
for any h of the form h x = n < x for some n :: Int.

12 — 117/117

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
Formally: Use Haskell. Let

sort 1 ((a,) = (o,) = [a] = [a]

f 2 (Int,Int) — (Int, Int)
f (x,y)=if x>y then (y,x) else (x,y)

g :: (Bool, Bool) — (Bool, Bool)
g (xy)=Kx&&y x|y

If ¥xs :: [Bool], ys = sort g xs. P(xs,ys) A Q(ys),
then Vxs :: [Int],ys = sort f xs. P(xs,ys) A Q(ys),
where P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity
Q(ys) := ys is sorted

13 - 118/118

Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity

14 — 119/127

Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity

Given: Vxs :: [Bool],ys = sort g xs. P(xs, ys)

14 — 120/127

Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity
Given: Vxs :: [Bool],ys = sort g xs. P(xs, ys)
To prove: Vxs :: [Int], ys = sort f xs. P(xs,ys)

14 — 121/127

Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity

Given: Vxs :: [Bool],ys = sort g xs. P(xs, ys)
To prove: Vxs :: [Int], ys = sort f xs. P(xs,ys)

Assume there exist us :: [Int] and vs = sort f us with =P(us, vs).

14 — 122/127

Proof of “P on [Bool] implies P on [Int]”
Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity
Given: Vxs :: [Bool],ys = sort g xs. P(xs, ys)
To prove: Vxs :: [Int], ys = sort f xs. P(xs,ys)

Assume there exist us :: [Int] and vs = sort f us with =P(us, vs).
Then there is a smallest integer n such that the multiplicities of n

in us and vs are not the same.

14 — 123/127

Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity

Given: Vxs :: [Bool],ys = sort g xs. P(xs, ys)
To prove: Vxs :: [Int], ys = sort f xs. P(xs,ys)
Assume there exist us :: [Int] and vs = sort f us with =P(us, vs).
Then there is a smallest integer n such that the multiplicities of n

in us and vs are not the same. Then for h x = n < x the
multiplicities of False in (map h us) and (map h vs) are different.

14 — 124/127

Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity
Given: Vxs :: [Bool],ys = sort g xs. P(xs, ys)
To prove: Vxs :: [Int], ys = sort f xs. P(xs,ys)

Assume there exist us :: [Int] and vs = sort f us with =P(us, vs).
Then there is a smallest integer n such that the multiplicities of n
in us and vs are not the same. Then for h x = n < x the
multiplicities of False in (map h us) and (map h vs) are different.
But this is in contradiction to the precondition with:

xs =map h us
ys =sort g (map h us)

14 — 125/127

Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity
Given: Vxs :: [Bool],ys = sort g xs. P(xs, ys)
To prove: Vxs :: [Int], ys = sort f xs. P(xs,ys)

Assume there exist us :: [Int] and vs = sort f us with =P(us, vs).
Then there is a smallest integer n such that the multiplicities of n
in us and vs are not the same. Then for h x = n < x the
multiplicities of False in (map h us) and (map h vs) are different.
But this is in contradiction to the precondition with:

xs =map h us
ys =sort g (map h us) = map h (sort f us)

14 — 126/127

Proof of “P on [Bool] implies P on [Int]”

Recall: P(xs,ys) := xs and ys contain the same ele-
ments in the same multiplicity
Given: Vxs :: [Bool],ys = sort g xs. P(xs, ys)
To prove: Vxs :: [Int], ys = sort f xs. P(xs,ys)

Assume there exist us :: [Int] and vs = sort f us with =P(us, vs).
Then there is a smallest integer n such that the multiplicities of n
in us and vs are not the same. Then for h x = n < x the
multiplicities of False in (map h us) and (map h vs) are different.
But this is in contradiction to the precondition with:

xs =map h us
ys =sort g (map h us) =map h (sort f us) =map h vs

14 — 127/127

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted

15 — 128/136

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted
Given: Vxs :: [Bool],ys = sort g xs. Q(ys)

15 — 129/136

Proof of “Q on [Bool] implies Q on [Int]

Recall: Q(ys) := ys is sorted
Given: Vxs :: [Bool],ys = sort g xs. Q(ys)

To prove: Vxs :: [Int],ys = sort f xs. Q(ys)

15 — 130/136

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted
Given: Vxs :: [Bool],ys = sort g xs. Q(ys)
To prove: Vxs :: [Int],ys = sort f xs. Q(ys)

Assume there exist us :: [Int] and vs = sort f us with ~Q(vs).

15 — 131/136

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted
Given: Vxs :: [Bool],ys = sort g xs. Q(ys)
To prove: Vxs :: [Int],ys = sort f xs. Q(ys)

Assume there exist us :: [Int] and vs = sort f us with ~Q(vs).
Then there are n < m such that an m occurs in vs before an n.

15 — 132/136

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted
Given: Vxs :: [Bool],ys = sort g xs. Q(ys)
To prove: Vxs :: [Int],ys = sort f xs. Q(ys)
Assume there exist us :: [Int] and vs = sort f us with ~Q(vs).

Then there are n < m such that an m occurs in vs before an n.
Then for h x = n < x a True occurs in (map h vs) before a False.

15 — 133/136

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted
Given: Vxs :: [Bool],ys = sort g xs. Q(ys)
To prove: Vxs :: [Int],ys = sort f xs. Q(ys)

Assume there exist us :: [Int] and vs = sort f us with ~Q(vs).
Then there are n < m such that an m occurs in vs before an n.
Then for h x = n < x a True occurs in (map h vs) before a False.
But this is in contradiction to the precondition with:

xs =map h us
ys =sort g (map h us)

15 — 134/136

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted
Given: Vxs :: [Bool],ys = sort g xs. Q(ys)
To prove: Vxs :: [Int],ys = sort f xs. Q(ys)

Assume there exist us :: [Int] and vs = sort f us with ~Q(vs).
Then there are n < m such that an m occurs in vs before an n.
Then for h x = n < x a True occurs in (map h vs) before a False.
But this is in contradiction to the precondition with:

xs =map h us
ys =sort g (map h us) =map h (sort f us)

15 — 135/136

Proof of “Q on [Bool] implies Q on [Int]”

Recall: Q(ys) := ys is sorted
Given: Vxs :: [Bool],ys = sort g xs. Q(ys)
To prove: Vxs :: [Int],ys = sort f xs. Q(ys)

Assume there exist us :: [Int] and vs = sort f us with ~Q(vs).
Then there are n < m such that an m occurs in vs before an n.
Then for h x = n < x a True occurs in (map h vs) before a False.
But this is in contradiction to the precondition with:

xs =map h us
ys =sort g (map h us) =map h (sort f us) =map h vs

15 — 136/136

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.
Formally: Use Haskell. Let

sort 1 ((a,) = (o,) = [a] = [a]

f 2 (Int,Int) — (Int, Int)
f (x,y)=if x>y then (y,x) else (x,y)

g :: (Bool, Bool) — (Bool, Bool)
g (xy)=Kx&&y x|y

If for every xs :: [Bool], sort g xs gives the correct
result, then for every xs :: [Int], sort f xs gives the
correct result.

16 — 137/137

And Beyond?

» Knuth's 0-1-Principle allows to reduce algorithm correctness,
for comparison-swap sorting, for inputs over an infinite range
to correctness over a finite range of values.

17 — 138/141

And Beyond?

» Knuth's 0-1-Principle allows to reduce algorithm correctness,
for comparison-swap sorting, for inputs over an infinite range
to correctness over a finite range of values.

» Free theorems allow for a particularly elegant proof of this
principle. (This was not my idea: [Day et al. 1999]!)

17 — 139/141

And Beyond?

» Knuth's 0-1-Principle allows to reduce algorithm correctness,
for comparison-swap sorting, for inputs over an infinite range
to correctness over a finite range of values.

» Free theorems allow for a particularly elegant proof of this
principle. (This was not my idea: [Day et al. 1999]!)

» Can we do something similar for other algorithm classes?

17 — 140/141

And Beyond?

» Knuth's 0-1-Principle allows to reduce algorithm correctness,
for comparison-swap sorting, for inputs over an infinite range
to correctness over a finite range of values.

» Free theorems allow for a particularly elegant proof of this
principle. (This was not my idea: [Day et al. 1999]!)

» Can we do something similar for other algorithm classes?

» Good candidates: algorithms parametrised over some
operation, like cswap :: (o,) — (o, @) in the case of sorting.

17 — 141/141

References |

[§ N.A. Day, J. Launchbury, and J.R. Lewis.
Logical abstractions in Haskell.
In Haskell Workshop, Proceedings, 1999.

[§ P. Dybjer, Q. Haiyan, and M. Takeyama.
Verifying Haskell programs by combining testing, model
checking and interactive theorem proving.
Information & Software Technology, 46(15):1011-1025, 2004.

[d D.E. Knuth.
The Art of Computer Programming, volume 3: Sorting and
Searching.
Addison-Wesley, 1973.

18 — 142/143

References |l

@ J. Voigtlander.
Much ado about two: A pearl on parallel prefix computation.
In Principles of Programming Languages, Proceedings, pages
29-35. ACM Press, 2008.

19 — 143/143

	The Sorting Problem
	Some Sort Algorithms
	– using a comparison function
	– using comparison-swap

	Knuth's 0-1-Principle
	– informally
	– formally
	– derived as a free theorem

	References

