
Free Theorems Simply, via Dinaturality

Janis Voigtländer

University of Duisburg-Essen

DECLARE 2019

Plan for the talk

I Motivation, free theorems in teaching

I Deriving free theorems via relational parametricity

I The “conjuring lemma” as a shortcut

I Turning the idea into a practical generator

I Connection to the category theory concept of dinaturality
(skipped)

2

Motivation from teaching

49

One kind of richer expressions: list comprehensions

Using a list comprehension:
main :: IO ()

main = drawingOf (pictures [scene d | d <- [0..5]])

scene :: Double -> Picture

scene d = translated d 0 (colored red triangle)

• With pictures :: [Picture] -> Picture.
• And a list comprehension [scene d | d <- [0..5]].
• This is not exactly like a for-loop, for several reasons.

• Instead, it is like a mathematical set comprehension 𝟐𝟐 � 𝒏𝒏 𝒏𝒏 ∈ ℕ .

www.uni-due.de/en

96

Wholemeal programming on lists

We earlier had this example:
main :: IO ()

main = drawingOf (pictures [scene d | d <- [0..5]])

scene :: Double -> Picture

scene d = translated d 0 (colored red triangle)

• Of course, the individual evaluations will, on a sequential machine,
happen in some order. And the resulting list is really a sequence,
not a set. But the individual values will be independent of all that.

• Indeed, one can show that for any g and n, in Haskell:
[g x | x <- [0..n]]

≡ reverse [g x | x <- reverse [0..n]]

www.uni-due.de/en

97

Contrast to for-loops in Java, C, etc.

• In contrast, it is not remotely true that in an imperative
language we can always replace a piece of code written like
this:

for (x = 0; x <= n; x++)
result[x] = g(x);

by this:
for (x = n; x >= 0; x--)

result[x] = g(x);

• And even for the cases where commands as above are
equivalent, a formulation given that way is less useful than
the Haskell equation we saw, or indeed its more general
version:

reverse [g x | x <- xs]
≡ [g x | x <- reverse xs]

www.uni-due.de/en

116

Consequences of polymorphic types

• Polymorphism has really interesting semantic
consequences.

• For example, in the lecture last week, I mentioned that
always:

reverse [g x | x <- xs]
≡ [g x | x <- reverse xs]

• What if I told you that this holds, for arbitrary g and xs,
not only for reverse, but for any function with type
[a] -> [a], no matter how it is defined?

• Can you give some such functions (and check the
above claim)?

www.uni-due.de/en

Free theorems

Statements about polymorphic functions based solely on their
types (Wadler 1989).

For example, that for every f :: [a]→ [a] and every g and xs,

f [g x | x ← xs] = [g x | x ← f xs]

Interesting from the perspective of teaching:

I providing insight into the declarative nature of types and
semantics of programs

I source of examples (finding functions for given polymorphic
types, checking their properties)

I evidence for generality compared to formulations of “similar”
properties (e.g., loop fusion) in C, Java, . . .

(And there are various applications outside of teaching as well.)

8

110

Polymorphic functions on lists

• We have already seen a lot of functions that fit this
pattern:

head :: [a] -> a
tail :: [a] -> [a]
last :: [a] -> a
init :: [a] -> [a]
length :: [a] -> Int
null :: [a] -> Bool
concat :: [[a]] -> [a]

• In concrete applications, the type variable gets
instantiated appropriately: head "abc" :: Char.

www.uni-due.de/en

A practical generator

At http://free-theorems.nomeata.de/ (Joachim Breitner):

10

http://free-theorems.nomeata.de/

Relational parametricity (Reynolds 1983)

Free theorems – How they are usually derived

Take polymorphic type, say f :: (a→ Bool)→ ([a]→ Maybe a),
replace type variables by relation variables, for the example yielding
(R → Bool)→ ([R]→ Maybe R), invoke a parametricity theorem
stating (f , f) ∈ . . . , unfold a given set of definitions, such as:

I base types like Bool and Int are read as identity relations,

I R1 → R2 = {(f , g) | ∀(a, b) ∈ R1. (f a, g b) ∈ R2}
I Maybe R = {(N,N)}∪{(J a, J b) | (a, b) ∈ R}

. . . and then try to massage and simplify the resulting statement.

For example (see Section 2.2 in paper):

(f , f) ∈ (R → id)→ ([R]→ Maybe R)
⇔ [[definition of R1 → R2]]
∀(a, b) ∈ R → id . (f a, f b) ∈ [R]→ Maybe R
⇔ [[again]]
∀(a, b) ∈ R → id , (c , d) ∈ [R]. (f a c , f b d) ∈ Maybe R
⇔ . . .

12

Free theorems – How they are usually derived

For example (see Section 2.2 in paper):

(f , f) ∈ (R → id)→ ([R]→ Maybe R)
⇔ [[definition of R1 → R2]]
∀(a, b) ∈ R → id . (f a, f b) ∈ [R]→ Maybe R
⇔ [[again]]
∀(a, b) ∈ R → id , (c , d) ∈ [R]. (f a c , f b d) ∈ Maybe R
⇔ . . .

Observations:

I Even when we in principle believe to “know” what the free
theorem is, we essentially have to go through these steps.

I We have no guarantee that we will end up with a nice enough
statement (depends on the massage/simplification heuristics).

I Depending on what language setting we are actually
interested in, there will be deviations in the relation unfolding
definitions, hence also in the derivations.

13

Toward a simpler approach

Category theory enthusiasts might suggest use of the concept of
natural, or even dinatural, transformations at this
point (Bainbridge et al. 1990).

But besides not being readily applicable to all language settings of
interest, e.g., functional-logic languages, this is not exactly simple
or intuitive (for most people, including myself).

Instead, we side-step the need for relational definitions, unfolding,
etc., by the “conjuring lemma of parametricity”, originally devised
in work exactly on parametricity for functional-logic
languages (Mehner et al. 2014).

Detailed justification is in the paper, but the key point is that this
conjuring lemma can be formulated and used without even
mentioning all the relational machinery.

14

The conjuring lemma

Let τ , τ1 and τ2 be closed types. Let e :: τ be a term possibly
involving a (but not in its own overall type, which is closed by
assumption) and term variables pre :: τ1 → a and post :: a→ τ2,
but no other free variables. Then for every g :: τ1 → τ2,

e[τ1/a, idτ1/pre, g/post] = e[τ2/a, g/pre, idτ2/post] (∗)

I How could such an e look like?

For example e = λxs → [post y | y ← f [pre x | x ← xs]]
with f :: [a]→ [a]. (Note that e :: [τ1]→ [τ2].)

I Why is this interesting?

Because in this case, (∗) specialises to

λxs → [g y | y ← f xs] = λxs → f [g x | x ← xs]

15

Using the conjuring lemma

Toward a new practical generator

Given some f of polymorphic type, can we come up with some
term e of closed type and only pre :: τ1 → a and post :: a→ τ2 (for
any closed types τ1 and τ2) as free term variables?

Well, e should of course use f in some interesting way.
In essence, we want to build e around f , using pre and post to do
away with the polymorphism of f .

Let’s see on a few examples:

I f :: [a]→ [a] e = map post ◦ f ◦map pre :: [τ1]→ [τ2]

I f :: (a→ Bool)→ [a]→ Maybe a
 e = λh→ fmap post ◦ f (h ◦ post) ◦map pre

:: (τ2 → Bool)→ [τ1]→ Maybe τ2
I f :: (a→ Bool)→ a→ Int
 e = λh→ f (h ◦ post) ◦ pre

:: (τ2 → Bool)→ τ1 → Int
17

Doing this systematically

The following does the trick:

monopre,post(a) = post
monopre,post(Bool) = id
monopre,post(Int) = id
monopre,post([σ]) = map monopre,post(σ)
monopre,post(Maybe σ) = fmap monopre,post(σ)
monopre,post(σ1 → σ2) = λh→ monopre,post(σ2)

◦ h ◦
monopost,pre(σ1)

. . . in the sense that e = monopre,post(σ) f is the term we seek
if f has polymorphic type σ.

Put differently, given f :: σ, we now generate the free theorem

mono id ,g (σ) f = monog ,id(σ) f
18

. . . and adding deterministic simplifications

Well, actually, we generate

bmono id ,g (σ) f c = bmonog ,id(σ) f c

where:

bh tc = t, if h = id , map id , fmap id ,
or syntactic compositions thereof

bmap h tc = map (λv → bh vc) t
bfmap h tc = fmap (λv → bh vc) t
b(λh→ body) tc = λv → bbody [t/h] vc
b(h ◦ k) tc = bh bk tcc
bh tc = h t

Thanks to the types used for syntax in the implementation, and
GHC’s exhaustiveness checker, we know that this simple recursive
definition cannot accidentally skip any simplification opportunities.

19

Some category theory

About (the connection to) dinaturality

A dinatural transformation, between two bifunctors F and G of the
same mixed contravariant/covariant kind over the same source
category, is an indexed collection of arrows φX of types
G (X ,X)→ F (X ,X) such that for every g this diagram commutes:

G (B,B) F (B,B)

G (A,B) F (B,A)

G (A,A) F (A,A)

φB

F (idB ,g)G (g ,idB)

G (idA,g)

φA

F (g ,idA)

One possible instantiation is to let all categories involved be Set,
let G be the constant functor to the final object 1, and let each φX
be the lifted constant fX : F (X ,X).

21

About (the connection to) dinaturality

That is,

1 F (B,B)

1 F (B,A)

1 F (A,A)

fB

F (idB ,g)id1

id1

fA

F (g ,idA)

Consequently, F (idB , g) fB = F (g , idA) fA, if fX is typed F (X ,X)
for a bifunctor F of appropriate kind. Using the Hom bifunctor, we
can indeed turn polymorphic types σ into such bifunctors:

Fa (X ,Y) = Y
FK (X ,Y) = K
F(C σ) (X ,Y) = C (Fσ (X ,Y))
Fσ1→σ2 (X ,Y) = Hom(Fσ1 (Y ,X),Fσ2 (X ,Y))

22

About (the connection to) dinaturality

So now we have that if f :: σ, then

Fσ (idB , g) fB = Fσ (g , idA) fA

for the bifunctor arising from:

Fa (X ,Y) = Y
FK (X ,Y) = K
F(C σ) (X ,Y) = C (Fσ (X ,Y))
Fσ1→σ2 (X ,Y) = Hom(Fσ1 (Y ,X),Fσ2 (X ,Y))

Taking into account that the action of Hom on arrows is that
Hom(f , g) is the function h 7→ g ◦ h ◦ f , this is exactly the
statement

mono id ,g (σ) f = monog ,id(σ) f

which was used earlier, since one can show that the definitions are
related by, on the arrow level, Fσ (f , g) = monof ,g (σ).

23

Conclusion

I Free theorems provide useful statements about pure,
polymorphic functions based solely on their types.

I Their derivation “the standard way” can be very tedious.

I Using a shortcut we can get many of the interesting
statements more simply.

I A practical generator can be implemented quite neatly.

I There is no deep theoretical advance here (actually some
rediscovery of category theory concepts), but nice pragmatics.

I It would really be nice to have a practical generator for a
functional-logic language.

24

References

E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P.J. Scott. Functorial
polymorphism. Theoretical Computer Science, 70(1):35–64,
1990.

S. Mehner, D. Seidel, L. Straßburger, and J. Voigtländer.
Parametricity and proving free theorems for functional-logic
languages. In Principles and Practice of Declarative
Programming, Proceedings, pages 19–30. ACM Press, 2014.

J.C. Reynolds. Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513–523. Elsevier,
1983.

P. Wadler. Theorems for free! In Functional Programming
Languages and Computer Architecture, Proceedings, pages
347–359. ACM Press, 1989.

25

When it “doesn’t work”

For types like f :: (a→ a)→ (a→ a) we lose some generality.

The general free theorem would be:

(g ◦ h = k ◦ g)⇒ (g ◦ f h = f k ◦ g)

We instead generate (essentially):

g ◦ f (p ◦ g) = f (g ◦ p) ◦ g

Why? And what does “like” mean above?

In a nutshell, “because” of: (a+ → a−)− → (a− → a+)+

26

	References

