
Side-Channels in Cryptographic Software,
the Haskell case
attacks, semantics, CT criterion, and compiler construction
Marcel Fourné � 2020-01-14

Who am I?

studied both (pure) Informatics and IT-Security

self-taught Haskeller since 2005

free software Haskell ECC

https://hackage.haskell.org/package/eccrypto

NIST Prime Curves

Ed25519

utility code, easy to modify

predecessor library has been used for Ripple prototype, alternative Bitcoin etc.

some work in the Debian Haskell group

some work in the Haskell cryptography community

Formal Methods in Computer Science 2/35 www.uni-due.de/fmi

https://hackage.haskell.org/package/eccrypto

Overview

1. Cryptography, abstract

2. Side-Channels

Preliminaries for side channels, by example

3. CONSTANT TIME Criterion

4. Haskell

Evaluation Order

Lazy evaluation side channels

Proving Haskell code side-channel silent

Formal Methods in Computer Science 3/35 www.uni-due.de/fmi

Cryptography, abstract

Formal Methods in Computer Science 4/35 www.uni-due.de/fmi

cryptographic algorithms, computationally

1 op :: SecKey −> Data −> Result

secret (key)

size of secret may be public knowledge

content of the secret must remain unknown to third parties

data (not secret)

some operation, a function

takes time and computational resources to compute

may be observable, depending on the attacker (model)

may have other observable(!) side effects

total functions are most commonly used

result (maybe public)

Formal Methods in Computer Science 5/35 www.uni-due.de/fmi

Side-Channels

Formal Methods in Computer Science 6/35 www.uni-due.de/fmi

What is a side channel?

Basically:

Any observation on a computation which allows

inferences on the content of the secret key.

Observations must be quantifiable.

Inferences must be computable, but may be probabilistic.

partial bits

1 bit may be enough

observations may be repeated

may be preceded by an active attack

Formal Methods in Computer Science 7/35 www.uni-due.de/fmi

Popular side channels

unexpected results, software/hardware induced errors

wrong or specifically crafted results, error messages

correct results after a different time

timing information (Kocher, 1996; Lipton&Naughton, 1993)

absolute values

relative differences

power consumption (Kocher, 1998)

power consumption patterns (Simple Power Analysis)

power consumption pattern differences (Differential Power Analysis)

memory access patterns and cache state (Percival, 2005; Bernstein, 2005)

micro-architectural state (numerous since 2017, mainstream media famous since January 2018)

Formal Methods in Computer Science 8/35 www.uni-due.de/fmi

branching

1 if (secretKeyBits[n] == 1) {

2 a ∗ square(b)

3 }

4 else {

5 a ∗ b

6 }

Formal Methods in Computer Science 9/35 www.uni-due.de/fmi

branching

1 if (secretKeyBits[n] == 1) {

2 a ∗ square(b)

3 }

4 else {

5 a ∗ b

6 }

Formal Methods in Computer Science 10/35 www.uni-due.de/fmi

branching, pt. deux

1 if (secretKeyBits[n] == 1) {

2 a ∗ square(b)

3 }

4 else {

5 a ∗ square(c)

6 }

Formal Methods in Computer Science 11/35 www.uni-due.de/fmi

branching, pt. deux

1 if (secretKeyBits[n] == 1) {

2 a ∗ square(b)

3 }

4 else {

5 a ∗ square(c)

6 }

Formal Methods in Computer Science 12/35 www.uni-due.de/fmi

branching, pt. trois

1 if (secretKeyBits[n] == 1) {

2 a ∗ square(1)

3 }

4 else {

5 a ∗ square(0)

6 }

Formal Methods in Computer Science 13/35 www.uni-due.de/fmi

branching, pt. trois

1 if (secretKeyBits[n] == 1) {

2 a ∗ square(1)

3 }

4 else {

5 a ∗ square(0)

6 }

Formal Methods in Computer Science 14/35 www.uni-due.de/fmi

secret address indices

1 a + multiplicationTable [secretKeyBytes[n]]

Formal Methods in Computer Science 15/35 www.uni-due.de/fmi

secret address indices

1 a + multiplicationTable [secretKeyBytes[n]]

Formal Methods in Computer Science 16/35 www.uni-due.de/fmi

CONSTANT TIME Criterion

Formal Methods in Computer Science 17/35 www.uni-due.de/fmi

The CONSTANT TIME Criterion

We need to prove two things:

branch free in its secrets (PROGRAM COUNTER Model)

no secret value dependent address indices

... but that is hard in a Turing Complete Programming Language

suggests constant run-time behaviour, but:

garbage collection (no secrets)

operating system interaction and other nondeterministic behaviour

may be overly prohibitive (see: non-CT variants of Montgomery Multiplication), but:

formulae can often be changed to be total and branch free

algebraic style line code instead of lookup tables or masked lookups

may miss hardware side effects not dependent on program structure

Formal Methods in Computer Science 18/35 www.uni-due.de/fmi

on which level?

CT only needed for code handling secret values

higher level code not affected (if type system allows no memory accesses across boundaries)

composability, linking, address spaces, see C and its common exploits

operating system interactions

hardware effects

known-bad Assembly instructions

value dependent latency multipliers on certain archs

microcode implementation replacements

Results:

anything observable which is not yet usable as a side channel may still become one

How to prove CT program behaviour? Which program behaviour is still permissible?

Formal Methods in Computer Science 19/35 www.uni-due.de/fmi

CT Proof approaches

correct by careful programming in Assembly

no compiler, implementation effort for each platform

manual analysis

error-prone

model in proof language, check with its type system

equivalence of model to implementation, assumptions

generate implementation code from proof language

different language semantics and compilers

check in implementation language type system

often not as expressive as dedicated proof languages

Formal Methods in Computer Science 20/35 www.uni-due.de/fmi

CT Proof approaches

correct by careful programming in Assembly

no compiler, implementation effort for each platform

manual analysis

error-prone

model in proof language, check with its type system

equivalence of model to implementation, assumptions

generate implementation code from proof language

different language semantics and compilers

check in implementation language type system

often not as expressive as dedicated proof languages

Compilers may change optimisations, but their type system guarantees should hold.

Formal Methods in Computer Science 20/35 www.uni-due.de/fmi

Haskell

Formal Methods in Computer Science 21/35 www.uni-due.de/fmi

Haskell: a standardised lazy functional PL

non-strict evaluation semantics (graph reduction)

garbage collection, strictness analysis, HM-style type inference, expressive code

pure functions, explicit side-effects, easy parallelisation, cross-module inlining

efficient code can be generated with Instructions Per Cycle > 2; benchmarks rival optimised C

used in industry (Facebooks anti-spam, Bluespec System Verilog, seL4. . .)

influences other languages (STM, list comprehensions, monads, QuickCheck)

active type system research community, committed to correctness, very friendly

harder to reason about resource usage (garbage collection and lazy evaluation)

reputation as hard to learn/too research-centric language

Formal Methods in Computer Science 22/35 www.uni-due.de/fmi

Haskell: a standardised lazy functional PL

non-strict evaluation semantics (graph reduction)

garbage collection, strictness analysis, HM-style type inference, expressive code

pure functions, explicit side-effects, easy parallelisation, cross-module inlining

efficient code can be generated with Instructions Per Cycle > 2; benchmarks rival optimised C

used in industry (Facebooks anti-spam, Bluespec System Verilog, seL4. . .)

influences other languages (STM, list comprehensions, monads, QuickCheck)

active type system research community, committed to correctness, very friendly

But:

harder to reason about resource usage (garbage collection and lazy evaluation)

reputation as hard to learn/too research-centric language

Formal Methods in Computer Science 22/35 www.uni-due.de/fmi

simplified laziness example

1 f 0 x _ = x

2 f n x y = f (n−1) y x

3

4 main = do
5 x <− readLn
6 let y = f x (ackermann 4 2) (ackermann 0 1)

7 print y

Formal Methods in Computer Science 23/35 www.uni-due.de/fmi

important constructs: let, case

let: just like stating some unordered lemmas in mathematics before using them in a formula

1 g x = let i = m

2 k = x + 2

3 m = k + 2

4 in i ∗ k ∗ m

case: need to evaluate its condition before choice of branch

1 h x = case x of
2 0 −> 0

3 1 −> x + 1

4 _ −> x + 2

Formal Methods in Computer Science 24/35 www.uni-due.de/fmi

garbage collection

Pedersen, Askarov, “From trash to treasure: timing-sensitive garbage collection” S&P’17 paper

allocates arrays differently based on secret values

requires non CT code

in CT code memory may not be accessed dependent on secret value content,

same for allocations

CT code uses secrets with non-differing memory access patterns

CT code is not vulnerable against this attack

Formal Methods in Computer Science 25/35 www.uni-due.de/fmi

GHC native compilation chain, simplified

Parsing, Renaming, Typechecking, and Desugaring, which produces core

⇓

Simplification works on core and it is where most optimisations happen

⇓

core is a minimal Haskell with explicit types; case for evaluation and branching, let for allocation

⇓

STG has thunks for laziness in let; three local optimisations after that

⇓

Cmm adds an explicit stack

⇓

RTS.a + the generated Assembly, which we analysed to check CT preservation

Formal Methods in Computer Science 26/35 www.uni-due.de/fmi

strict vs. lazy

total functional programming implies same behaviour between strict and lazy evaluation

intuition: if function f is called, then the result of f is produced by computation

without branches (etc.) in f : if f is called, then CT behaviour happens in f

necessary condition: no use (inspection) of secret values outside CT context

idea: have a verifiable subset of the program code and contain secret keys to this subset

implies control over copying during optimisations, which may be overly optimistic

optimisations must be contained

Continuation Passing Style makes control flow explicit, but confuses IDA

low-level calling conventions make more problems for manual analysis than evaluation order

Formal Methods in Computer Science 27/35 www.uni-due.de/fmi

Montgomery Multiplication

As an example, why lazy evaluation can make non-CT code easier to exploit:

1 pmul :: EC −> Point −> Integer −> Point

2 pmul curve@(ECi l _ p _) b k =

3 let ex p1 p2 i

4 | i < 0 = p1

5 | condBit k i == 0 = ex (pdouble curve p1) (padd curve p1 p2) (i − 1)

6 | otherwise = ex (padd curve p1 p2) (pdouble curve p2) (i − 1)

7 in ex b (pdouble curve b) (log2len k − 2)

Formal Methods in Computer Science 28/35 www.uni-due.de/fmi

Montgomery Multiplication

As an example, why lazy evaluation can make non-CT code easier to exploit:

1 pmul :: EC −> Point −> Integer −> Point

2 pmul curve@(ECi l _ p _) b k =

3 let ex p1 p2 i

4 | i < 0 = p1

5 | condBit k i == 0 = ex (pdouble curve p1) (padd curve p1 p2) (i − 1)

6 | otherwise = ex (padd curve p1 p2) (pdouble curve p2) (i − 1)

7 in ex b (pdouble curve b) (log2len k − 2)

Formal Methods in Computer Science 29/35 www.uni-due.de/fmi

manual proof, absence of required code gadgets

Formal Methods in Computer Science 30/35 www.uni-due.de/fmi

Montgomery Multiplication

Also, how to find this at the assembly level:

1 pmul :: EC −> Point −> Integer −> Point

2 pmul curve@(ECi l _ p _) b k =

3 let ex p1 p2 i

4 | i < 0 = p1

5 | condBit k i == 0 = ex (pdouble curve p1) (padd curve p1 p2) (i − 1)

6 | otherwise = ex (padd curve p1 p2) (pdouble curve p2) (i − 1)

7 in ex b (pdouble curve b) (log2len k − 2)

Compiles to this comparison for the branch criterion:

1 mov r8, [rbx+rdi∗8+10h]

2 test r8, r8

3 jnz loc_3780

The address in line 1 contains a key content derived value, so our analysis flagged this branch non-CT.

Formal Methods in Computer Science 31/35 www.uni-due.de/fmi

mechanised

know your code generator and run-time to prevent unintentional miscompilation of security

mechanisms

type check at which level? pre desugaring? post desugaring?

after core: some graph optimisations on STG (Shared Term Graph/Spineless, Tagless

G-machine)

GHC-specific: Tables-Next-To-Code, ghc-asm.lprl, runs after Assembly code generator

modules with integrated C code, change of memory model

“When Constant-Time Source Yields Variable Time Binary: Exploiting Curve25519-donna Built

with MSVC 2015”

verified C code executed with dependencies on unverified run-time libraries yielded

vulnerable code

Formal Methods in Computer Science 32/35 www.uni-due.de/fmi

mechanised

know your code generator and run-time to prevent unintentional miscompilation of security

mechanisms

type check at which level? pre desugaring? post desugaring?

after core: some graph optimisations on STG (Shared Term Graph/Spineless, Tagless

G-machine)

GHC-specific: Tables-Next-To-Code, ghc-asm.lprl, runs after Assembly code generator

modules with integrated C code, change of memory model

“When Constant-Time Source Yields Variable Time Binary: Exploiting Curve25519-donna Built

with MSVC 2015”

verified C code executed with dependencies on unverified run-time libraries yielded

vulnerable code

Formal Methods in Computer Science 32/35 www.uni-due.de/fmi

mechanised, Haskell future

branch-freeness via Abstract Syntax Tree, type annotated functions

find type annotation at low-level Intermediate Language (core)

build AST of function using Template Haskell and find problematic constructs, check at

compile-time

separation of concerns if types are enforced to be created only in some set of modules

maybe even scan generated assembly for problematic instructions

Further work (replacing GMP):

typed Assembly-level functions: timesWord2# :: Word -> Word -> (# Word, Word #)

reduction of field elements scheduled via type-level lifted overflow information ⇒provably

non-overflowing field elements at compile-time

Formal Methods in Computer Science 33/35 www.uni-due.de/fmi

finding more interesting applications for type systems

linear/affine type systems (Rust, Linear Haskell)

do not supplant CT-safety

may make more optimisations safe

dependent types (Coq, Agda, Dependent Haskell)

state of the art approach used in implementation adopted by Mozilla Firefox

totality

type inference may be hard

efficient code generation is hard, so some subsets are used which mostly one-to-one

generate C or Assembly constructs in a proof language

proofs are not automatically transitive across compile chains due to different semantics,

transitiveness is proven

but use of GCC (performance) vs. CompCert (verified)

Formal Methods in Computer Science 34/35 www.uni-due.de/fmi

finding more interesting applications for type systems

linear/affine type systems (Rust, Linear Haskell)

do not supplant CT-safety

may make more optimisations safe

dependent types (Coq, Agda, Dependent Haskell)

state of the art approach used in implementation adopted by Mozilla Firefox

totality

type inference may be hard

efficient code generation is hard, so some subsets are used which mostly one-to-one

generate C or Assembly constructs in a proof language

proofs are not automatically transitive across compile chains due to different semantics,

transitiveness is proven

but use of GCC (performance) vs. CompCert (verified)

Formal Methods in Computer Science 34/35 www.uni-due.de/fmi

...

Fin!

Formal Methods in Computer Science 35/35 www.uni-due.de/fmi

	Who am I?
	Cryptography, abstract
	Side-Channels
	Preliminaries for side channels, by example

	CONSTANT TIME Criterion
	Haskell
	Evaluation Order
	Lazy evaluation side channels
	Proving Haskell code side-channel silent

