UNIVERSITAT

DEUS | SSEBNU RG

Open-Minded

Side-Channels in Cryptographic Software,
the Haskell case

attacks, semantics, CT criterion, and compiler construction
Marcel Fourné m 2020-01-14

UNIVERSITAT
DUISBURG

Who am 1? —
Open-Minded

studied both (pure) Informatics and IT-Security
m self-taught Haskeller since 2005
m free software Haskell ECC

B https://hackage.haskell.org/package/eccrypto

m NIST Prime Curves
m Ed25519
m utility code, easy to modify

m predecessor library has been used for Ripple prototype, alternative Bitcoin etc.

some work in the Debian Haskell group

some work in the Haskell cryptography community

Formal Methods in Computer Science 2/35 www.uni-due.de/fmi

https://hackage.haskell.org/package/eccrypto

Overview

UNIVERSITAT

URG
DEUS ISSEBN

Open-Minded

—_

. Cryptography, abstract

2. Side-Channels

= Preliminaries for side channels, by example

3. CONSTANT TIME Criterion

4. Haskell
= Evaluation Order
= | azy evaluation side channels

= Proving Haskell code side-channel silent

Formal Methods in Computer Science 3/35

www.uni-due.de/fmi

Cryptography, abstract

Formal Methods in Computer Science 4/35 www.uni-due.de/fmi

UNIVERSITAT
. . DUISBURG
cryptographic algorithms, computationally)
Open-Minded

1 op :: SecKey —> Data —> Result

m secret (key)

m size of secret may be public knowledge

m content of the secret must remain unknown to third parties
m data (not secret)
m some operation, a function

m takes time and computational resources to compute

m may be observable, depending on the attacker (model)

m may have other observable(!) side effects
m total functions are most commonly used

m result (maybe public)

Formal Methods in Computer Science 5/35 www.uni-due.de/fmi

Side-Channels

Formal Methods in Computer Science 6/35 www.uni-due.de/fmi

UNIVERSITAT

DEUS 1 SSEBNU RG

What is a side channel? '
Open-Minded

Basically:
Any observation on a computation which allows

inferences on the content of the secret key.

Observations must be quantifiable.
m Inferences must be computable, but may be probabilistic.

m partial bits

1 bit may be enough

observations may be repeated

m may be preceded by an active attack

Formal Methods in Computer Science 7/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

Popular side channels SRRl
Open-Minded

m unexpected results, software/hardware induced errors

m wrong or specifically crafted results, error messages

m correct results after a different time
m timing information (Kocher, 1996; Lipton&Naughton, 1993)

m absolute values

m relative differences
m power consumption (Kocher, 1998)

m power consumption patterns (Simple Power Analysis)

m power consumption pattern differences (Differential Power Analysis)
m memory access patterns and cache state (Percival, 2005; Bernstein, 2005)

m micro-architectural state (numerous since 2017, mainstream media famous since January 2018)

Formal Methods in Computer Science 8/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

branChing ESSEN
Open-Minded

if (secretkeyBits[n] == 1) {
a * square(b)

}

else {

axb

Formal Methods in Computer Science 9/35 www.uni-due.de/fmi

UNIVERSITAT

nEUS 1 SSEBNU RG

branching
Open-Minded

if (secretKeyBits[n] == 1) {
a * square(b)

}

else {
axb

}

A ;~‘wfW"'”’"’P‘"'“‘lw*-”“-1“‘*-"\%"~"i'%w“"-“M"\lu,-“*‘"*""\"'““'“”*"“'-*"“*»»vw-mwl-.ufwm.wﬂ
i n) A

"
bl Py "

Formal Methods in Computer Science 10/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

branching, pt. deux SRy
Open-Minded

if (secretkeyBits[n] == 1) {
a * square(b)

}

else {

a * square(c)

Formal Methods in Computer Science 11/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

branching, pt. deux SRy
Open-Minded

if (secretkeyBits[n] == 1) {
a * square(b)

}

else {

a * square(c)

Formal Methods in Computer Science 12/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

branching, pt. trois —
Open-Minded

if (secretkeyBits[n] == 1) {
a * square(1)

}

else {

a * square(0)

Formal Methods in Computer Science 13/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

branching, pt. trois —
Open-Minded

if (secretKeyBits[n] == 1) {
a * square(1)

}

else {

a * square(0)

Formal Methods in Computer Science 14/35 www.uni-due.de/fmi

UNIVERSITAT

DEUS 1 SSEBNU RG

secret address indices
Open-Minded

a + multiplicationTable [secretKeyBytes[n]]

Formal Methods in Computer Science 15/35 www.uni-due.de/fmi

UNIVERSITAT

DEUS 1 SSEBNU RG

secret address indices
Open-Minded

a + multiplicationTable [secretKeyBytes[n]]

Formal Methods in Computer Science 16/35 www.uni-due.de/fmi

CONSTANT TIME Criterion

Formal Methods in Computer Science 17/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

The CONSTANT TIME Criterion SRRl

Open-Minded

We need to prove two things:
m branch free in its secrets (PROGRAM COUNTER Model)

m no secret value dependent address indices

... but that is hard in a Turing Complete Programming Language
| suggests constant run-time behaviour, but:

m garbage collection (no secrets)

m operating system interaction and other nondeterministic behaviour
m may be overly prohibitive (see: non-CT variants of Montgomery Multiplication), but:

m formulae can often be changed to be total and branch free

m algebraic style line code instead of lookup tables or masked lookups

m may miss hardware side effects not dependent on program structure

Formal Methods in Computer Science 18/35 www.uni-due.de/fmi

UNIVERSITAT

DEUS 1 SSEBNU RG

on which level?
Open-Minded

m CT only needed for code handling secret values

m higher level code not affected (if type system allows no memory accesses across boundaries)
m composability, linking, address spaces, see C and its common exploits

m operating system interactions

m hardware effects

m known-bad Assembly instructions
m value dependent latency multipliers on certain archs

m microcode implementation replacements
Results:
m anything observable which is not yet usable as a side channel may still become one

m How to prove CT program behaviour? Which program behaviour is still permissible?

Formal Methods in Computer Science 19/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

CT Proof approaches —
Open-Minded

m correct by careful programming in Assembly

m manual analysis

model in proof language, check with its type system

m generate implementation code from proof language

check in implementation language type system

Formal Methods in Computer Science 20/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

CT Proof approaches —
Open-Minded

m correct by careful programming in Assembly
m no compiler, implementation effort for each platform
m manual analysis

| error-prone

model in proof language, check with its type system
m equivalence of model to implementation, assumptions
m generate implementation code from proof language

m different language semantics and compilers

check in implementation language type system
m often not as expressive as dedicated proof languages

Compilers may change optimisations, but their type system guarantees should hold.

Formal Methods in Computer Science 20/35 www.uni-due.de/fmi

Haskell

Formal Methods in Computer Science 21/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

Haskell: a standardised lazy functional PL SRRl
Open-Minded

m non-strict evaluation semantics (graph reduction)

m garbage collection, strictness analysis, HM-style type inference, expressive code

m pure functions, explicit side-effects, easy parallelisation, cross-module inlining

m efficient code can be generated with Instructions Per Cycle > 2; benchmarks rival optimised C
m used in industry (Facebooks anti-spam, Bluespec System Verilog, selL4...)

m influences other languages (STM, list comprehensions, monads, QuickCheck)

m active type system research community, committed to correctness, very friendly

Formal Methods in Computer Science 22/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

Haskell: a standardised lazy functional PL SRRl
Open-Minded

m non-strict evaluation semantics (graph reduction)

m garbage collection, strictness analysis, HM-style type inference, expressive code

m pure functions, explicit side-effects, easy parallelisation, cross-module inlining

m efficient code can be generated with Instructions Per Cycle > 2; benchmarks rival optimised C
m used in industry (Facebooks anti-spam, Bluespec System Verilog, selL4...)

m influences other languages (STM, list comprehensions, monads, QuickCheck)

m active type system research community, committed to correctness, very friendly

m harder to reason about resource usage (garbage collection and lazy evaluation)

m reputation as hard to learn/too research-centric language

Formal Methods in Computer Science 22/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

simplified laziness example —
Open-Minded

fOx_=x

fnxy=f (n=1)yx

main = do
X <— readLn
lety = f x (ackermann 4 2) (ackermann 0 1)

printy

Formal Methods in Computer Science 23/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

important constructs: let, case —
Open-Minded

let: just like stating some unordered lemmas in mathematics before using them in a formula

gx=leti=m
k=x+2
m=k+2

ini *xkxm
case: need to evaluate its condition before choice of branch

h x = case x of

0—>0
1 —>x+1
_—>Xx+2

Formal Methods in Computer Science 24/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

garbage collection SRRl
Open-Minded

m Pedersen, Askarov, “From trash to treasure: timing-sensitive garbage collection” S&P’17 paper

m allocates arrays differently based on secret values

m requires non CT code

m in CT code memory may not be accessed dependent on secret value content,

same for allocations
m CT code uses secrets with non-differing memory access patterns

m CT code is not vulnerable against this attack

Formal Methods in Computer Science 25/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

GHC native compilation chain, simplified)
Open-Minded

Parsing, Renaming, Typechecking, and Desugaring, which produces core

4

Simplification works on core and it is where most optimisations happen

U

core is a minimal Haskell with explicit types; case for evaluation and branching, 1et for allocation

U

STG has thunks for laziness in 1et; three local optimisations after that

4

Cmm adds an explicit stack

U

RTS. a + the generated Assembly, which we analysed to check CT preservation

Formal Methods in Computer Science 26/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

strict vs. Iazy ESSEN
Open-Minded

m total functional programming implies same behaviour between strict and lazy evaluation
m intuition: if function f is called, then the result of f is produced by computation

m without branches (etc.) in f: if f is called, then CT behaviour happens in f

m necessary condition: no use (inspection) of secret values outside CT context

m idea: have a verifiable subset of the program code and contain secret keys to this subset

m implies control over copying during optimisations, which may be overly optimistic
m optimisations must be contained
m Continuation Passing Style makes control flow explicit, but confuses IDA

m low-level calling conventions make more problems for manual analysis than evaluation order

Formal Methods in Computer Science 27/35 www.uni-due.de/fmi

Montgomery Multiplication

UNIVERSITAT

DEUS 1 SSEBNU RG

Open-Minded

~

As an example, why lazy evaluation can make non-CT code easier to exploit:

pmul :: EC —> Point —> Integer —> Point
pmul curve@(ECil _p_)bk =
let ex p1 p2i
| i <0=pi
| condBitk i == 0 = ex (pdouble curve p1) (padd curve p1 p2) (i — 1)
| otherwise = ex (padd curve p1 p2) (pdouble curve p2) (i — 1)
in ex b (pdouble curve b) (log2len k — 2)

Formal Methods in Computer Science 28/35

www.uni-due.de/fmi

Montgomery Multiplication

UNIVERSITAT

DEUS 1 SSEBNU RG

Open-Minded

~

As an example, why lazy evaluation can make non-CT code easier to exploit:

pmul :: EC —> Point —> Integer —> Point
pmul curve@(ECil _p_)bk =
let expl p2 i
| i <0=pi
| condBitk i ==0 = ex (pdouble curve p1) (padd curve p1 p2) (i — 1)
| otherwise = ex (padd curve p1 p2) (pdouble curve p2) (i — 1)
in ex b (pdouble curve b) (log2len k — 2)

Formal Methods in Computer Science 29/35

www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

manual proof, absence of required code gadgets SRRl
Open-Minded

Formal Methods in Computer Science 30/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

Montgomery Multiplication SRRl
Open-Minded

Also, how to find this at the assembly level:

1 pmul :: EC —> Point —> Integer —> Point

2 pmul curve@(ECil _p_)bk =

3 let ex p1 p2i

4 | i <0=p1

5 | condBit ki == 0 = ex (pdouble curve p1) (padd curve p1 p2) (i — 1)
6 | otherwise = ex (padd curve p1 p2) (pdouble curve p2) (i — 1)

~

in ex b (pdouble curve b) (log2len k — 2)

Compiles to this comparison for the branch criterion:

1 mov r8, [rbx+rdi*8+10h]
2 test 18, r8
3 jnz loc_3780

The address in line 1 contains a key content derived value, so our analysis flagged this branch non-CT.

Formal Methods in Computer Science 31/35 www.uni-due.de/fmi

UNIVERSITAT

URG
DEUS 1 SSEBN

mechanised
Open-Minded

m know your code generator and run-time to prevent unintentional miscompilation of security

mechanisms

m type check at which level? pre desugaring? post desugaring?

m after core: some graph optimisations on STG (Shared Term Graph/Spineless, Tagless
G-machine)

m GHC-specific: Tables-Next-To-Code, ghc-asm. 1prl, runs after Assembly code generator

m modules with integrated C code, change of memory model

Formal Methods in Computer Science 32/35 www.uni-due.de/fmi

UNIVERSITAT

DEUS 1 SSEBNU RG

mechanised
Open-Minded

m know your code generator and run-time to prevent unintentional miscompilation of security

mechanisms

m type check at which level? pre desugaring? post desugaring?

m after core: some graph optimisations on STG (Shared Term Graph/Spineless, Tagless
G-machine)

m GHC-specific: Tables-Next-To-Code, ghc-asm. 1prl, runs after Assembly code generator

m modules with integrated C code, change of memory model

m “When Constant-Time Source Yields Variable Time Binary: Exploiting Curve25519-donna Built
with MSVC 2015”
m verified C code executed with dependencies on unverified run-time libraries yielded

vulnerable code

Formal Methods in Computer Science 32/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

mechanised, Haskell future =SSEN
Open-Minded

m branch-freeness via Abstract Syntax Tree, type annotated functions
m find type annotation at low-level Intermediate Language (core)

m build AST of function using Template Haskell and find problematic constructs, check at

compile-time
m separation of concerns if types are enforced to be created only in some set of modules
m maybe even scan generated assembly for problematic instructions
Further work (replacing GMP):
m typed Assembly-level functions: timesWord2# :: Word -> Word -> (# Word, Word #)

m reduction of field elements scheduled via type-level lifted overflow information =provably

non-overflowing field elements at compile-time

Formal Methods in Computer Science 33/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

finding more interesting applications for type systems “”" .
Open-Minde

m linear/affine type systems (Rust, Linear Haskell)

m do not supplant CT-safety

m may make more optimisations safe
m dependent types (Coq, Agda, Dependent Haskell)

m state of the art approach used in implementation adopted by Mozilla Firefox

n totality

m type inference may be hard

m efficient code generation is hard, so some subsets are used which mostly one-to-one

generate C or Assembly constructs in a proof language

Formal Methods in Computer Science 34/35 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

finding more interesting applications for type systems “”" .
Open-Minde

m linear/affine type systems (Rust, Linear Haskell)

m do not supplant CT-safety

m may make more optimisations safe
m dependent types (Coq, Agda, Dependent Haskell)

m state of the art approach used in implementation adopted by Mozilla Firefox
n totality
m type inference may be hard
m efficient code generation is hard, so some subsets are used which mostly one-to-one
generate C or Assembly constructs in a proof language
m proofs are not automatically transitive across compile chains due to different semantics,
transitiveness is proven

m but use of GCC (performance) vs. CompCert (verified)

Formal Methods in Computer Science 34/35 www.uni-due.de/fmi

UNIVERSITAT

DEUS 1 SSEBNU RG

Open-Minded

Fin!

Formal Methods in Computer Science 35/35 www.uni-due.de/fmi

	Who am I?
	Cryptography, abstract
	Side-Channels
	Preliminaries for side channels, by example

	CONSTANT TIME Criterion
	Haskell
	Evaluation Order
	Lazy evaluation side channels
	Proving Haskell code side-channel silent

