UNIVERSITAT

DEUS | SSEBNU RG

Open-Minded

Side Channel Attacks and Lazy Evaluation

Introduction to Side Channel Attacks, proof techniques, semantics
or: Don’t be intimidated, learn how to fail like a professional!
Marcel Fourné m2019-08-21

Overview

UNIVERSITAT

DEUS 1 SSEBNU RG

Open-Minded

Cryptography, abstract

Side Channels

Necessary preliminaries for side channels, by example

CONSTANT TIME Criterion

Evaluation Order

Developing Proofs

Formal Methods in Computer Science 2019-08-21

www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

cryptographic algorithms, computationally ESSEN
Open-Minded

1 op :: SecKey —> Data —> Result

m secret (key)

m size of secret may be public knowledge

m content of the secret must remain unknown to third parties

m non-secret data
B some operation, a function
m takes time and computational resources to compute

H may be observable, depending on the attacker (model)

W may have other observable(!) side effects

m total functions are most commonly used

m # total addition theorems, which are a mathematical implementation detail for later

m (public) result

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT

DEUS 1 SSEBNU RG

What is a side channel? '
Open-Minded

Basically:
Any observation on a computation which allows

inferences on the content of the secret key.

m Observations must be quantifiable.
m Inferences must be computable, but may be probabilistic.

m partial bits
m 1 bit may be enough
m may be repeated (will be, a lot)

m may be preceded by an active attack

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

Popular side channels SRRl
Open-Minded

m unexpected results, software/hardware induced errors

m wrong results
m specifically crafted results
m error messages

m correct results after a different time

m timing information (Kocher, 1996; Lipton&Naughton, 1993)

m absolute values

m relative differences
m power consumption (Kocher, 1998)

m power consumption patterns (Simple Power Analysis)

m power consumption pattern differences (Differential Power Analysis)
m memory access patterns and cache state (Percival, 2005; Bernstein, 2005)

m microarchitectural state (numerous since 2017, mainstream media famous since January 2018)

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

branching SRRl
Open-Minded

if (secret_key_bits[n] == 1) {
a * square(b)

}

else {

axb

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT

nEUS 1 SSEBNU RG

branching
Open-Minded

if(secret_key_bits[n] == 1) {
a * square(b)

}

else {
axb

}

r,»,"""*N”"“'*”“'”ﬂ-llh"*rﬂ'w"'wwnwmuh.,.l‘ 4.ﬂ'1|,l'Jlvﬁl."W‘""JL'[n'.~‘*'*'-1"“1’-"1"Jl"'\"i',Ll|[M'lhmh‘ﬂq"\lu|-“M'J"‘l"'i"’l"l“"“l"nl'VH‘"‘,a}'ﬁ-‘ﬂﬁ"@l.lmu',‘ﬂm,&“m
J Iy ! y

"
bl Py "

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

branching, pt. deux SRRl
Open-Minded

if (secret_key_bits[n] == 1) {
a * square(b)

}

else {

a * square(c)

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

branching, pt. deux SRRl
Open-Minded

if (secret_key_bits[n] == 1) {
a * square(b)

}

else {

a * square(c)

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

branching, pt. trois —
Open-Minded

if (secretkeyBits[n] == 1) {
a * square(1)

}

else {

a * square(0)

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

branching, pt. trois —
Open-Minded

if (secretKeyBits[n] == 1) {
a * square(1)

}

else {

a * square(0)

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT

DEUS 1 SSEBNU RG

secret address indices
Open-Minded

a + multiplicationTable [secretKeyBytes[n]]

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT

DEUS 1 SSEBNU RG

secret address indices
Open-Minded

a + multiplicationTable [secretKeyBytes[n]]

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT

URG
DEUS 1 SSEBN

on which level?
Open-Minded

m What about cryptographic code which does not use secret values?
m What about higher level code?
m The one which uses the cryptographic implementation... ?
m composability, linking, address spaces
m runtime environment?
m Hardware?

m a/bis almost never secure
m value dependent latency multipliers

® microcode implementations
| T

Basically, anything observable which is not yet usable as a side channel may still become one.

So... no programs with value divergent behaviour?

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

The CONSTANT TIME Criterion SRRl

Open-Minded

m branch free (PROGRAM COUNTER Model)

m no secret value dependent address indices

“That’s it? That's hard enough as it is for Turing Complete languages!”

m does notimply constant runtime behaviour (except informally)

m garbage collection

m operating system interaction

m other nondeterministic behaviour
m may be overly prohibitive (see: Montgomery Multiplication)

m this intuition has been disproven many times

m formulae must be changed to be total and branch free

m algebraic style line code instead of lookup tables

m may miss hardware side effects

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

garbage collection ESSEN
Open-Minded

m Pedersen, Askarov, timing sensitive garbage collection paper

m requires non CT code
m CT code uses secrets in the same pattern, irrespective of GC interruptions
m in CT code memory may not be used dependent on secret values

m explicitly CT code is not vulnerable against this

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

lazy evaluation semantics SRRl
Open-Minded
m total functional programming implies same behaviour between strict and lazy evaluation

m intuition: if function f is called, then the result of f is produced by computation

m without branches (etc.) in f: if f is called, then CT behaviour happens in f

m necessary condition: no use (inspection) of secret values outside CT context
m idea: have a verifiable subset of the program code and contain secret keys to this
m implies control over copying during optimizations, which may be overly optimistic

m optimizations must be contained

m let-downfloating?
m let-upfloating!

m Continuation Passing Style makes control flow explicit, but confuses IDA

m low-level calling conventions make more problems than evaluation order

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

manual proof, absence of required code gadgets SRRl
Open-Minded

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT

DEUS 1 SSEBNU RG

mechanised
Open-Minded

m branch-freeness via AST, type annotated functions

m find type annotation at low-level Intermediate Language

m separation of concerns if types are enforced to be created only in some set of modules
m knowest thou thine code generator, lest evil seepest in over yonder

m type check at which level? pre desugaring? post desugaring?
m GHC-specific: Tables-Next-To-Code, ghc-asm.lprl, runs after ASM codegen

® modules with integrated C code, change of memory model

m maybe even scan generated assembly for problematic instructions... or is this too paranoid?

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT

DEUS 1 SSEBNU RG

mechanised
Open-Minded

m branch-freeness via AST, type annotated functions

m find type annotation at low-level Intermediate Language

m separation of concerns if types are enforced to be created only in some set of modules
m knowest thou thine code generator, lest evil seepest in over yonder

m type check at which level? pre desugaring? post desugaring?

m GHC-specific: Tables-Next-To-Code, ghc-asm.lprl, runs after ASM codegen

® modules with integrated C code, change of memory model

m maybe even scan generated assembly for problematic instructions... or is this too paranoid?

m “When Constant-Time Source Yields Variable Time Binary: Exploiting Curve25519-donna Built
with MSVC 2015” =- know your codegen and runtime!

m verified C code with unverified runtime libraries yielded vulnerable code

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

use more Types)
Open-Minded

m linear

m notion of “execute exactly once” seems ideal

m “only once” is sufficient in lazy semantics
m dependent
m state of the art approach used in implementation adopted by Mozilla Firefox

m totality (we know this already for our code, but user code may be a different)

m type inference may be hard
m efficient code generation is hard, so some subsets are used which mostly one-to-one generate C or ASM
constructs in a proof language

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT
DUISBURG

use more Types)
Open-Minded

m linear

m notion of “execute exactly once” seems ideal

m “only once” is sufficient in lazy semantics
m dependent
m state of the art approach used in implementation adopted by Mozilla Firefox

m totality (we know this already for our code, but user code may be a different)
m type inference may be hard
m efficient code generation is hard, so some subsets are used which mostly one-to-one generate C or ASM
constructs in a proof language
W proofs are not automatically transitive across compile chains due to different semantics, transitiveness is proven

W but use of GCC (performance) vs. CompCert (verified)

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

UNIVERSITAT

DUISBURG
Open-Minded
.
Fin!
or: WIP
Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi

	Cryptography, abstract
	Side Channels
	Necessary preliminaries for side channels, by example
	CONSTANT TIME Criterion
	Evaluation Order
	Developing Proofs

