
Side Channel Attacks and Lazy Evaluation
Introduction to Side Channel Attacks, proof techniques, semantics
or: Don’t be intimidated, learn how to fail like a professional!
Marcel Fourné � 2019-08-21



Overview

Cryptography, abstract

Side Channels

Necessary preliminaries for side channels, by example

CONSTANT TIME Criterion

Evaluation Order

Developing Proofs

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



cryptographic algorithms, computationally

1 op :: SecKey −> Data −> Result

secret (key)

size of secret may be public knowledge

content of the secret must remain unknown to third parties

non-secret data

some operation, a function

takes time and computational resources to compute

may be observable, depending on the attacker (model)

may have other observable(!) side effects

total functions are most commonly used

6= total addition theorems, which are a mathematical implementation detail for later

(public) result

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



What is a side channel?

Basically:

Any observation on a computation which allows

inferences on the content of the secret key.

Observations must be quantifiable.

Inferences must be computable, but may be probabilistic.

partial bits

1 bit may be enough

may be repeated (will be, a lot)

may be preceded by an active attack

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



Popular side channels

unexpected results, software/hardware induced errors

wrong results

specifically crafted results

error messages

correct results after a different time

timing information (Kocher, 1996; Lipton&Naughton, 1993)

absolute values

relative differences

power consumption (Kocher, 1998)

power consumption patterns (Simple Power Analysis)

power consumption pattern differences (Differential Power Analysis)

memory access patterns and cache state (Percival, 2005; Bernstein, 2005)

microarchitectural state (numerous since 2017, mainstream media famous since January 2018)

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



branching

1 if (secret_key_bits[n] == 1) {

2 a ∗ square(b)

3 }

4 else {

5 a ∗ b

6 }

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



branching

1 if (secret_key_bits[n] == 1) {

2 a ∗ square(b)

3 }

4 else {

5 a ∗ b

6 }

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



branching, pt. deux

1 if (secret_key_bits[n] == 1) {

2 a ∗ square(b)

3 }

4 else {

5 a ∗ square(c)

6 }

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



branching, pt. deux

1 if (secret_key_bits[n] == 1) {

2 a ∗ square(b)

3 }

4 else {

5 a ∗ square(c)

6 }

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



branching, pt. trois

1 if (secretKeyBits[n] == 1) {

2 a ∗ square(1)

3 }

4 else {

5 a ∗ square(0)

6 }

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



branching, pt. trois

1 if (secretKeyBits[n] == 1) {

2 a ∗ square(1)

3 }

4 else {

5 a ∗ square(0)

6 }

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



secret address indices

1 a + multiplicationTable [secretKeyBytes[n]]

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



secret address indices

1 a + multiplicationTable [secretKeyBytes[n]]

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



on which level?

What about cryptographic code which does not use secret values?

What about higher level code?

The one which uses the cryptographic implementation... ?

composability, linking, address spaces

runtime environment?

Hardware?

a/b is almost never secure

value dependent latency multipliers

microcode implementations

...

Basically, anything observable which is not yet usable as a side channel may still become one.

So... no programs with value divergent behaviour?

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



The CONSTANT TIME Criterion

branch free (PROGRAM COUNTER Model)

no secret value dependent address indices

“That’s it? That’s hard enough as it is for Turing Complete languages!”

does not imply constant runtime behaviour (except informally)

garbage collection

operating system interaction

other nondeterministic behaviour

may be overly prohibitive (see: Montgomery Multiplication)

this intuition has been disproven many times

formulae must be changed to be total and branch free

algebraic style line code instead of lookup tables

may miss hardware side effects

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



garbage collection

Pedersen, Askarov, timing sensitive garbage collection paper

requires non CT code

CT code uses secrets in the same pattern, irrespective of GC interruptions

in CT code memory may not be used dependent on secret values

explicitly CT code is not vulnerable against this

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



lazy evaluation semantics

total functional programming implies same behaviour between strict and lazy evaluation

intuition: if function f is called, then the result of f is produced by computation

without branches (etc.) in f : if f is called, then CT behaviour happens in f

necessary condition: no use (inspection) of secret values outside CT context

idea: have a verifiable subset of the program code and contain secret keys to this

implies control over copying during optimizations, which may be overly optimistic

optimizations must be contained

let-downfloating?

let-upfloating!

Continuation Passing Style makes control flow explicit, but confuses IDA

low-level calling conventions make more problems than evaluation order

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



manual proof, absence of required code gadgets

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



mechanised

branch-freeness via AST, type annotated functions

find type annotation at low-level Intermediate Language

separation of concerns if types are enforced to be created only in some set of modules

knowest thou thine code generator, lest evil seepest in over yonder

type check at which level? pre desugaring? post desugaring?

GHC-specific: Tables-Next-To-Code, ghc-asm.lprl, runs after ASM codegen

modules with integrated C code, change of memory model

maybe even scan generated assembly for problematic instructions... or is this too paranoid?

“When Constant-Time Source Yields Variable Time Binary: Exploiting Curve25519-donna Built

with MSVC 2015” ⇒ know your codegen and runtime!

verified C code with unverified runtime libraries yielded vulnerable code

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



mechanised

branch-freeness via AST, type annotated functions

find type annotation at low-level Intermediate Language

separation of concerns if types are enforced to be created only in some set of modules

knowest thou thine code generator, lest evil seepest in over yonder

type check at which level? pre desugaring? post desugaring?

GHC-specific: Tables-Next-To-Code, ghc-asm.lprl, runs after ASM codegen

modules with integrated C code, change of memory model

maybe even scan generated assembly for problematic instructions... or is this too paranoid?

“When Constant-Time Source Yields Variable Time Binary: Exploiting Curve25519-donna Built

with MSVC 2015” ⇒ know your codegen and runtime!

verified C code with unverified runtime libraries yielded vulnerable code

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



use more Types

linear

notion of “execute exactly once” seems ideal

“only once” is sufficient in lazy semantics

dependent

state of the art approach used in implementation adopted by Mozilla Firefox

totality (we know this already for our code, but user code may be a different)

type inference may be hard

efficient code generation is hard, so some subsets are used which mostly one-to-one generate C or ASM

constructs in a proof language

proofs are not automatically transitive across compile chains due to different semantics, transitiveness is proven

but use of GCC (performance) vs. CompCert (verified)

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



use more Types

linear

notion of “execute exactly once” seems ideal

“only once” is sufficient in lazy semantics

dependent

state of the art approach used in implementation adopted by Mozilla Firefox

totality (we know this already for our code, but user code may be a different)

type inference may be hard

efficient code generation is hard, so some subsets are used which mostly one-to-one generate C or ASM

constructs in a proof language

proofs are not automatically transitive across compile chains due to different semantics, transitiveness is proven

but use of GCC (performance) vs. CompCert (verified)

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi



...

Fin!
or: WIP

Formal Methods in Computer Science 2019-08-21 www.uni-due.de/fmi


	Cryptography, abstract
	Side Channels
	Necessary preliminaries for side channels, by example
	CONSTANT TIME Criterion
	Evaluation Order
	Developing Proofs

