
A Framework for Generating Diverse
Haskell-I/O Exercise Tasks

Oliver Westphal

University of Duisburg-Essen

Handwritten Task

{- Write a program which first reads a positive
- integer n from the console, and then reads n
- integers one after the other and finally outputs
- their sum.
-}

main :: IO ()
main = undefined

1

Fixed Verbal Task Descriptions

{- Give the output of the following
- program for input 9!
-}

main :: IO ()
main = do

v <- readLn
let loop 1 = print 1

loop x = do
print x
if even x

then loop (x `div` 2)
else loop (x + 1)

loop v

Program trace: ?9 !9 !10 !5 !6 !3 !4 !2 !1 stop

2

Fixed Verbal Task Descriptions

{- Give the output of the following
- program for input 9!
-}

main :: IO ()
main = do

v <- readLn
let loop x

| x < 4 = print x
| odd x = do

print x
loop (x+3)

| otherwise = do
print x
loop (x `div` 4)

loop v

Program trace: ?9 !12 !3 stop 3

Why Haskell-I/O Tasks?

Specification Language [TFPIE 2019]

I Read values, storing them in history-valued variables
I Output result of computation over variables
I Access variables as complete list or last read value
I Basic branching and iteration

[.n] Î · ([. x] Ú ∠len(xA) = nC ∠E)→
E · [sum(xA) .]

l

“Read a positive integer n from the console, and then read n
integers one after the other and finally output their sum.”

4

Specifications in Haskell

[.n] Î · ([. x] Ú ∠len(xA) = nC ∠E)→
E · [sum(xA) .]

l

example :: Specification
example =
readInput "n" nats <>
tillExit (
branch (length (getAll "x") == getCurrent "n")
(readInput "x" ints)
exit

) <>
writeOutput [var 0] [sum (getAll "x")]

Implementation probabilistically checks student programs
against specifications

5

Task Generation

Automatic Task Generation

Two components for a task:
I Goal or solution requirement
I Description communicating that goal

How to generate both automatically?

I Specification language to express requirements
I Ideally: Generate verbal description from specification
I Here: Communicate requirements through generated

program code or example behavior

6

Automatic Task Generation

Two components for a task:
I Goal or solution requirement
I Description communicating that goal

How to generate both automatically?
I Specification language to express requirements
I Ideally: Generate verbal description from specification
I Here: Communicate requirements through generated

program code or example behavior

6

Code as Description

Advantages:
I More precise than verbal description
I Easily understandable if kept simple
I Automatic generation & transformation possible

Disadvantages:
I Might already be a valid solution
I Knowledge of respective programming language required
I No tasks with only verbal description

7

Task from Example Behavior

{- Write a program capable of these interactions:
- ?0 !0 stop
- ?1 ?-3 !-3 stop
- ?2 ?1 ?5 !6 stop
- ?2 ?10 ?10 !20 stop
- ?2 ?-3 ?-2 !-5 stop
-}

main :: IO ()
main = undefined

8

Behavior as Description

Advantages:
I No leaking of program structure

Disadvantages:
I No longer requires exact behavior of specification
I Hard-coding cases possible
I Might include (or not include) corner cases

9

Basic Task Recipe

1. Take a base specification
2. Derive artifacts:

I Progam representation(s)
I Execution traces

3. Build a question/task description from these artifacts

Solution candidates are also automatically checkable!

10

Task Types

I Three types of tasks possible:
I make a decision (given both code and behavior)
I give behavior (given a program)
I write a program (given behavior or another program)

I Roughly corresponding to program-reading,
-understanding and -writing abilities

11

An EDSL for Task Generation

Basic Setup

data TaskInstance s = TaskInstance
{ question :: Description
, requires :: Require s }

newtype Require s = Require
{ check :: s -> Property }

data TaskDesign p s = TaskDesign
{ parameter :: Gen p
, inst :: p -> Gen (TaskInstance s) }

genTaskInstance :: TaskDesign p s -> Gen (TaskInstance s)
genTaskInstance task = do
p <- parameter task
inst task p

12

Combinators

forFixed :: p -> (p -> Gen (TaskInstance s))
-> TaskDesign p s

forFixed p = TaskDesign (pure p)

forUnknown :: Gen p -> (p -> Gen (TaskInstance s))
-> TaskDesign p s

forUnknown g i = TaskDesign g i

solveWith :: Description -> Require s -> TaskInstance s
solveWith d r = TaskInstance d r

exactAnswer :: (Eq a, Show a) => a -> Require a
exactAnswer x = Require $ \s -> s === x

13

Primitives for I/O Tasks

Given from specification language’s implementation:

fulfills :: Program -> Specification -> Property
accept :: Specification -> Trace -> Bool

Task goals:

randomSpecification :: Gen Specification
similarSpecifications :: Gen (Specification,Specification)

Requirements:

behavior :: Specification -> Require Program
sampleTrace :: Specification -> Require Trace
triggeringDifference :: Specification -> Specification

-> Require [Input]

14

Primitives for I/O Tasks

For descriptions:

type Code = Description

haskellProgram :: Specification -> Gen Code
pythonProgram :: Specification -> Gen Code
exampleTraces :: Specification -> Int -> Gen [Trace]
multipleChoice :: Show a => Int -> [a] -> [a]

-> Gen (Description, [Int])

DISCLAIMER!
I Implementation of these primitives is still work in

progress
I A basic prototype exists
I Needs a solid foundation and to be scaled up
I Hence, focus on possibilities in task design

15

Primitives for I/O Tasks

For descriptions:

type Code = Description

haskellProgram :: Specification -> Gen Code
pythonProgram :: Specification -> Gen Code
exampleTraces :: Specification -> Int -> Gen [Trace]
multipleChoice :: Show a => Int -> [a] -> [a]

-> Gen (Description, [Int])

DISCLAIMER!
I Implementation of these primitives is still work in

progress
I A basic prototype exists
I Needs a solid foundation and to be scaled up
I Hence, focus on possibilities in task design 15

Examples

Write A Program - Design

task :: TaskDesign Specification Program
task = forUnknown randomSpecification $ \s -> do
prog <- pythonProgram s
return $
("Re-implement the given Python program in Haskell:"
$$ prog
) `solveWith` behavior s

16

Write A Program - Instance

n = int(input())
x = []
while len(x) != n :
v = int(input())
x += [v]

print(sum(x))
-- Re-implement the given Python program in Haskell.
main :: IO ()
main = undefined

randomized

17

Make a Decision - Design

task :: TaskDesign (Specification,Specification) [Int]
task = forUnknown similarSpecifications $
\(spec1,spec2) -> do
p <- haskellProgram spec1
ts1 <- exampleTraces spec1 2
ts2 <- exampleTraces spec2 2
(choices, solution) <- multipleChoice 3 ts1 ts2
return $
("Which of these traces can this program produce?"
$$ p
$$ choices

) `solveWith` exactAnswer solution

18

Make a Decision - Instance

-- Which of the given traces can the program below produce?
-- 1) ?"-6" ?"-9" ?"10" ?"-3" ?"7" !"-1" stop
-- 2) ?"3" ?"-3" ?"-2" ?"6" !"1" stop
-- 3) ?"1" ?"-6" !"-6" stop
prog :: IO ()
prog = do
n <- readLn
let loop1 x1 =

if (length x1 == n)
then do return x1
else do

v1 <- readLn
loop1 (x1 ++ [v1])

x3 <- loop1 []
print (sum x3)

randomized

randomized

19

Give Execution Traces - Design

task :: TaskDesign (Specification,Specification) [Input]
task = forUnknown similarSpecifications $
\(spec1,spec2) -> do
p1 <- haskellProgram spec1
p2 <- haskellProgram spec2
return $
("Give a sequence of input values for which the two"
++ "programs below behave differently!"
$$ p1
$$ "---"
$$ p2

) `solveWith` triggeringDifference spec1 spec2

20

Give Execution Traces - Instance

{- Give a sequence of input values for which the two
- programs below behave differently.
-}

prog1 :: IO ()
prog1 = do
n <- readLn
let loop x =

if (length x == n)
then do return x
else do

v <- readLn
loop (x ++ [v])

y <- loop []
print (sum y)

prog2 :: IO ()
prog2 = do

let loop x l =
if (l == 5)

then do return x
else do

v <- readLn
loop (x ++ [v])

(l + 1)
y <- loop [] 0
print (sum y)

randomized randomized

21

Conclusion & Future Work

I Lots of interesting ideas for exercise tasks based on
program code and/or example behavior

I Tasks di�er from (traditional) handwritten tasks
I Variety depends on generating interesting

specifications/programs/examples
I Di�erent task types need to be evaluated with regard to

usefulness to students

I Source-code and examples:
https://github.com/fmidue/IOTasks

I Demo (hand-written tasks):
https://autotool.fmi.iw.uni-due.de/spec-demo

22

https://github.com/fmidue/IOTasks
https://autotool.fmi.iw.uni-due.de/spec-demo

Conclusion & Future Work

I Lots of interesting ideas for exercise tasks based on
program code and/or example behavior

I Tasks di�er from (traditional) handwritten tasks
I Variety depends on generating interesting

specifications/programs/examples
I Di�erent task types need to be evaluated with regard to

usefulness to students
I Source-code and examples:

https://github.com/fmidue/IOTasks

I Demo (hand-written tasks):
https://autotool.fmi.iw.uni-due.de/spec-demo

22

https://github.com/fmidue/IOTasks
https://autotool.fmi.iw.uni-due.de/spec-demo

	Why Haskell-I/O Tasks?
	Task Generation
	An EDSL for Task Generation
	Examples

