A Framework for Generating Diverse
Haskell-1/0 Exercise Tasks

Oliver Westphal

University of Duisburg-Essen



Handwritten Task




Fixed Verbal Task Descriptions




Fixed Verbal Task Descriptions

Program trace: 79 11213 stop




Why Haskell-1/0 Tasks?



Specification Language [TFPIE 2019]

» Read values, storing them in history-valued variables
» Output result of computation over variables
» Access variables as complete list or

» Basic branching and

[>n]" - ([>x]17% zlen(xa) = ncx E)™ - [sum(xa)» ]
1

“Read a positive integer n from the console, and then read n
integers one after the other and finally output their sum.”



Specifications in Haskell

[>n1N - ([>x]17 zlen(xa) = nex E)™° - [sum(xa)» ]

7

Implementation probabilistically checks student programs
against specifications



Task Generation



Automatic Task Generation

Two components for a task:
» Goal or solution requirement

» Description communicating that goal

How to generate both automatically?



Automatic Task Generation

Two components for a task:
» Goal or solution requirement

» Description communicating that goal

How to generate both automatically?

» Specification language to express requirements
» Ideally: Generate verbal description from specification

» Here: Communicate requirements through generated
program code or example behavior



Code as Description

Advantages:
> More precise than verbal description

» Easily understandable if kept simple

» Automatic generation & transformation possible

Disadvantages:
» Might already be a valid solution

» Knowledge of respective programming language required

> No tasks with only verbal description



Task from Example Behavior




Behavior as Description

Advantages:
» No leaking of program structure

Disadvantages:
» No longer requires exact behavior of specification

» Hard-coding cases possible

» Might include (or not include) corner cases



Basic Task Recipe

1. Take a base specification
2. Derive artifacts:
> Progam representation(s)

» Execution traces
3. Build a question/task description from these artifacts

Solution candidates are also automatically checkable!

10



Task Types

» Three types of tasks possible:
» make a decision (given both code and behavior)

> give behavior (given a program)
> write a program (given behavior or another program)

» Roughly corresponding to program-reading,
-understanding and -writing abilities

1



An EDSL for Task Generation



Basic Setup




Combinators

13



Primitives for 1/0 Tasks

Given from specification language’s implementation:

Task goals:

Requirements:

14



Primitives for 1/0 Tasks

For descriptions:

15



Primitives for 1/0 Tasks

For descriptions:

DISCLAIMER!
» Implementation of these primitives is still work in
progress

» A basic prototype exists
» Needs a solid foundation and to be scaled up

» Hence, focus on possibilities in task design 15



Examples



Write A Program - Design

16



Write A Program - Instance

17



Make a Decision - Design

18



Make a Decision - Instance




Give Execution Traces - Design

20



Give Execution Traces - Instance

randomized randomized




Conclusion & Future Work

> Lots of interesting ideas for exercise tasks based on
program code and/or example behavior

» Tasks differ from (traditional) handwritten tasks

» Variety depends on generating interesting
specifications/programs/examples

» Different task types need to be evaluated with regard to
usefulness to students

22


https://github.com/fmidue/IOTasks
https://autotool.fmi.iw.uni-due.de/spec-demo

Conclusion & Future Work

> Lots of interesting ideas for exercise tasks based on
program code and/or example behavior

» Tasks differ from (traditional) handwritten tasks

» Variety depends on generating interesting
specifications/programs/examples

» Different task types need to be evaluated with regard to
usefulness to students

> Source-code and examples:
https://github.com/fmidue/I0Tasks

» Demo (hand-written tasks):
https://autotool.fmi.iw.uni-due.de/spec-demo

22


https://github.com/fmidue/IOTasks
https://autotool.fmi.iw.uni-due.de/spec-demo

	Why Haskell-I/O Tasks?
	Task Generation
	An EDSL for Task Generation
	Examples

