
Mutating Sample Solutions to Improve
Prolog Exercise Tasks and Their Test
Suites
Ivan Khu Tanujaya, Janis Voigtländer, Oliver Westphal ■ 19.09.2022

What this paper/talk is about

From a review on the submitted version:

It seems the article is in a limbo between a teaching experience
report and the application and evaluation of the mutation testing
technique.

Yeah, that’s true. Intended was mostly the former, actually.

19.09.2022 2

The teaching setting

Courses:

„Einführung in die Logik“,
1st semester for students of an interdisciplinary (Computer Science,
Psychology, Business Administration) Bachelor programme,
Prolog makes up about 20% of the course and comes between
propositional and predicate logic

„Programmierparadigmen“,
4th semester for students of a CS Bachelor programme,
Prolog makes up about 35% of the course and comes after Haskell

In both courses, weekly exercises are offered via an e-learning system
with immediate feedback.

19.09.2022 3

The Prolog task type (in Autotool)

For example, for a fact base like

female (anna) . female (j u l i e t)
male (har ry) . male (luke)
c h i l d (l i s a , anna) . c h i l d (mary , j u l i e t)

define a predicate brother/2.

On submission:

b ro the r (X,Y) : − male (X) , c h i l d (X,Y) .

obtained feedback:

. . . i n c o r r e c t . Your submission gives :
X = luke , Y = j u l i e t ;
X = luke , Y = har ry ; . . .

19.09.2022 4

The Prolog task type (in Autotool)

For example, for a fact base like

female (anna) . female (j u l i e t)
male (har ry) . male (luke)
c h i l d (l i s a , anna) . c h i l d (mary , j u l i e t)

define a predicate brother/2.

On submission:

b ro the r (X,Y) : − male (X) , c h i l d (X, Z) , c h i l d (Y, Z) .

obtained feedback:

. . . i n c o r r e c t . Your submission gives :

. . . ; X = luke , Y = luke ; . . .

19.09.2022 4

The Prolog task type (in Autotool)

For example, for a fact base like

female (anna) . female (j u l i e t)
male (har ry) . male (luke)
c h i l d (l i s a , anna) . c h i l d (mary , j u l i e t)

define a predicate brother/2.

On submission:

b ro the r (X,Y) : − male (X) , c h i l d (X, Z) , c h i l d (Y, Z) , x \=Y .

obtained feedback:

. . . i n c o r r e c t . Your submission gives :

. . . ; X = luke , Y = luke ; . . .

19.09.2022 4

The Prolog task type (in Autotool)

For example, for a fact base like

female (anna) . female (j u l i e t)
male (har ry) . male (luke)
c h i l d (l i s a , anna) . c h i l d (mary , j u l i e t)

define a predicate brother/2.

On submission:

b ro the r (X,Y) : − male (X) , c h i l d (X, Z) , c h i l d (Y, Z) ,X\=Y.

obtained feedback:

ok

19.09.2022 4

The Prolog task type (in Autotool)

More helpful feedback on this erroneous submission:

b ro the r (X,Y) : − male (X) , c h i l d (X, Z) , c h i l d (Y, Z) , x \=Y .

brother(luke, luke)

male(luke),child(luke, Z#1),child(luke, Z#1),x\=luke

X#1 = luke
Y#1 = luke

child(luke, Z#1),child(luke, Z#1),x\=luke

child(luke, juliet),x\=luke

Z#1 = juliet Z#1 = harry

x\=luke

X#5 = x
Y#5 = luke

19.09.2022 5

The Prolog task type (in Autotool)

. . . vs. what holds for the correct submission with X\=Y, namely:
brother(luke, luke)

male(luke),child(luke, Z#1),child(luke, Z#1),luke\=luke

X#1 = luke
Y#1 = luke

child(luke, Z#1),child(luke, Z#1),luke\=luke

child(luke, juliet),luke\=luke

Z#1 = juliet

child(luke, harry),luke\=luke

Z#1 = harry

luke\=luke luke\=luke

!,false

X#5 = luke X#5 = luke
Y#5 = luke

false

!,false

X#6 = luke X#6 = luke
Y#6 = luke

false

19.09.2022 6

Features that can be used in tests

Global timeout: 10000
% and/or prefix individual tests with [<timeout>]
predicate(X,Y): predicate(x1,y1),predicate(x2,y2),...
true_statement
!predicate(X,Y)[answers hidden]: predicate(x1,y1),...
!true_statement[hidden]
!(<description, shown on failure>)true_statement
@... % shows derivation tree if test fails
-... % negates test expectation
new named_by_student(X,Y): <predicate description>

... other features / hidden auxiliaries ...

19.09.2022 7

Possible test suite for the example task

brother(X,Y): brother(peter,mary),
brother(peter,luke),
brother(luke,mary),
brother(luke,peter),
brother(paul,sandra)

-@brother(luke,luke)

On the other hand, @brother(X,Y):... not so useful here, due to:
brother(X, Y)

male(X#1),child(X#1, Z#1),child(Y#1, Z#1),x\=Y#1

X = X#1
Y = Y#1

child(harry, Z#1),child(Y#1, Z#1),x\=Y#1

X#1 = harry

child(luke, Z#1),child(Y#1, Z#1),x\=Y#1

X#1 = luke

child(paul, Z#1),child(Y#1, Z#1),x\=Y#1

X#1 = paul

child(peter, Z#1),child(Y#1, Z#1),x\=Y#1

X#1 = peter

child(Y#1, juliet),x\=Y#1

Z#1 = juliet

child(Y#1, harry),x\=Y#1

Z#1 = harry

child(Y#1, peter),x\=Y#1

Z#1 = peter

child(Y#1, juliet),x\=Y#1

Z#1 = juliet

child(Y#1, harry),x\=Y#1

Z#1 = harry

x\=mary

Y#1 = mary

x\=luke

Y#1 = luke

x\=peter

Y#1 = peter

x\=mary

Y#1 = mary

x\=luke

Y#1 = luke

x\=peter

Y#1 = peter

X = luke
Y = mary

X#5 = x
Y#5 = mary

X = luke
Y = luke

X#5 = x
Y#5 = luke

X = luke
Y = peter

X#5 = x
Y#5 = peter

X = luke
Y = mary

X#5 = x
Y#5 = mary

X = luke
Y = luke

X#5 = x
Y#5 = luke

X = luke
Y = peter

X#5 = x
Y#5 = peter

x\=sandra

Y#1 = sandra

x\=paul

Y#1 = paul

X = paul
Y = sandra

X#5 = x
Y#5 = sandra

X = paul
Y = paul

X#5 = x
Y#5 = paul

x\=mary

Y#1 = mary

x\=luke

Y#1 = luke

x\=peter

Y#1 = peter

x\=mary

Y#1 = mary

x\=luke

Y#1 = luke

x\=peter

Y#1 = peter

X = peter
Y = mary

X#5 = x
Y#5 = mary

X = peter
Y = luke

X#5 = x
Y#5 = luke

X = peter
Y = peter

X#5 = x
Y#5 = peter

X = peter
Y = mary

X#5 = x
Y#5 = mary

X = peter
Y = luke

X#5 = x
Y#5 = luke

X = peter
Y = peter

X#5 = x
Y#5 = peter

19.09.2022 8

How to come up with good test suites?

Trying our best (within the confines of our setup):

practice and experience

looking at student submissions

improving from year to year

anticipating typical mistakes

catering for possible course specific misconceptions

On the last point, a few “false friends” when doing Prolog after Haskell . . .

19.09.2022 9

On “false friends” (Prolog after Haskell)

List syntax:

x:xs [X|Xs]
x:y:zs [X|Y|Zs]? [X|[Y|Zs]] or [X,Y|Zs]

Typing:

p :: [a] → Bool; p as = . . . p([As]) :− ... ?

Accidental singleton lists:

reverse ([] , [Ys] , [Ys]) .
reverse ([X | Xs] , [Ys] , [Zs]) : − reverse ([Xs] , [X | Ys] , [Zs]) .

19.09.2022 10

On “false friends” (Prolog after Haskell)

Non-exclusionary patterns:

i n t e r spe rse (_ , [] , []) .
i n t e r spe rse (_ , [Y] , [Y]) .
i n t e r spe rse (X , [Y | Ys] , [Y ,X | Zs]) : − i n t e r spe rse (X, Ys , Zs) .

With only positive tests (e.g., mimicking the test suite used for a
corresponding Haskell task), the problem is not even detected!

So, how can we systematically improve and grow our test suites in light of
such issues?

19.09.2022 11

Mutating sample solutions

Mutation testing:

Change a code base by applying small changes.

On the obtained mutants, run an existing test suite.

Check how many mutants survive (by passing all tests).

Draw (quantitative) conclusions about the test suite.

Typically applied to “programming in the large”, also in context of Prolog.

Particularities in our situation:

All artifacts are rather small.

We have a sample solution that is known to be correct.

We have more specific quality questions about the test suite.

We can try to imitate typical mistakes made by students.

19.09.2022 12

The tool created

19.09.2022 13

The tool created

19.09.2022 14

The tool created

19.09.2022 15

The tool created

19.09.2022 16

Coming back to the examples

For the sample solution

b ro the r (X,Y) : − male (X) , c h i l d (X, Z) , c h i l d (Y, Z) ,X\=Y.

the previously displayed defects motivating -@brother(luke,luke)
would be created by mutation operators

Drop Literal

Variable to Atom

respectively.

Similarly for the intersperse-example (depending on the specific sample
solution).

For the “accidental singleton lists” cases, want a mutation operator

Wrap Variable into List

19.09.2022 17

Conclusion

Experiences:

The tool has already proved its worth (for us) in practice.

We found issues in several tasks we had been using (sometimes with
slight variation) over the years. Some issues were in the test suite,
some in the task material.

A particular vulnerability in test suites was neglect of negative tests.

Sometimes unexpectedly correct mutants appear. We learned
something about our exercise task then.

Possible future work:

extending the mutation catalog

exploring test suite creation from scratch

using information about surviving mutants of student programs

19.09.2022 18

