Lufthygiene und Klima

Ein Handbuch zur
Stadt- und Regionalplanung

Herausgeber:
Kommission Reinhaltung der Luft (KRdL) im VDI
und DIN
H. Schirmer, W. Kuttler, J. Löbel, K. Weber
5.2.5.2 Die klimatologischen Auswirkungen von Halden

W. Kuttler, J. Löbel

Problemstellung

Halden beeinflussen als anthropogene morphologische Vollformen in vielfältiger Weise die lokalklimatischen Verhältnisse in ihrer Umgebung.

Sie wirken als Störkörper in der bodennahen Reibungsschicht je nach Höhe, horizontaler Ausdehnung, Form, Hangneigung sowie Orientierung ihrer Längs- und Querachsen zur vorherrschenden Windrichtung mehr oder weniger stark lokalklimatologisch verändernd auf ihre Umgebung ein.

Insbesondere durch die Veränderung des Windfeldes erfolgt eine nachhaltige Modifizierung des Ausbreitungsverhaltens von Emissionen.

Aber auch die Sonnenscheindauer sowie in geringerem Maße die Lufttemperatur, die Verteilung von Niederschlägen, die Evaporation und die Luftfeuchtigkeit können durch einen Haldenkörper im Vergleich zum ungestörten bodennahen Austauschraum in unterschiedlicher Weise beeinträchtigt werden.


Lufttemperatur

Die Geländemessungen an den genannten Halden zeigten, daß von leicht höheren Lufttemperaturen (≈ 0,7 K) für das Meßzeitraummittel auf den Haldengipfeln im Vergleich zum Umland auszugehen ist. Die Ursache für die durchschnittlich höheren Lufttemperaturen ist auf die sich bei austauscharen Wetterlagen einstellenden Temperaturinversionen zurückzuführen, die im Einzelfall relativ große Temperaturschiede zwischen dem Haldenumland und dem Gipfel- bzw. Plateaubereich der Halde entstehen lassen.


Die Lufttemperaturen über den konvex geformten Haldenkörpern sind somit bei windschwachen Lagen im Vergleich zum Umland leicht, zu den Haldenfußbereichen hingegen stärker erhöht, wenn sich dort die abfließende Kaltluft, z. B. in Geländemulden, sammeln kann.


Für den Fall, daß es unumgänglich ist, Haldenhangfußbereiche von Emittenten mit bodennahen Quellniveaus freizuhalten, besteht von planerischer Seite die Möglichkeit, entweder den Kaltluftabfluß durch das Anlegen hangparalleler Baum- und Strauchreihen zu verhindern oder von vorneherein dafür zu sorgen, daß Halden nur niedrige Aufsichtsüberhöhen erreichen und/ oder über sehr steile Hänge verfügen. Durch letztgenannte Planungsmaßnahme wird erreicht, daß das Kaltluftbildungsgebiet klein ist und der Kaltluftabfluß ge ring bleibt.

Niederschläge, Luftfeuchtigkeit und Verdunstung

Halden, die überwiegend vegetationsfrei sind bzw. nur schütteren Bewuchs aufweisen, beeinflussen in der Regel das Luftfeuchtefeld der Umgebung kaum. Allenfalls bei Vorherrschen austauschermer Witterung ist des Nachts von größeren Unterschieden der relativen Feuchte zwischen Haide und Umland auszugehen.

Hinsichtlich der potentiellen Verdunstung kann festgestellt werden, daß auf gut belüfteten Haldenkuppen die Verdunstungsraten im Vergleich zur ungestörten Umgebung erhöht ist, während sie an den schlecht belüfteten Haldenfußbereichen deutlich niedrigere Werte erreicht. Für Bergehalden im rheinischen Braunkohlenrevier (Haide Vollrath) konnte gezeigt werden, daß auf deren Plateaus nicht nur die Verdunstungsraten um bis zu 50 % höher sind, sondern in vielen Fällen auch die Andauer der Verdunstung größer ist. Zurückgeführt wird dies auf die etwas höheren Windgeschwindigkeiten und Lufttemperaturen, die auf der Haide herrschen. Prinzipiell muß jedoch darauf hingewiesen werden, daß die potentielle Evapotranspiration in hohem Maße von den örtlichen Gegebenheiten wie z.B. vom Bewuchs oder durch besonnene bzw. nicht besonnene Hangbereiche beeinflußt wird.

Windgeschwindigkeit und Windrichtung

Die Windkanaluntersuchungen ergaben, daß die höchsten "Übergeschwindigkeiten" im Vergleich zum Umland auf den Haldengipfeln bzw. -plateaus auftreten. Es zeigte sich ferner, daß verschiedene Hangneigungen zu graduellen Unterschieden hinsichtlich des Geschwindigkeitsfeldes führen. So ließen sich an den Fußbereichen der Haide mit der größten Hangneigung (1:2) in Luv und Lee auch die größten Windgeschwindigkeitsreduzierungen beobachten, während die Windgeschwindigkeiten an den weniger steilen Halden (1:3, 1:4) etwa doppelt so hohe Werte erreichten wie an denjenigen mit den steilsten Hängen.

Die bodennahe Windrichtung in der näheren Umgebung der Halden wird unterschiedlich stark durch die verschiedenen Haldenkörper beeinflußt.


1:2. Insgesamt gesehen lassen sich die Richtungsänderungen jedoch nur für den Haldenkörper selbst und für seine nähere Umgebung - maximal zwischen 300 m und 500 m leewärts - nachweisen.

Turbulenzintensität

Die höchsten Turbulenzwerte treten in Lee 20 m bis 30 m über dem Boden der Umgebung in unterschiedlicher Entfernung vom Haldenkörper auf.

Haldenform und Hangneigung bestimmen die Größe des Gebietes, das höchste Turbulenzwerte aufweist:

In Lee der Haide mit der geringsten Hangneigung (Haide 1:4) ist dieser Bereich etwa fünfmal größer als derjenige, der für die steilste Haide (Haide 1:2) ermittelt wurde.

Auf dem Haldenkörper selbst (Haldengipfel und -plateau) werden lediglich um 30 % höhere Turbulenzwerte im Vergleich zum ungestörten Fall erreicht. Während in Luv am Boden bis zu einer Entfernung von 400 m vom Haldenmittelpunkt kaum höhere Turbulenzwerte nachgewiesen werden konnten, sind diese in Lee deutlich verstärkt und erstrecken sich bis zur doppelten (luvseitigen) Entfernung vom Haldenmittelpunkt (800 m).

Untersuchungen zur Feststellung des Einflusses der Haldenbreite auf die Windgeschwindigkeit ließen erkennen, daß die Übergeschwindigkeiten auf der Haide mit der breitesten Basisfläche am grössten sind, während sie auf der schmalsten Haide am kleinsten sind.

Beeinflussung von Abgasfahnen

Die Auswirkung von Abgasfahnen auf das bodennahe Immissionsfeld aus Emittenten, die ebenso hoch sind wie ein Haldenkörper, soll an einigen Beispielen erläutert werden:

- So führt eine kegelstumpfförmige Haide (1:3) mit glatter - also unbewachsener bzw. nicht erwärmer Oberfläche - bei luvesitiger Lage des Emittenten und Queranströmung zu einer großen Beeinflussung der bodennahe Immissionskonzentrationen. Eine solche Halde läßt im Bereich zwischen 200 m in Luv und 800 m in Lee vom Haldenmittelpunkt wesentlich höhere Immissionskonzentrationen im Vergleich zu einer Haide 1:2 entstehen. Eine Erhöhung der Windgeschwindigkeit um das zwei- bis dreifache steigert die Abgaskonzentration in den genannten Bereichen um maximal 40 %.
Ebenso wie es für luvseitige Emissenten im Vergleich zum ungestörten Fall nachgewiesen werden konnte, wandert auch bei leeseitiger Schornsteinposition die Zone maximaler Abgaskonzentrationen in Richtung zur Quelle (vgl. Abb. 5.2.5.2/1). Obwohl Halde 1:2 (Dreiecksgrundfläche) zwar die höchsten Abgaskonzentrationen von allen Haldentypen verursacht, nehmen die Immissionswerte am raschesten ab, so daß im Fernbereich dieses Haldentyps (ab 800 m vom Haldenmittelpunkt) das Konzentrationsprofil das des Vergleichsniveaus unterschreitet und in einer Entfernung von mehr als 1.200 m bereits sogar um etwa 30 % niedriger ist. Eine so deutliche Abnahme der Immissionskonzentrationen wird durch keinen anderen Haldenkörper erreicht. Allerdings verursachen die anderen Haldentypen auch nicht so starke Erhöhungen der Maxima der Bodenkonzentration wie Halde 1:2.

Durch die Lage des Emissenten und die Form der Halde kann von planerischer Seite die Immissionssituation im Umfeld eines Haldenkörpers nachhaltig beeinflußt werden:

Strebt man eine möglichst geringe Abgasbelastung im Fernbereich an, dürfte eine Schüttung von Berge- oder Deponiematerial in Form der Halde 1:2 (Dreiecksgutschnitt) von Vorteil sein. Soll hingegen eine möglichst geringe Belastung in der näheren Umgebung des Emissenten erreicht werden, so ist ein Haldenkörper nach Art der Halde 1:3 mit ovaler Grundfläche zu wählen. Halden mit durch Bewuchs verursachten rauen oder durch Sonnenschein erwärmten Oberflächen verändern neben der Haldeform zusätzlich die bodennahen Immissionskonzentrationen.

Für rauhe Haldenoberflächen wurden stichprobenartige Messungen für drei Quellpositionen, und zwar für Bodenquellen am luv- und leeseitigen Hangfuß sowie für einen Schornstein am leeseitigen Hangfuß mit Mündung in Haldenhöhe durchgeführt. In allen drei untersuchten Fällen waren die Immissionskonzentrationen am Boden außerhalb des Haldenkörpers bei rauer Oberfläche niedriger als bei glatter Oberfläche.

Sonnenerwärme Haldenhänge modifizieren die Abgasfahnen, wenn die Windgeschwindigkeit 2,5 m/s nicht überschreitet und die Hangüberwärzung etwa 250 W/m² über der jenigen der Umgebung liegt. In einem solchen Fall reicht der thermische Auftrieb aus, um die Abgase in größere Höhen zu transportieren. Bei Südhängexposition dürften während strahlungsreicher Wetterlagen solche Werte schnell erreicht werden.

Abb. 5.2.5.2/1: Längsschacht der Bodenkonzentration für verschiedene Haldentypen. Mittelpunkt der Halde ist immer bei x = 0 m. Der Schornstein steht immer 200 m im Lee des Haldenmittelpunktes. Schornsteinhöhe = Haldenhöhe = 50 m. Werte bei einer Windgeschwindigkeit in Haldenhöhe von 1 m/s und einem Abgasvolumenstrom von 1 m³/s.
Aufgrund des großen Einflusses von Halden auf das bodennahe Strömungsfeld der Umgebung und damit auf die Abgasausbreitung, ist es für die Standortplanung von Bergbaugebieten und Emittenten wichtig zu wissen, in welchem Abstand zum Haldenkörper eine potentielle Emissionsquelle errichtet werden kann, ohne daß bei deren Abgasfreisetzung von einer Benachteiligung der näheren oder weiteren Umgebung durch die Halde auszugehen ist.

Hinweise hierzu sind in vereinfachter Darstellung der Abb. 5.2.5.2/2 zu entnehmen:

Schornsteine, die in dem in dieser Abbildung schraffiert gezeichneten Bereich errichtet werden, sorgen für eine Erhöhung der maximalen Bodenkonzentration um das 1,3- bis 4,3-fache.

Eine derartige, durch die Halde verursachte, zusätzliche Belastung ist weitgehend vermeidbar, wenn Emittenten außerhalb des schraffierten Gebietes errichtet werden. Dann nämlich ist es so, daß der Haldenkörper nur noch einen geringen Einfluß auf die Immissionskonzentrationen hat: Die maximal auftretenden Bodenkonzentrationen würden durch die Halde um weniger als 30 % erhöht.

Daß die Haldenform eine ausschlaggebende Rolle auf die Größe des Gebietes hat, in dem man von einem Schornsteinbau absehen soll, geht ebenfalls aus Abb. 5.2.5.2/2 hervor.

Hierarchisch zeigt sich, daß Halde 1:2 (mit ovaler Grundfläche) zu einem hohen Grundflächenbedarf deshalb führt, weil der Bereich um die Halde herum, in dem wegen der Konzentrationserhöhung kein Schornstein aufgestellt werden sollte, mit einem Durchmesser von 8 Haldenhöhen relativ groß ist. Bei der kegelstumpfförmigen Halde (1:3) und der Halde 1:3 mit ovaler Grundfläche ist der Einflußbereich mit jeweils 2 Haldenhöhen am geringsten.

Läßt es sich allerdings aus verschiedenen Gründen nicht vermeiden, die Emissionsquelle innerhalb des in Abb. 5.2.5.2/2 schraffiert gezeichneten Bereichs zu errichten, dann kann die sowieso nicht zu verhindernnde Erhöhung der Abgas- konzentrationen dadurch jedoch nachhaltig beeinflußt werden, daß man den Schornstein in Lee oder Luv zur Halde plaziert. Das soll an einem Beispiel für den Standort “Haldenfuß” erläutert werden.

Sehr deutlich wird der Unterschied zwischen Emittenten in Luv und Lee (Beispiel: Halde 1:2, Grundfläche oval; Schornsteinmündung = Haldenhöhe) hinsichtlich ihrer Auswirkung auf die Erhöhung der maximalen Bodenkonzentration:

Abb. 5.2.5.2/2: Schraffierter Bereich = ungünstiger Bereich für Schornsteinpositionen. Draufsicht auf die Situation. Gepunktet = Haldenoberfläche. Bei Quellpositionen beliebiger Höhe außerhalb des schraffierten Bereichs wird die maximale Abgaskonzentration am Boden um weniger als 30 % erhöht.
Quelle: LOHMEYER und PLATE (1986)
Im Falle der Leelage verursachen die Schornsteinemissionen eine Konzentrationserhöhung um den Faktor 3,5, im Falle der Luvlage eine solche von nur 1,5. Diese Verhältnisse der luftseitigen Bevorzugung der Standortwahl gelten auch für die Halde 1:4 (allerdings in abgeschwächter Form). Bei den anderen Haldentypen 1:3 (Grundfläche oval, Grundfläche breit sowie Kegelstumpf) lassen sich keine gravierenden Vorteile (beim Kegelstumpf sogar ein geringer Nachteil) zwischen luv- und leesseitigen Emittern erkennen.

Windenergie

Da auf Halden wegen der dort vorherrschenden höheren Windgeschwindigkeiten davon ausgegangen werden kann, daß die nutzbare Windenergie bis zum Faktor 4 höher ist als im Umland, könnten Windenergiekonverter, die sich durch niedrige Anlaufgeschwindigkeiten auszeichnen, auf Haldenplateaus betrieben werden. Allerdings bedarf es zur Abschätzung der Rentabilität genauerer Untersuchungen, z.B. Auskunft geben über das Andauerspektrum bestimmter Windgeschwindigkeitsklassen (GRAUHOF und KUTTLER, 1988).

Bepflanzung


Beschattungsverhältnisse

Untersuchungen zur Veränderung der Beschattungsverhältnisse durch eine als Halde aufgeschnittene Deponie wurden an einem Standort im Oberrheintal durchgeführt.

In Nordsüdrichtung sollte ein Deponiekörper eine Breite von 400 m und in Westostrichtung von 300 m haben. Die Höhe des pyramidenstumpfförmigen Haldenkörpers war für etwa 30 m ü. Gr. geplant. Der mittlere Hangneigungswinkel würde etwa 15° betragen.

Aus dem für diesen Standort berechneten jährlichen Gang der Sonnenhöhe sowie der vorgegebenen mittleren Hangneigung wurde berechnet, daß in der Zeit vor 9 Uhr und nach 15 Uhr durch den Haldenkörper ein Schattenwurf zu erwarten ist, und zwar in der Zeit von Ende November bis Anfang Februar. Vor 6 Uhr und nach 18 Uhr ist mit Schattenwurf von Anfang Mai bis Mitte August in der Umgebung zu rechnen. Dabei wurde angenommen, daß bei Sonnenhöhen von weniger als 10° die Sonne wegen der Geländeplattform und des Bewuchses meist nicht sichtbar ist. Bei einer Sonnenhöhe von 10° bildet sich ein Schatten von 170 m aus.

Da die nächstliegende Wohnbebauung mehr als 1 km entfernt ist, kann sich der Haldeneinfluß dort im Schattenwurf nicht auswirken.

Literatur

