

INESCPORTO
PORTUGAL

Vladimiro Miranda

Fellow IEEE

Director INESC TEC

President INESC P&D Brasil

vladimiro.miranda@inesctec.pt

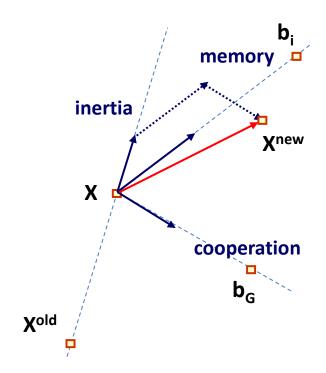
Leonel Carvalho

leonel.m.carvalho@inesctec.pt

Particle Swarm Optimization (Classic PSO)

A set of particles (solutions) in the search space

movement of a particle:


$$\mathbf{X}^{\text{new}} = \mathbf{X} + \mathbf{V}^{\text{new}}$$

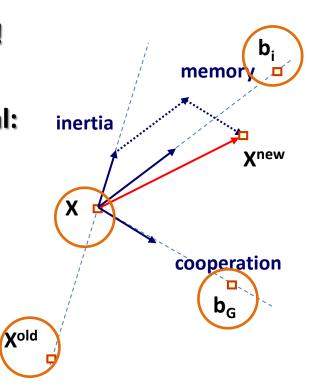
inertia:

moving in the same direction

 memory: attraction by particle past best

cooperation:
 attraction for global best

$$V_i^{\text{new}} = \mathbf{w_i} V_i + \text{Rnd}_1 \cdot \mathbf{w_M} (\mathbf{b_i} - \mathbf{X_i}) + \text{Rnd}_2 \cdot \mathbf{w_C} (\mathbf{b_G} - \mathbf{X_i})$$



What is the PSO movement rule, really?

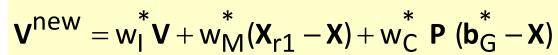
- It is a form of intermediary recombination!

Four ancestors (4) to produce a new individual:

- A particle
- Its direct ancestor
- Its best ancestor
- The best ancestor found by the swarm

The sharing proportion is defined by the weights:

$$\mathbf{X}^{\text{new}} = (1 + \mathbf{w}_{\text{I}} - \mathbf{w}_{\text{M}} - \mathbf{w}_{\text{C}})\mathbf{X} - \mathbf{w}_{\text{I}}\mathbf{X}^{\text{old}} + \mathbf{w}_{\text{M}}\mathbf{b}_{\text{i}} + \mathbf{w}_{\text{C}}\mathbf{b}_{\text{G}}$$


DEEPSO: a flavor of Differential Evolution in EPSO

RECOMBINATION via THE MOVEMENT RULE

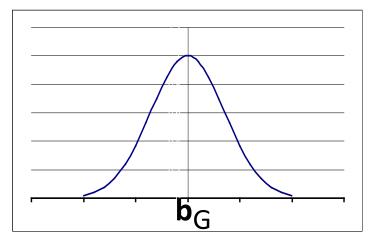
movement of a particle:

$$\mathbf{X}^{\text{new}} = \mathbf{X} + \mathbf{V}^{\text{new}}$$


- inertia: moving in the same direction
- perception: sensing a local gradient (by the swarm)
- cooperation: attraction to the proximity of the global best

Towards a self-adaptive recombination process

Each weight is subject to mutations


$$w_{\{I,M,C\}}^* = w_{\{I,M,C\}} (1 + \tau N[0,\sigma^2])$$

PLUS - the global best has a "foggy" definition

$$\mathbf{b}_{G}^{*} = \mathbf{b}_{G}(1 + \mathbf{w}_{b}^{*}N[0,1])$$

Exploration strength

$$w_b^* = w_b(1 + \tau'N[0, \sigma^2])$$

 (τ, τ') are constant)

EVOLVING SWARMS – EPSO AND DEEPSO

EPSO – the gradient perception is based on the particle self-memory term

$$v^{new} = w_1^* v + w_M^* (b_i - x) + w_C^* P (b_G^* - x)$$

DEEPSO – a flavor of Differential Evolution added to EPSO

$$v^{new} = w_1^* v + w_M^* (x_{r1} - x) + w_C^* P (b_G^* - x)$$

Variants:

sampled among the current generation : Sg

sampled among the matrix b_i of individual past bests: Pb

as a uniform recombination of the current generation: Sg-rnd

as a uniform recombination within the matrix b_i : Pb-rnd

for the latter 2:

not taking in account the direction of $(X_{r1} - X)$: : minus

taking in acc. the direction of $(X_{r1} - X)$: .* plus

taking in acc. the direction of $(X_{r1} - X)$ in each coordinate: .0 zero

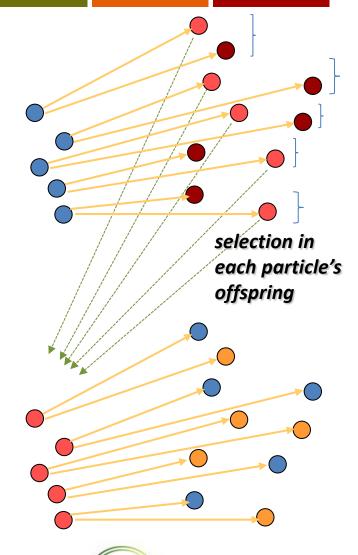
A SWARM WITH SELF-ADAPTIVE RECOMBINATION

REPLICATION - each particle is replicated r times

MUTATION - r-1 clones have their weights w mutated

RECOMBINATION - each particle generates 1 offspring

EVALUATION - each offspring has its fitness evaluated


SELECTION - by stochastic tournament (or elitism) the

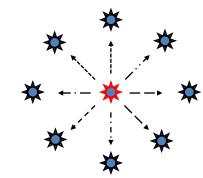
best particle in each group of r survives to form a new

generation

Selection acts separately on the descendents of each particle. The best particles carry with them, to the following generation, their mutated weights.

The recombination proportion is evolving under selection pressure!



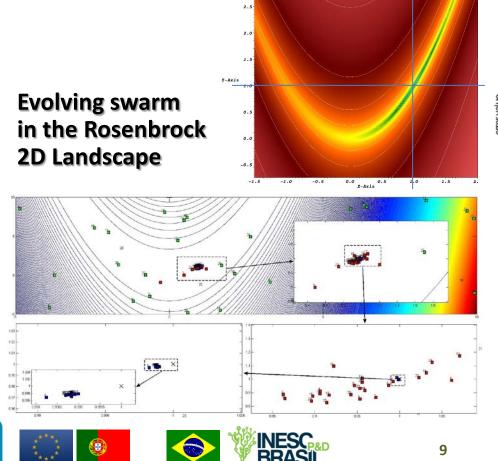


Stochastic star

There is a communication probability threshold p below which communication is allowed – and above which no information about b_G is taken in account. The probability threshold p is applied to each dimension of an individual.

On average, a percentage (1-p)*100 of the $(b_G - X)$ macro-gradient is ignored in each movement.

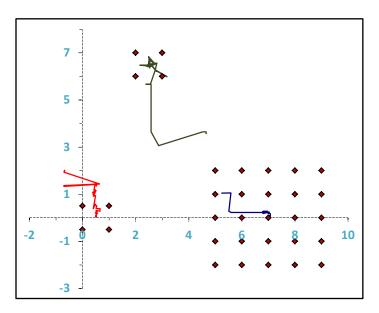
$$v^{new} = w_1^* v + w_M^* (x_{r1} - x) + w_C^* P (b_G^* - x)$$

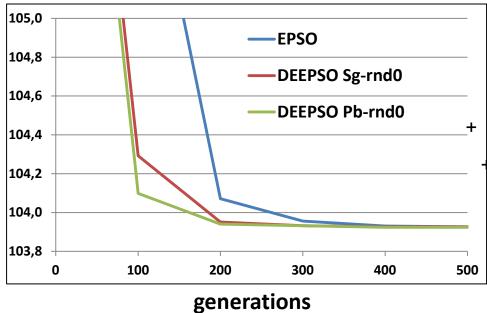


IMPORTANCE OF THE STOCHASTIC STAR TOPOLOGY

Rosenbrock function, 30 dim EPSO, 20 runs, 100,000 objective function evaluations

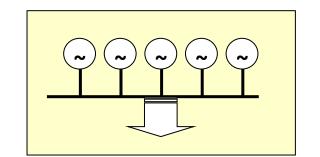
p = 0.75 leads to the most robust results EPSO is sensitive to p





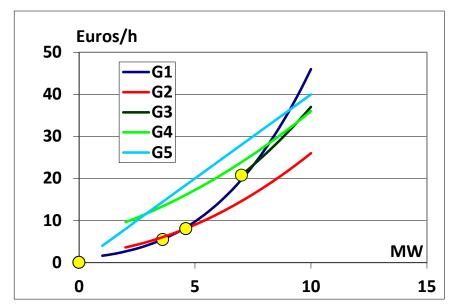
A simple fuzzy clustering problema (fuzzy c-means) EPSO vs. DEEPO (2 variants) – average of 20 runs, 8 particles

Faster convergence of DEEPSO variants



EPSO vs. DEEPSO

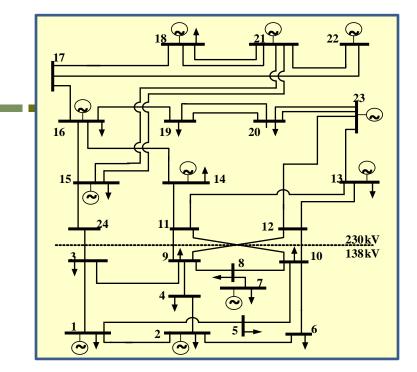
Toy Unit Commitment problem: Load 15 MW 1000 evaluations, 16 particles, 100 runs


No. of hits on the exact solution:

EPSO	DEEPSO Sg-rnd0	DEEPSO Pb-rnd0
46%	71%	81%

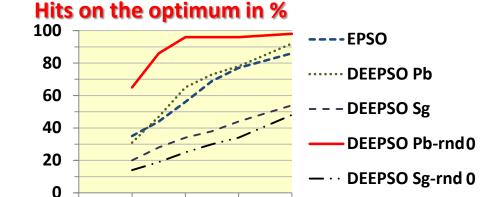
A mixed-integer problem

Difficult because of the deceptive landscape – and a local optimum has almost the same value as the global optimum


EPSO vs. DEEPSO

Stochastic planning for PAR/PST location

- k (wind power x load) scenarios


$$\min J = \sum_{k=1}^{S} p_k J_k$$

$$\begin{split} &J_k = \sum\nolimits_{i = 1}^N {{u_i}(A + B(\alpha _i^{Max})^2)} + Penalties \\ &\alpha _i^{min} \le \alpha _i \le \alpha _i^{max} \qquad u_i \in \{0,1\} \end{split}$$

Penalties on spilling wind and load curtailment

Again a mixed-integer problem **Again DEEPSO performs**

80

40

60

20

100 iterations

The application of DEEPSO to OPF challenge

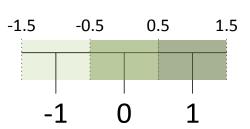
VERSION USED

- DEEPSO Pb-rnd⁻ sampling X_{r1} from the Matrix of Memories P_i
- Not evaluating X_{r1} , not looking at the sign of $(X_{r1} X)$

RAW APPLICATION, brute force approach

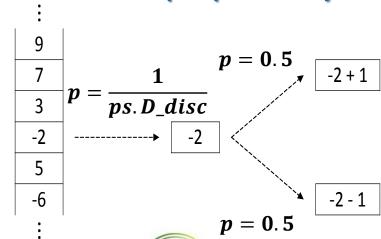
- No benefits from the mathematical model
- No benefits from clever initialization

SPECIAL HANDLING OF INTEGER VARIABLES SPECIAL HANDLING OF THE BALANCE OF CONSTRAINT VIOLATIONS



Handling of integer variables in DEEPSO

1. Deterministic rounding process


After every particle move

2. Probabilistic mutation scheme

- Governed by a probability of occurrence pStall, applied to the generation counting - in the OPF challenge, pStall = 0.2
- Then, within the chromosome, the genes for integer values are randomly selected, with a low probability
- If a gene is selected, mutation up or down with equal probability

Gently... not to disturb the learning process of DEEPSO...

There are several types of violations with different magnitudes for different scenarios

- Active power generation in REF bus, MW
- Voltage magnitude in PQ busbars, p.u.
- Reactive power generation in PV busbars, MVAR
- Apparent power in transmission lines, MVA

Separate penalties for each type of violation

ORPD:

$$f = g + \alpha \left[\lambda_1 \sum |\Delta V| + \lambda_2 \sum |\Delta Q| + \lambda_3 \sum |\Delta S| \right]$$

α	ORPD	OARPD
41 Bus	1	
IEEE 57 Bus	1	1
IEEE 118 Bus	1	10
IEEE 300 Bus	1	100

OARPD:

$$f = g + \alpha \left[\lambda_1 \sum |\Delta P| + \lambda_2 \sum |\Delta V| + \lambda_3 \sum |\Delta Q| + \lambda_4 \sum |\Delta S| \right]$$

Handling of Constraint Violations in DEEPSO

Basic principle: no preference between different types of violations (- but... is this good?)

STRATEGY

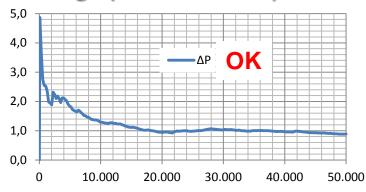
The λ weights are adaptively adjusted every iteration according to the average value of the sum of deviations

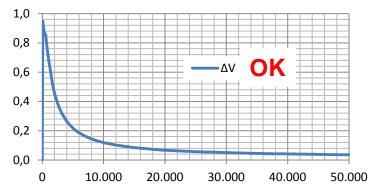
$$\lambda_1 \sum |\Delta P| \approx \lambda_2 \sum |\Delta V| \approx \lambda_3 \sum |\Delta Q| \approx \lambda_4 \sum |\Delta S|$$

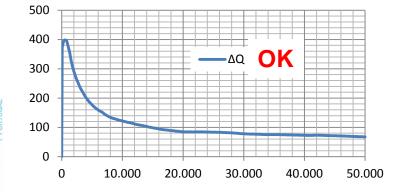
Select the maximum of the average sum of deviations at gen. T

$$max\left(\frac{1}{T-1}\sum_{t=1}^{T-1}\sum|\Delta P_{t-1}|,\frac{1}{T-1}\sum_{t=1}^{T-1}\sum|\Delta V_{t-1}|,\frac{1}{T-1}\sum_{t=1}^{T-1}\sum|\Delta Q_{t-1}|,\frac{1}{T-1}\sum_{t=1}^{T-1}\sum|\Delta S_{t-1}|\right)$$

- The coefficient λ corresponding to the maximum is equal to 1
- The remaining coefficients are adjusted so that every term of the fitness function has the same order of magnitude

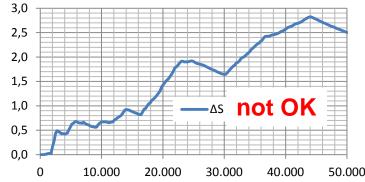




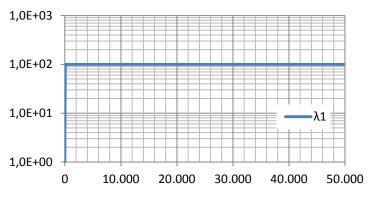


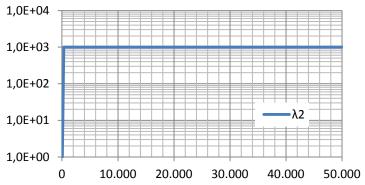
IEEE 57 Bus (OARPD)

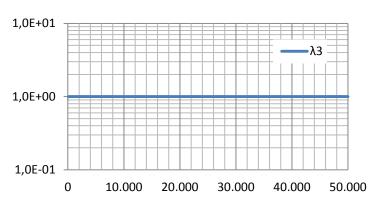
Average (for the swarm) of the Sum of Deviations

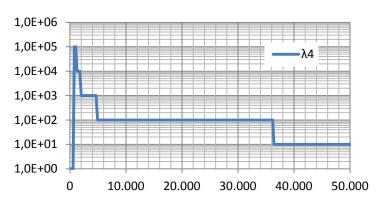


Evidence that the swarm increases in variance in ΔS to reduce the other

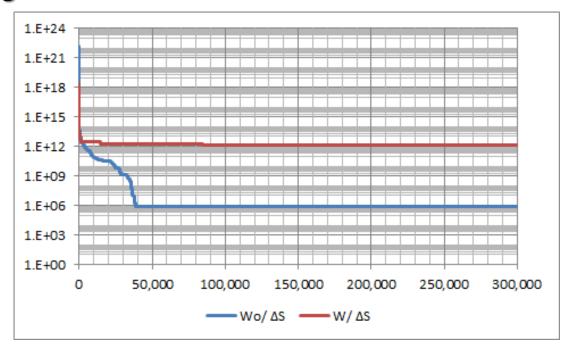





IEEE 57 Bus (OARPD)


PENALTY COEFFICIENTS

evidence that λ_4 is the most unstable



TECHNOLOGY & SCIENCE | COORDINATE | ASSOCIATE LABORATORY | PRESENTION | PROPERTION | PROPERTION

IEEE 300 Bus (OARPD)

Comparing the evolution of the fitness function of the best solution in both adaptive penalty strategies

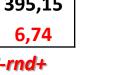
Obviously, the sensitivity of the stability of the process to the violation of different constraint types must be taken in account

IMPROVEMENT AFTER THE COMPETITION

- **DEEPSO P_G-rnd0 is more promising**
- Mutations also applied to the real variables
 - Evolving to a hybrid of DEEPSO with EP, with a sequence of EPSO moves being followed by a cromosome improvement process
- This process resulted in higher robustness!
 - Reduced variance of the results in 31 runs in all cases!, compared with the submitted results – and even better solutions!

IEEE 300 Bus

Maximum


Minimum

Mean (31)

Std Deviation

OPRD			
IEEE 300 Bus	Sent	New*	
Maximum	562,46	413,08	
Minimum	391,44	385,43	
Mean (31)	414,62	395,15	
Std Deviation	42,04	6,74	

^{*} Results with DEEPSO PG-rnd+

OPARD

Sent

736.527,31

721.377,54

723.041,13

2.669,91

New*

725.457,95

721.166,66

722.069,70

818,74

DEEPSO has 5 setting parameters

- **Population size N**
- Mutation rate, T
- **Communication probability p**
- Probability of chromosome improvement (mutation) pStall
- Scaling coefficient α (= max λ)

Future work

- Fully investigating a hybrid of DEEPSO with EP chromosome improvement for real and integer variables
- Improving the adaptive penalty scheme
- Adding the mathematical knowledge to a process that would be more "industry friendly"

Acknowledgement

The team at INESC TEC since 2002

Vladimiro Miranda Nuno Fonseca

Cristina Cerqueira

Andrea Pontual

Hrvoje Keko

Álvaro Jaramillo Jr

Jean Sumaili

Vera Palma

Joana Hora

Rui Alves

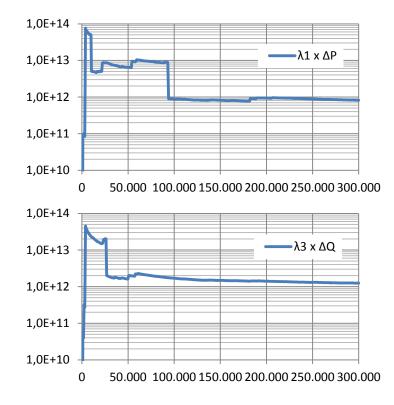
Carolina Marcelino

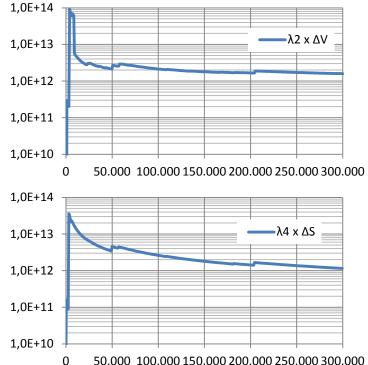
Elisabete Wanner

Fábio Loureiro

Diego Issicaba

Leonel Carvalho

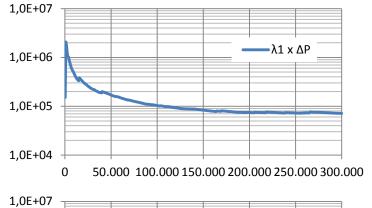

GAL.

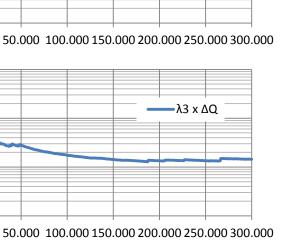

INESCTEC FICHNOLOGY & SCIENCE ACCOUNTS I ADDAMATORY INESCHORTO

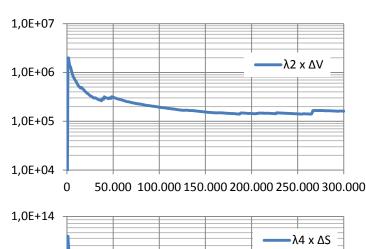
IEEE 300 Bus (OARPD)

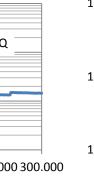
CONFIRMATION OF CRITICALITY OF Δ S

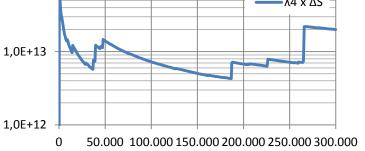
Average (in the swarm!) penalty evolution when including an adaptive ΔS term together with the other terms






IEEE 300 Bus (OARPD)

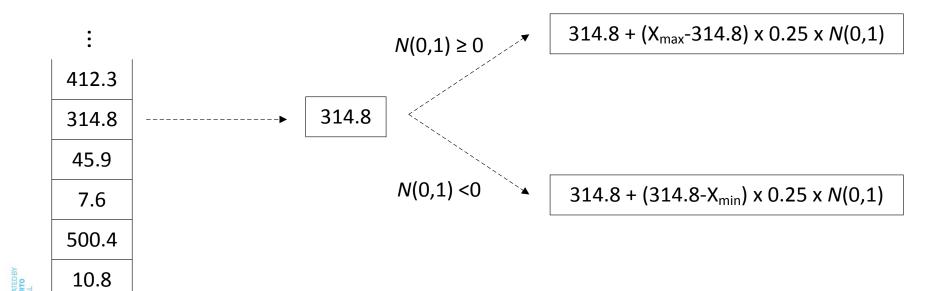

CONFIRMATION OF CRITICALITY OF Δ S


Average (in the swarm!) penalty evolution when not including an adaptive ΔS term – fixing λ_4 at a very high level \rightarrow stable results!

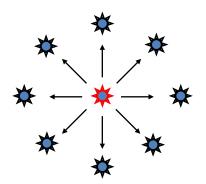
0

1,0E+06

1.0E+05

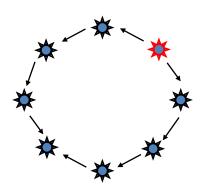

1,0E+04

Real Variables Mutation



Communication structure among particles

Classical communication structure: the star


 all individuals share at the same time the knowledge about the location of b_G

Too much communication is against exploration of the search space – may induce premature convergence

Alternative structure: the ring

 each particle only communicates with two neighbours - information about a new b_G takes time until it reaches all individuals

Too little communication risks approaching the process to a set of parallel independent individual searches

