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1 Introduction

The call for participation to the Application of Modern Heuristic Optimization Algorithms for Solving Op-
timal Power Flow Problems opens with,

“Heuristic optimization has undergone significant developments in recent years. By using different novel
mechanisms for improved search exploration and exploitation, modern heuristic optimization tools have
demonstrated a great promise for solving some real world problems, whose mathematical complexity pre-
vents thus far the use of classical optimization algorithms.”

As a research group studying all forms of optimization, we strive to develop a deep understanding of the
optimization landscape and to articulate the strengths and weaknesses of different approaches and technolo-
gies. Recognizing the competition is bore from recent advances in modern heuristic optimization tools such
as evolutionary algorithms (EA) and metaheuristics (MH), we sought to take a different approach and at-
tempt to solve the competition problems with classic off-the-shelf mathematical programming technologies.
Comparing these technologies to other state-of-the-art methods (such as EA, and MH) provides insight for
improving these general purpose solvers. The competition results will provide invaluable information on the
overall viability of our proposed off-the-shelf mathematical programming solutions. However, regardless of
the competition outcome, we hope that our submission has intrinsic value as a baseline for what is possible
with current mathematical programming tools.

The remainder of this report documents how we went about modeling the competition problems as Mixed
Integer NonLinear Programs (MINLPs) and how we integrated those MINLPs into the test bed infrastructure.
We wrap-up with some general observations we made while preparing this competition submission.

1.1 Building the Models

The competition is comprised of three related optimization problems. Line loss minimization at a wind farm
(WPP), line loss minimization (ORPD), and fuel cost minimization (OARPD). Although these problems
share a core set of common constraints, each is slightly different and requires its own MINLP. The precise
specification of each problem can be found in the following models:

1. Wind Farm Line Loss Minimization (WPP) - model/ACModel ll wf soft.mod

2. Line Loss Minimization (ORPD) - model/ACModel ll sc.mod

3. Fuel Cost Minimization (OARPD) - model/ACModel opf sc active bounds.mod

The models are implemented using the mathematical programming language AMPL [3]. In each of these
optimization problems, we found that the supplied MatPower files (i.e. the “.m” files in input data), where
insufficient for capturing a complete mathematical model of each of the competition problems. In all cases,
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details relating to bus shunt and transformer steps were missing. Additionally, in the case of the WPP
problem, the daily q ref value seems to be inconsistent with the test bed evaluation.1 To formulate our
MINLPs, we extracted the remaining required input data from the mpc and proc runtime variables and
appended the provided MatPower cases to include the necessary information. We then built a translation
tool input data/mp opf2dat.py to covert the augmented MatPower files into a data format that AMPL can
read. These AMPL input data files are the “.dat” files in the input data directory. Extreme care and testing
was taken to ensure that the test bed’s evaluation function and our AMPL models were solving the same
problem.

1.2 Solving Technology

The AMPL modeling language is solver agnostic and selecting an appropriate solver is critical. Our previous
experience suggested that MINLP solver Bonmin [1], which utilizes IPOPT [6] for solving non-linear programs
(NLPs), would be an appropriate solver for these MINLPs. Both of these solvers are freely available via
the coin-or project [2], and their admissible use in the competition was confirmed by Dr. Rueda [5]. Based
on the given problem sizes we set IPOPTs iteration limit to 300 and Bonmin’s termination criteria to an
optimality gap of 0.05%. The remaining solver parameters are left at their default values. Both Bonmin and
IPOPT are deterministic algorithms, hence our submission returns the same solution on all 31 replicate runs
with slight variants in runtime for operating system overhead. The experiments were conducted on a single
thread in a Dell PowerEdge R415 with 64GB memory and two AMD Opteron 4226 2.7GHz processors.

It is important to note that this solution approach is in fact a heuristic method for solving these MINLPs.
IPOPT converges to a local stationary point and provides no guarantees of optimality for non-convex prob-
lems (such as, AC power flows) and hence the branch and bound algorithm for solving MINLPs implemented
in Bonmin cannot provide global optimality guarantees neither. Despite these limitations, our previous ex-
perience has indicated that Bonmin and IPOPT provide high quality solutions to MINLPs arising in power
systems. We are looking forward to seeing if this experience continues to hold true on these competition
problems.

1.3 Test Bed Integration

Our test bed implementation “nicta.m” consists of three core steps,

1. Selecting the appropriate MINPL model for the problem at hand.

2. Calling AMPL via the command line interface.

3. Parsing the AMPL results and evaluating the solution in the test bed.

The bulk of the optimization is conducted by the general-purpose tools Bonmin and IPOPT. Unfortunately,
this external solution approach yields only the final solution, rather than a trace of solution improvements.
To follow the spirit of the competition in measuring total function evaluations and iterative solution im-
provements, we delay the introduction of the the Bonmin solution by I test bed solution evaluations, where
I is the number of NLP iterations Bonmin used in reaching the solution. This provides a rough estimation
for what a complete trace of solution improvements would be.

This behavior is implemented by having the population evaluation loop evaluate a random initialized

solution until the Ith iteration, at which point, the solution produced by Bonmin is introduced. This
Bonmin solution remains unmodified for 100 additional evaluations before a short circuiting behavior jumps
to the last evaluation step, in the interest of agile development and regression testing.2

1However, the illustration in the competition guidelines does are appear to be consistent with the test bed evaluation.
2We projected that running the evaluation function the designated 57.66 million times required for the complete test bed

evaluation would require over 7 days of serial computation on our hardware.
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2 Test Bed Observations

While preparing this submission for the competition we made several observations about the test bed and test
problems. In this section we document those observations and discuss how they affected our final submission.

1. As documented, the test bed does not enforce the continuous variable bounds as specified in the x min
and x max vectors. We observed that violating these bounds may improve the fitness value. Dr. Rueda
[4] suggested that we should satisfy these bounds, and hence, at the expense of a better fitness value,
we enforce the variable bounds whenever possible.

2. If the continuous variable bounds are ignored, we noticed in the OARPD problem, it can be advan-
tageous to set some generators active power injection to negative values in systems 118 and 300. As
noted above, we do not allow such solutions but the test bed accepts these solutions without complaint.

3. We noticed that there is some times a discrepancy between the variable bounds as specified by x min
and x max vectors and the MatPower file. For example, the bus voltage in x is often 1.0 ± 0.05 while
it is 1.0 ± 0.06 in the MatPower file. When there is ambiguity, we adopt the bounds provided in the
MatPower file.

4. We conjecture that several of the contingency cases are infeasible in light of the problem and vairable
constraints. This conflicts with the competition guidelines, which suggest all of the test cases are
solvable. A detailed analysis is provided in Section 3.

5. The “main comment.m” file states “an intervention scheme ensures that tailing contingencies are by-
passed after conducting constraint handling as soon as any violation has been detected for intermediate
contingencies. This strongly benefits the computational efficiency and quality of solutions for a given
number of function evaluations while ensuring comparability between different implementations.” Al-
though this behavior was designed to increase computational efficiency, it also allows the algorithm
to avoid solving the contingencies entirely, by introducing a very small constraint violation into the
base case. This point was discussed at length with Mr. Wildenhues with specific example from the
118 network [7, 8]. The ultimate conclusion was, “only the achieved final fitness value regardless of the
feasibility status will be considered.” This led us to design an algorithm that would avoid solving the
contingencies in the interest of achieving the lowest possible fitness value.

6. Relating to the previous point. Due to the large objective values in the OARPD problem, it is quite
easy for small constraint violations penalties to hide in the least significant digits of the fitness value.

7. The runtime of the test bed evaluation function greatly over shadows that of Bonmin. The cumulative
runtime for Bonmin to produce solutions to all of the 102 competition problems is less than 1.5 minutes.
On the other hand, simulating the function evaluations inside of the test bed (as discussed in Section
1.3) takes around 10.5 minutes on the same hardware.

3 Instance Data Analysis

Before solving the Line Loss Minimization (ORPD) and Fuel Cost Minimization (OARPD) problems in
their entirety, we considered some relaxations of the problems to get an impression for the range of possible
fitness values. We employed three relaxation approaches: (1) considering each contingency as an isolated
optimization problem; (2) relaxing the discrete variables to continuous ones, so the problem can be solved
quickly by a numerical method (such as IPOPT); (3) relaxing the problem constraints (e.g. reactive injection,
voltage bounds, line capacities, ...) using a penalty function 3.

Table 1 summarizes the results of solving the ORPD and OARPD problems with relaxations 1 and 2
(called Relaxed) and relaxations 1, 2, and 3 (called Relaxed-λ) using IPOPT. The dashed lines “—” indicate

3Introducing constraint violation variables and chaining the objective to minimize constraint violations.
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that IPOPT had difficulty finding a feasible solution. The table shows that there is some difficulty solving
contingencies in systems 57 and 300. Interestingly the Relaxed-λ always converges to a saddle point in
IPOPT, however, in each case when Relaxed was infeasible, the objective value of Relaxed-λ is greater than
0, indicating that not all of the constraints could be satisfied. Table 2 preforms a similar analysis on the
WPP problem and suggests that scenarios 49 through 56 may be infeasible. The results for Relaxed and
Relaxed-λ do not prove that these problems are infeasible, but they provide us with a strong indication,
which is consistent with observations made in the test bed.

4 Closing Remarks

In conclusion of this report, we would like to thank the organizers for preparing this competition and
for answering Carleton’s abundant questions about the test bed. Comparing power system optimization
algorithms on a consistent collection of real world problems is a valuable exercise in power system research,
and we hope this competition will continue on as an annual exercise maintaining a consistent collection of
high quality solutions and algorithms for power system optimization. Finally, as discussed above, we have
made several design choices in the implementation of our competition submission. If the organizers feel
any of these choices were not in the spirit of the competition, we will be happy to make any requested
modifications.

System Contingency Relaxed Relaxed-λ

ORPD
57 0 24.27 0.00
57 1 — 0.17
57 2 — 0.04
118 0 114.68 0.00
118 1 117.42 0.00
118 2 117.03 0.00
118 3 116.19 0.00
118 4 115.14 0.00
300 0 380.62 0.00
300 1 — 40.09
300 2 — 9.07
300 3 — 29.90

OARPD
57 0 41677.34 0.00
57 1 42646.77 0.00
57 2 — 0.04
118 0 134953.44 0.00
118 1 135000.48 0.00
118 2 134981.64 0.00
118 3 134991.10 0.00
118 4 134956.31 0.00
300 0 720198.43 0.00
300 1 — 1.35
300 2 — 0.08
300 3 721851.51 0.00

Table 1: Feasibility investigation of ORPD and
OARPD Problems.

System Scenario Relaxed Relaxed-λ

WPP
41 1 1.29 0.00

...
41 48 1.45 0.00
41 49 — 0.01
41 50 — 0.04
41 51 — 0.05
41 52 — 0.06
41 53 — 0.06
41 54 — 0.06
41 55 — 0.06
41 56 — 0.04
41 57 1.09 0.00

...
41 96 1.49 0.00

Table 2: Feasibility investigation of WPP Scenarios.
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