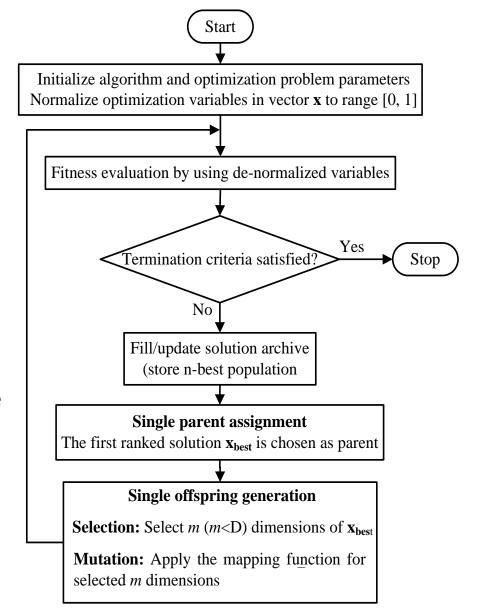


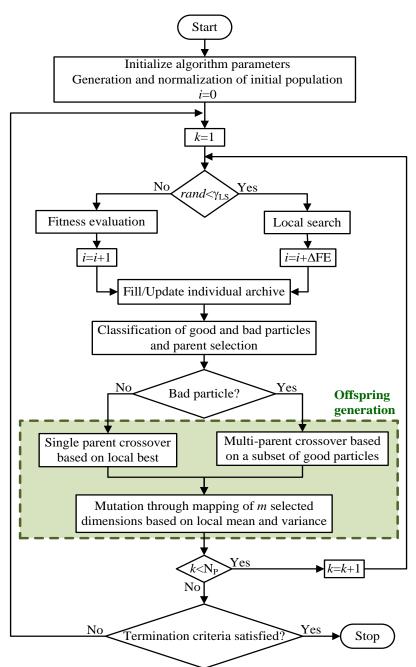
Open-Minded

Application of Mean Variance Mapping Optimization (MVMO) to Solve OPF Problems

István Erlich
University Duisburg-Essen
Duisburg - Germany
istvan.erlich@uni-due.de


José L. Rueda
Delft University of Technology
Delft – Netherlands
j.l.ruedatorres@tudelft.nl

Rationale behind MVMO


- ☐ Introduced by I. Erlich (University Duisburg-Essen, Germany) in 2010
- ☐ Internal search range of all variables restricted to [0, 1].
- Solution archive: knowledge base for guiding the searching direction.
- Mapping function: Applied for mutating the offspring on the basis of the mean and variance of the n-best population attained so far.

The hybrid variant: MVMO-SH

MVMO-SH: launching local search

Local search performed according to

$$rand < \gamma_{LS}$$
 (1)

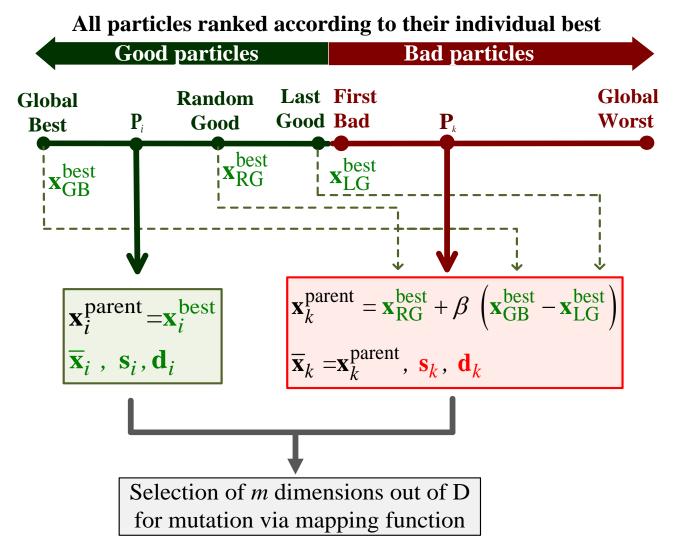
where

 γ_{LS} : local search probability, e.g. $\gamma_{LS} = 1.5/100/D$

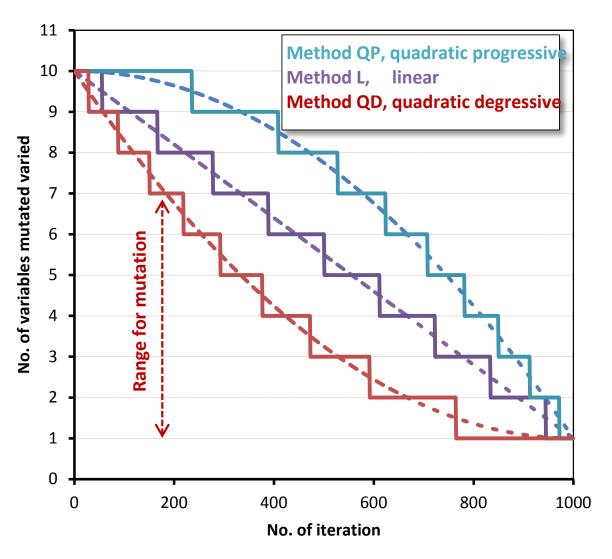
D: Problem dimension

Different methods can be used:

- Classical: Interior-Point Method (IPM)
- Heuristic: Hill climbing, evolutionary strategies

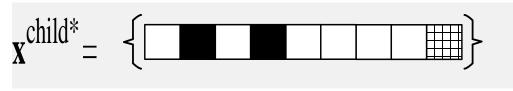

MVMO-SH: solution archive

Z	Ra	ankir	ng	Fitnes		S	x_1	x_2		•••		x_{D}		
PARTICLE N _P	PARTICLE 2	Ra	nki	ng	Fi	tne	SS	x_1	x_2			••	x_{D}	
ART]		PARTICLE 1	Ranking			Fitness			x_1		x_2	2	•••	x_{D}
\mathbf{P}_ℓ			1st best			F_1								
			2nd best			F_2					Optimization			
			•••								Variables			es
			Last best			F_A			•					
			Mean						\bar{x}_1		\bar{x}	2		\bar{x}_{D}
			Shape						s_1		SZ	2		s_{D}
				d-factor						d_1		2		$d_{\rm D}$


MVMO-SH: parent selection

MVMO-SH: selection of dimensions for mutation

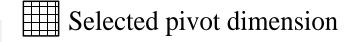
Two different strategies are available:

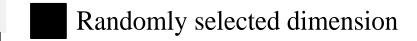

- a) The full range corresponds with the number of mutated variables, e.g. m = 7
- b) The number of mutated variables estimated randomly in the given range, e.g.
 m = irand(7)

MVMO-SH: selection of dimensions for mutation

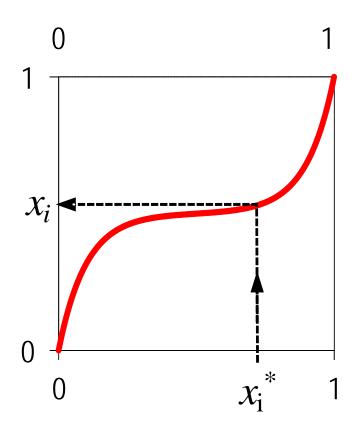
Random-sequential selection mode

Generation n


$$\mathbf{x}^{\text{child}*} = \left\{ \begin{array}{c} \\ \\ \end{array} \right\}$$


Generation n+1

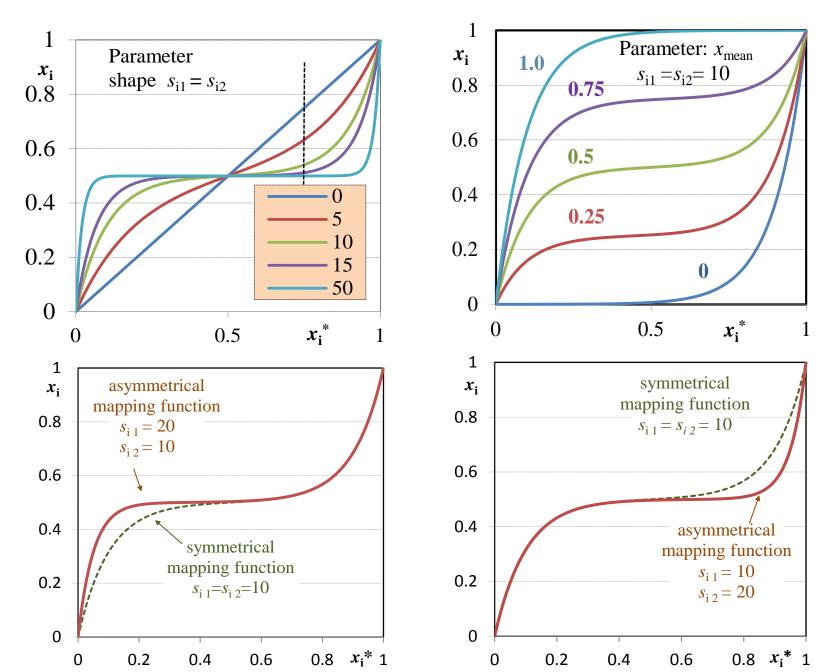
Generation n+2



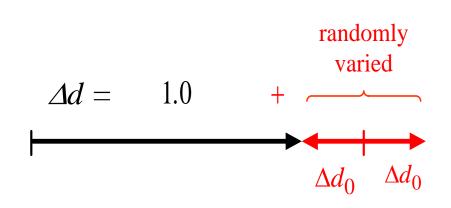
MVMO-SH: mutation based on mapping function

$$h = \overline{x_i} \cdot (1 - e^{-x \cdot s_1}) + (1 - \overline{x_i}) \cdot e^{-(1 - x) \cdot s_2}$$
 (2)

$$x_{i} = h_{x} + (1 - h_{1} + h_{0}) \cdot x_{i}^{*} - h_{0}$$
 (3)


$$h_{x} = h(x = x_{i}^{*})$$
 $h_{0} = h(x = 0)$ (4
 $h_{1} = h(x = 1)$

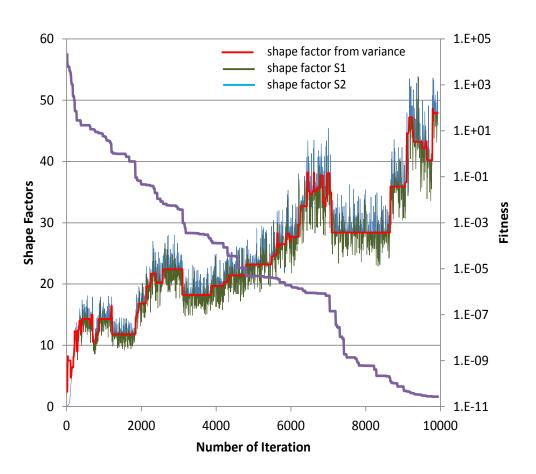
 x_i^* and x_i in the range $\begin{bmatrix} 0 & 1 \end{bmatrix}$



MVMO-SH: mapping function features

MVMO-SH: assignment of shape and d-factors

```
s_{i1} = s_{i2} = s_i = -\ln(v_i) \cdot f_s
if s_i > 0 then
     \Delta d = (1 + \Delta d_0) + 2 \cdot \Delta d_0 \cdot (rand - 0.5)
     if s_i > d_i
        d_{i} = d_{i} \cdot \Delta d
     else
          d_{\rm i} = d_{\rm i}/\Delta d
                                                      (5)
      end if
     if rand < 0.5 then
          s_{i1} = s_i; s_{i2} = d_i
     else
          s_{i1} = d_i; s_{i2} = s_i
     end if
end if
```



 $d_{\rm r}$ is always oscillating around the shape $s_{\rm r}$ and is set to 1 in the initialization stage

$$\Delta d_0 \le 0.4$$

The d-factors remain dynamic with the mapping even the corresponding shape doesn't change

MVMO-SH: assignment of shape and d-factors

$$\begin{aligned} s_{i1} &= s_{i2} = s_i = -\ln(v_i) \cdot f_s \\ \text{if } s_i &> 0 \text{ then} \\ \Delta d &= \left(1 + \Delta d_0\right) + 2 \cdot \Delta d_0 \cdot \left(rand - 0.5\right) \\ \text{if } s_i &> d_i \\ d_i &= d_i \cdot \Delta d \\ \text{else} \\ d_i &= d_i / \Delta d \\ \text{end if} \\ \text{if } rand &< 0.5 \text{ then} \\ s_{i1} &= s_i \; ; \quad s_{i2} = d_i \\ \text{else} \\ s_{i1} &= d_i \; ; \quad s_{i2} = s_i \\ \text{end if} \end{aligned}$$

CEC2013 function F1, single particle MVMO without local search, fs=1.0, $\Delta d_0=0.15$

Thanks!

Dr. José L. Rueda

J.L.RuedaTorres@tudelft.nl

http://www.uni-due.de/mvmo/

