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Abstract

A least-squares spectral collocation scheme for the Stokes and incom-
pressible Navier-Stokes equations is proposed. The original domain is
decomposed into quadrilateral subelements and on the element interfaces
continuity of the functions is enforced in the least-squares sense. The col-
location conditions and the interface conditions lead to overdetermined
systems. These systems are directly solved by QR decomposition of the
underlying matrices. By numerical simulations it is shown that the direct
method leads to better results than the approach with normal equations.
Furthermore, it is shown that the condition numbers can be reduced by
introducing the Clenshaw-Curtis quadrature rule for imposing the aver-
age pressure to be zero. Finally, our scheme is successfully applied to the
regularized and lid-driven cavity flow problems.

Keywords: Navier-Stokes equations, least-squares, spectral collocation, direct
solvers, condition numbers, improved stability

1 Introduction

Spectral methods (see, e.g., Canuto et al. [6], Gottlieb and Orszag [9], [23] or
Deville et.al. [7]) employ global polynomials for the numerical solution of dif-
ferential equations. Hence they give very accurate approximations for smooth
solutions with relatively few degrees of freedom. For analytical data exponen-
tial convergence can be achieved. If one deals with problems with non-smooth
solutions (e.g., discontinuities or layers) the usual (global) continuous spectral
approach yields very poor approximation results. To avoid these difficulties the
original domain has to be decomposed into several subdomains where jumps at
the interfaces are allowed, i.e. there is the possibility to make the solution dis-
continuous between neighboring elements. This are the so called discontinuous
Galerkin methods and as a very special case, there are the discontinuous least-
squares approaches. Gerritsma and Proot showed in [10] the good performance
of discontinuous least-squares spectral element methods. Furthermore, Bensow
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and Larson showed the good performance of discontinuous least-squares finite
element methods in [1] and [2]. In [14] we extended the above approach to
one-dimensional singular perturbation problems where the least-squares spec-
tral collocation schemes lead to a stabilization. Heinrichs extended the in [15]
proposed least-squares spectral collocation method to a triangular decompo-
sition [17] of the original domain and achieved good numerical results. Here
we extend the method to a decomposition in quadrilaterals of the original do-
main and apply these scheme to the two-dimensional Stokes and incompressible
Navier-Stokes equations. The collocation conditions together with the inter-
face and boundary conditions lead to an overdetermined system that can be
approximately solved by least-squares. The essential enhancements of the here
introduced scheme is the increased accuracy because of the use of a direct solver.
For the overdetermined system we compute the QR decomposition of the associ-
ated matrix and solve the system. Because of avoiding the normal equations we
obtain linear systems of equations with dramatically reduced condition numbers
and so round-off errors do not have such a big influence to the approximation
results.
For the Stokes and Navier-Stokes problems the velocity and the pressure can-
not be approximated independently due to the well known Babus̆ka - Brezzi
condition. If the velocity and the pressure are approximated by polynomials of
the same degree eight spurious modes are introduced which lead to an unstable
system (see Bernardi, Canuto and Maday [3]). A well-known compatible ap-
proximating velocity-pressure pair is the so-called PN ×PN−2 formulation, see,
e.g., Rønquist [32]. Heinrichs [11], [13] employed this technique for the splitting
of the Stokes and Navier-Stokes equations. There the velocity components are
approximated by polynomials in PN and the pressure by two degrees lower or-
der polynomials in PN−2 . The resulting discrete system constitutes a saddle
point problem which is diffcult to solve numerically.
Least-squares techniques for such problems offer theoretical and numerical ad-
vantages over the classical Galerkin type methods which fulfill the well-posedness
(or stability) criterion, the so called LBB condition. One very special least-
squares technique is the spectral least-squares method. These spectral least-
squares methods for the Stokes problem were first introduced by Gerritsma
and Proot in [28], [29]. Spectral least-squares for the Navier-Stokes equations
were first presented by Pontaza and Reddy in [25], [26], [27], followed by Ger-
ritsma and Proot in [30]. Heinrichs investigated least-squares spectral collo-
cation schemes in [15], [16], [17] that lead to symmetric and positive definite
algebraic systems which circumvent the LBB stability condition. Since we here
work on least-squares spectral collocation schemes we want to summarize some
advantages of this approach:

• equal order interpolation polynomials can be employed

• it is possible to vary the polynomial order from element to element

• improved stability properties for small perturbation parameters in singular
perturbation problems [8], [14] and Stokes or Navier-Stokes equations [15],
[16], [17], [28], [29], [30]

• good performance in combination with domain decomposition techniques
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• direct and efficient iterative solvers for positive definite systems can be
used

• implementation is straightforward.

The paper is organized as follows. In Section 2, the first-order formulation of the
Stokes and Navier-Stokes equations is introduced. Then we describe the least-
squares spectral collocation scheme, specify the domain decomposition (section
3) and describe the discrete linear system of equations (section 4). Section 5
presents the numerical simulations with the results for the Stokes (subsection 5.1
and 5.2) and for the Navier-Stokes equations (subsection 5.3: smooth example,
subsection 5.4: regularised cavity flow, subsection 5.5: lid-driven cavity flow).
Finally, a conclusion is presented.

2 The Stokes and Navier-Stokes equations

In order to apply least-squares the Stokes and Navier-Stokes problem is trans-
formed into an equivalent first-order system of partial differential equations.
This is accomplished by introducing the vorticity ω = ∇ × u as an auxiliary
variable. By using the identity

∇×∇× u = −∆u +∇(∇ · u)

and the incompressibility constraint ∇ · u = 0 we obtain

∂u
∂t

+ ν∇× ω +∇p = f in Ω , t ∈ [0, tend] (1)

∇ · u = 0 in Ω , t ∈ [0, tend] (2)
ω −∇× u = 0 in Ω , t ∈ [0, tend] (3)

for the Stokes equations and for the Navier-Stokes equations we obtain

∂u
∂t

+ u · ∇u + ν∇× ω +∇p = f in Ω , t ∈ [0, tend] (4)

∇ · u = 0 in Ω , t ∈ [0, tend] (5)
ω −∇× u = 0 in Ω , t ∈ [0, tend] (6)

where uT = [u1, u2] denotes the velocity vector, p the pressure, fT = [f1, f2] the
forcing term and ν the kinematic viscosity. Here it is assumed that the density
equals unity. Since the pressure is through (1)-(3) or (4)-(6) only determined up
to a constant for the Stokes or Navier-Stokes equations we have to introduce an
additional condition for the pressure. One procedure is to impose the pressure
at an arbitrary point of the given domain. In [30] the pressure constant was
set to zero in the point (0.5, 0.5). For simplicity we impose the pressure at the
point (1, 1). Another way of dealing with the pressure constant is imposing the
average pressure to be zero; i.e.,

∫

Ω

p dx = 0. (7)
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2.1 The Stokes equations

For the Stokes equations we use for time integration a second-order BDF scheme
(see, e.g., [11]): If ∆t denotes the step size in t and the index n+1 indicates that
the functions are evaluated at the time step tn+1 = (n + 1)∆t, n = 0, 1, 2, . . .,
the approximation of (∂u

∂t )n+1 can be written as

3
2u

n+1 − 2un + 1
2u

n−1

∆t
. (8)

Now the complete system at time step tn+1 can explicitly be written as:




3
2∆t

0 ν
∂

∂x2

∂

∂x1

0
3

2∆t
−ν ∂

∂x1

∂

∂x2

∂

∂x2
− ∂

∂x1
1 0

∂

∂x1

∂

∂x2
0 0







un+1
1

un+1
2

ωn+1

pn+1




=




gn+1
1

gn+1
2

0

0




in Ω (9)

where

gn+1 =
2

∆t
un − 1

2∆t
un−1.

2.2 The Navier-Stokes equations

For the Navier-Stokes equations we use an implicit and explicit scheme and
compare both.

2.2.1 Implicit scheme

As proposed in [30], we apply a θ-integration scheme in time combined with the
Picard linearization to the momentum equations of the unsteady Navier-Stokes
equations. The subscript ”0” corresponds to the results obtained at a previous
integration time step. Now the momentum equations read as follows:

u− u0

∆t
+ θ(u0 · ∇u +∇p+ ν∇× ω − f) (10)

= (θ − 1)(u0 · ∇u0 +∇p0 + ν∇× ω0 − f0)

By taking θ = 1, the time integration is carried out by the backward Euler
method, which is only first-order accurate in time. The second-order time in-
tegration of Crank-Nicolson can be obtained by setting θ = 1/2. Since the
Crank-Nicolson scheme has no damping, one often takes θ = 1/2 +O(∆t). The
temporal accuracy remains second-order, and adding the small factor ∆t effec-
tively damps the small waves in spectral element simulations. Hence, in order to
obtain time-accurate solutions, one should use θ = 1/2 +O(∆t). The θ-scheme
is unconditionally stable for 1/2 ≤ θ ≤ 1. Here we only consider stationary
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problems where it is recommended to use backward Euler (θ = 1) with large
time steps to obtain steady-state solutions. Now the complete system for each
time step can explicitly be written as:

Az = r (11)

where

A =




1
∆t

+ θu1,0
∂

∂x1
+ θu2,0

∂

∂x2
0 θν

∂

∂x2
θ
∂

∂x1

0
1

∆t
+ θu1,0

∂

∂x1
+ θu2,0

∂

∂x2
−θν ∂

∂x1
θ
∂

∂x2

∂

∂x2
− ∂

∂x1
1 0

∂

∂x1

∂

∂x2
0 0




,

z = (u1, u2, ω, p)
T and

r =




f1 +
u1,0

∆t
+ (θ − 1)

[
u1,0

∂u1,0

∂x1
+ u2,0

∂u1,0

∂x2
+ ν

∂ω0

∂x2
+
∂p0

∂x1

]

f2 +
u2,0

∆t
+ (θ − 1)

[
u1,0

∂u2,0

∂x1
+ u2,0

∂u2,0

∂x2
+ ν

∂ω0

∂x1
+
∂p0

∂x2

]

0
0



.

2.2.2 Explicit scheme

For time integration we also employ a semi-implicit scheme where the second
order backward differentiation scheme (8) for the viscous term is combined with
a second order Adams-Bashforth scheme for the convective term. Hence the
momentum equations (4) at time step tn+1 = (n+ 1)∆t, n = 0, 1, 2, . . . can be
written as:

3
2∆t

un+1 + ν∇× ωn+1 +∇pn+1 = gn+1 (12)

where

gn+1 = fn+1 − 2Cn + Cn−1 +
2

∆t
un − 1

2∆t
un−1 (13)

with the convective term C = (u · ∇)u.
Now the complete system at time step tn+1 can explicitly be written as:
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3
2∆t

0 ν
∂

∂x2

∂

∂x1

0
3

2∆t
−ν ∂

∂x1

∂

∂x2

∂

∂x2
− ∂

∂x1
1 0

∂

∂x1

∂

∂x2
0 0







un+1
1

un+1
2

ωn+1

pn+1




=




gn+1
1

gn+1
2

0

0




in Ω. (14)

The big advantage of the explicit scheme is that the system of equations must
only be solved once. During time integration we only have to compute matrix-
vector multiplications which are very fast. By numerical experiments we found
out that for a well balanced system it is recommended to scale the momentum
equations by ∆t, as in [15]. Then for the least-squares scheme the incom-
pressibility condition is well balanced against the momentum equations. In
particular, we observed that without scaling the scheme becomes divergent for
increasing Reynolds numbers since the diagonal entries 3/2∆t become large for
decreasing step size. As our simulations have shown the explicit scheme is much
faster than the implicit one for Reynolds numbers up to 1000.

3 The least-squares spectral collocation scheme

For the spectral approximation we introduce the polynomial subspace

PN = {Polynomials of degree ≤ N in both variables x1, x2}.

Now all unknown functions are approximated by polynomials of the same degree
N , i.e., u1, u2, ω, p are approximated by interpolating polynomials uN

1 , uN
2 , ωN ,

pN ∈ PN . Furthermore, we have to introduce the standard Chebyshev Gauss-
Lobatto collocation nodes which are explicitly given by

(ξi, ηj) =
(
− cos

(
iπ

N

)
,− cos

(
jπ

N

))
, i, j = 0, . . . , N. (15)

In the following we write the spectral derivatives. First one has to introduce
the transformation matrices from physical space to coefficient space. Since we
employ a Chebyshev expansion we obtain the following matrix:

T = (ti,j) =
(

cos
(
i
jπ

N

))
, i, j = 0, . . . , N.

Further we need the differentation matrix in the Chebyshev coefficient space
which is explicitly given by D̂ = (d̂i,j) ∈ RN+1,N+1 with

d̂i,j =





2j
ci

, j = i+ 1, i+ 3, . . . , N

0 , else

6



and

ci =
{

2 , i = 0
1 , else.

Now we are able to write explicitly the spectral derivative matrix D for the first
derivative which is given by

D = TD̂T−1 ∈ RN+1,N+1.

The spectral operator can be efficiently evaluated by Fast Fourier Transforma-
tions (FFTs) in O(N logN) arithmetic operations. We further introduce the
identity matrix I ∈ RN+1,N+1. By tensor product representation A ⊗ B =
(Abi,j)i,j we are now able to write the spectral derivatives:

∂

∂x
∼= D1 := D ⊗ I ,

∂

∂y
∼= D2 := I ⊗D. (16)

To decompose the domain Ω into quadrilateral elements Ωi,j := (xi−1, xi) ×
(yj−1, yj), i, j = 1, . . . ,K, where K2 denotes the number of elements, we define
the element borders for an equidistant decomposition by

xi := −1 + i
2
K
, yj := −1 + j

2
K
, i, j = 0, . . . ,K, (17)

for a Chebyshev Gauss-Lobatto (CGL) decomposition by

xi = − cos
(
iπ

K

)
, yj = − cos

(
jπ

K

)
, i, j = 0, . . . ,K.

and for a 9-δ decomposition by

x0 = y0 = −1, x1 = y1 = −1 + δ, x2 = y2 = 1− δ, x3 = y3 = 1

where 0 < δ < 1 is a given parameter (boundary distance).
Now the collocation nodes and the differentation matrices on the kth element
are given by

xk
i :=

1
−2

[(xk − xk−1)ξi + xk−1 + xk], yk
j :=

1
2
[(yk − yk−1)ηj + yk−1 + yk]

and

D1,k :=
−2

xk − xk−1
D1, D2,k :=

−2
yk − yk−1

D2

with i, j = 0, . . . , N , k = 1, . . . ,K2.
Figure 1 shows the spectral element mesh for K2 = 9 equidistant elements,
K2 = 9 CGL elements and 9-δ elements with δ = 10−1. In each case the
polynomial degree is N = 8.
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(a) Equidistant elements (b) CGL elements

(c) 9-δ elements

Figure 1: (a) Equidistant, (b) CGL and (c) 9-δ (δ = 10−1) spectral element
mesh for K2 = 9 elements and polynomial degree N = 8.

Next we have to realize the discrete formulation of eqn. (7). This is performed
by the Clenshaw-Curtis quadrature rule (see, e.g., [24]):

∫

Ω

p dx ∼=
N∑

i=0

N∑

j=0

ωiωjp(ξi, ηj)

where Ω = [−1, 1]2 denotes the standard domain, (ξi, ηj) the Chebyshev Gauss-
Lobatto nodes on Ω and

ωi :=





1
N2 − 1

, i ∈ {0, N}

4
N

N
2∑

j=0

1
c̄j

cos
(

2πij
N

)

1− 4j2
, 1 ≤ i ≤ N − 1

with

c̄j :=
{

2 , j ∈ {0, N/2}
1 , 1 ≤ j ≤ N/2− 1

the integrations weights.
We use the Clenshaw-Curtis quadrature rule since this is the appropriate quadra-
ture rule for the Chebyshev Gauss-Lobatto nodes.
One could also use Gauss Legendre or Gauss Lobatto-Legendre nodes. In the
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numerical results there is no big difference. The advantage of the Chebyshev
nodes is the fact that they are explicitly given and fast Fourier transforms (FFT)
are available.

4 The discrete linear system of equations

At the interfaces between the elements, we require (as Heinrichs in [17]) con-
tinuity of both the functions and normal derivatives of u1, u2. For p we only
require continuity and for ω we do not explicitly require interface conditions.
The corresponding discrete system of differential equations together with the
discrete boundary and discrete interface conditions are written into a matrix
A and compiled into an overdetermined system Az = r where the matrix A is
given by

A =




A1

. . .
AK2

MI

B



. (18)

Here Ak ∈ R4(N+1)2,4(N+1)2 , k = 1, . . . ,K2, denotes the discrete version of
the matrix in (9) or (11) or (14) depending on which equations are considered.
The matrix MI ∈ R10(N+1)(K2−K),4K2(N+1)2 represents the discrete interface
conditions and B ∈ R8NK,4K2(N+1)2 the given discrete boundary conditions for
the velocity components u1 and u2. Since the pressure is only determined up to a
constant we have to regularize the matrix A. One way is to cancel one condition
for the pressure, i.e., we impose the pressure in one point. This matrix is denoted
by Ã. For simplicity we cancel the last row and the last column of A and so we
impose the pressure in the point (1, 1) of the boundary. The disadvantage of
this approach is, we do not know the pressure in one point for the regularized or
lid-driven cavity flow. Nevertheless, in [30] the pressure constant was imposed
to be zero in the middle of the cavity. This is a possible approach but since we
want to discuss the incompressible (e.g., the integral over the pressure is equal
zero) Navier-Stokes equations it seems to be the better way using (7). As our
computations show we obtain smaller condition numbers of the linear system
of equations using the discrete version of the additional pressure condition (7).
Using this approach we obtain one additional row for the matrix A in (18) and
denote this new matrix by Â. The additional 1 × 4K2(N + 1)2 matrix MP is
given by

MP := (0, 0, 0, ?, 0, 0, 0, ?, . . . , 0, 0, 0, ?, 0, 0, 0, ?)

where ? (vector of length (N +1)2) denotes the corresponding (N +1)2 quadra-
ture weights of the Clenshaw-Curtis quadrature formula and 0 a zero vector of
length (N +1)2. Since we particularly enforce the collocation conditions on the
interfaces and on the boundary ∂Ω and we additionally enforce the pointwise
continuity on the interfaces (represented by matrix MI) and enforce the values
of the velocity on the boundary (represented by matrix B) we get a really over-
determined system. In order to verify that we achieve really over-determined
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linear systems of equations we compute the rank of Ã (rank(Ã)) and the rank
of [Ã|r] (rank([Ã|r])), i.e., the augmented matrix where we add the right hand
side r as one column. The results of this computations are

rank([Ã|r]) = rank(Ã) + 1 > rank(Ã)

and this shows r /∈ R(Ã), where R(Ã) is the range of the matrix Ã. For the
matrix Â we obtain the same results . Hence, the systems are really over-
determined and we need least-squares techniques to solve these linear systems
of equations.

For the solution of the systems Heinrichs used, e.g., in [15], [16] and [17] the
normal equations ATAz = AT r.
It is well-known that the spectral derivative martices D have relatively large
condition numbers

κ2(D) =
max
||x||2=1

||Dx||2
min

||x||2=1
||Dx||2

and the use of the corresponding normal equations lead to systems with even
larger condition numbers (κ2(DTD) ∼= κ2(D)2)). Because of the round-off errors
and the large condition numbers of the systems one cannot obtain the best
quality of approximations. Here we want to avoid the normal equations to get
better approximations and so we make use of a direct solver for the system
Az = r by using the QR decomposition (computed with MATLAB 7.3.0), see,
e.g., [31], of the matrix A where we achieved the following system:

Az = r ⇐⇒ QRz = r.

If A ∈ Rm,n with m > n then Q ∈ Rm,m is an orthogonal matrix (i.e. Q−1 =
QT ) and R ∈ Rm,n is an upper triangular matrix of the type

R =
[
R̃
0̃

]
, R̃ ∈ Rn,n , 0̃ ∈ Rm−n,n.

Consequently, we obtain

ψ := QT r , Rz = ψ.

Furthermore, we used the pseudoinverse, see, e.g., [31], (also known as Moore-
Penrose inverse) A+ of the matrix A to solve the system Az = r. The numerical
experiments have shown that the approximation results by using the pseudoin-
verse are the same as using QR decomposition. The disadvantages of using
pseudoinverses are higher computational costs (see figure 5). Form a theoretical
point of view it is clear that all of the three solution techniques are equivalent
if exact arithmetic is used. But since our linear systems of equations have very
large condition numbers, the three techniques will not necessarily lead to the
same results because of the influence of round-off errors.
The subject of a future project will be the development of some iterative solvers
like incomplete QR decompositions. The problem of such iterative solvers is
that they operate on the normal equations and that means the considered lin-
ear system of equations again have larger condition numbers.
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5 Numerical simulations

We consider the steady and unsteady Stokes equations and the Navier-Stokes
equations. For the Stokes equations we use our scheme only on equidistant ele-
ments since the other decompositions of the domain will not necessarily lead to
better approximation results.
For the Navier-Stokes equations we first consider a smooth example on equidis-
tant elements and then apply our scheme to the regularized and lid-driven cavity
problem. For the regularized and lid-diven cavity problem we use our scheme
on equidistant, CGL and 9-δ elements and compare the results.

5.1 The steady Stokes equations

First, we consider the steady case of the Stokes equations. Figure 2 shows
the condition numbers κ2(Â), κ2(Ã) and κ2(ÂT Â) for K2 = 4, K2 = 36 and
K2 = 64 elements with different polynomial degrees N . For higher element
numbers and high polynomial degrees we do not list the condition numbers
because of the influence of the round-off errors.
The condition numbers are rigorously reduced if we do not use the normal
equations. A further reduction of the condition numbers is obtained if we use
the Clenshaw-Curtis quadrature rule to avoid the pressure constant instead of
cancelling one row and one column of the complete system matrix.
For other parameters K2 and N we obtain similar results and so we do not list
them here.
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(a) K2 = 4 (b) K2 = 36

(c) K2 = 64

Figure 2: Condition numbers for (a) K2 = 4, (b) K2 = 36 and (c) K2 = 64
equidistant elements and different polynomial degrees N (κ2(Â) : ×; κ2(Ã) : ∗;
κ2(ÂT Â) : o).

The convergence rates of the least-squares spectral collocation scheme are demon-
strated by means of the model problem also introduced in [11] with ν = 1.
The exact velocity components and the pressure are defined on the square
Ω := [−1, 1]2 by

u1(x, y, t) := cos(γt) sin
(πx

2

)
cos

(πy
2

)
(19)

u2(x, y, t) := − cos(γt) cos
(πx

2

)
sin

(πy
2

)
(20)

p(x, y, t) :=
1
4

cos2(γt)(cos(πx) + cos(πy)) + 10(x+ y) cos(γt). (21)

This exact solution satisfies the Stokes equations if the following forcing term is
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used

f(x, y, t) =




ν
π2

2
cos(γt) sin

(πx
2

)
cos

(πy
2

)

−ν π
2

2
cos(γt) cos

(πx
2

)
sin

(πy
2

)




−



π

4
cos2(γt) sin(πx)− 10 cos(γt)

π

4
cos2(γt) sin(πy)− 10 cos(γt)


 (22)

+


 −γ sin(γt) sin

(πx
2

)
cos

(πy
2

)

γ sin(γt) cos
(πx

2

)
sin

(πy
2

)

 .

For the steady case of the Stokes equations we set γ = 0.
We use the QR decomposition of the matrix Â to solve the discrete algebraic
systems and numerically calculate the discrete L2-error norms of the velocity
components and the pressure. The corresponding numerical results are pre-
sented in the Tables 1 - 3.

N ||u1 − uN
1 ||L2 ||u2 − uN

2 ||L2 ||p− pN ||L2

N = 2 1.797 · 10−1 1.809 · 10−1 6.088 · 10−1

N = 4 3.082 · 10−3 3.042 · 10−3 5.869 · 10−2

N = 6 1.340 · 10−4 1.311 · 10−4 7.061 · 10−3

N = 8 2.885 · 10−6 2.844 · 10−6 1.939 · 10−4

N = 10 1.938 · 10−8 1.936 · 10−8 2.008 · 10−6

N = 12 5.621 · 10−11 5.622 · 10−11 8.636 · 10−9

N = 14 4.425 · 10−13 4.689 · 10−13 4.852 · 10−11

N = 16 4.316 · 10−13 4.041 · 10−13 2.316 · 10−11

N = 18 5.207 · 10−13 4.977 · 10−13 8.734 · 10−11

N = 20 6.956 · 10−13 7.618 · 10−13 8.395 · 10−11

Table 1: L2-errors of the velocity components and the pressure on K2 = 4
equidistant elements.

N ||u1 − uN
1 ||L2 ||u2 − uN

2 ||L2 ||p− pN ||L2

N = 2 4.280 · 10−2 4.434 · 10−2 4.128 · 10−1

N = 4 4.101 · 10−5 4.448 · 10−5 1.264 · 10−3

N = 6 3.285 · 10−7 3.147 · 10−7 1.082 · 10−5

N = 8 9.049 · 10−10 8.933 · 10−10 8.119 · 10−8

Table 2: L2-errors of the velocity components and the pressure on K2 = 36
equidistant elements.
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N ||u1 − uN
1 ||L2 ||u2 − uN

2 ||L2 ||p− pN ||L2

N = 2 2.711 · 10−2 2.884 · 10−2 3.382 · 10−1

N = 4 1.425 · 10−5 1.562 · 10−5 5.011 · 10−4

N = 6 6.291 · 10−8 6.072 · 10−8 2.335 · 10−6

Table 3: L2-errors of the velocity components and the pressure on K2 = 64
equidistant elements.

Tables 1 - 3 show the high spectral accuracy of our scheme if the number of
elements is constant and the polynomial degree increases. If we compare the
approximation errors of the same polynomial degree with different numbers of
elements we observe the expected slight improvement in the results.
Table 1 obviously shows the influence of round-off errors for N ≥ 16.

In the figures 3 and 4 we compare the approximation errors by solving the
normal equations ÂT Âz = ÂT r and by solving the system Âz = r with QR
decomposition. We obtain the same errors if the polynomial degree is low,
i.e. N = 2, 4, but if the polynomial degree increases the errors obtained by
normal equations increase if a particular N is exceeded. The reason of this
behaviour are the high condition numbers of the normal equations and thus the
strong influence of round-off errors. Errors obtained by QR decomposition still
decrease for increasing N . By using QR decomposition we avoid the very high
condition numbers and so we obtain the improved approximations.
Since we have an analogue performance of the velocity component u2 we here
just show the results for u1.

(a) (b)

Figure 3: L2-error of (a) the velocity component u1 and (b) the pressure, ob-
tained by the normal equations and by the QR decomposition on K2 = 36
equidistant elements.
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(a) (b)

Figure 4: L2-error of (a) the velocity component u1 and (b) the pressure, ob-
tained by the normal equations and by the QR decomposition on K2 = 64
equidistant elements.

Next we check the numerical results obtained by solving the system of equations
with the pseudoinverse Â+ of the matrix Â. We got the same numerical results
as by using QR decomposition and so we do not show the results here.

For comparing computational costs we show in figure 5 the required CPU-times
for solving the system of equations by normal equations, QR decomposition and
pseudoinverse. All results are computed with MATLAB 7.3.0 with the following
code:

• normal equations: z=(Â’*Â)\(Â’*r)
• QR decomposition: z=Â\r
• pseudoinverse: z=pinv(Â)*r
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(a) (b)

(c)

Figure 5: CPU-time required for solving the system of linear equations with
pseudoinverse (×), QR decomposition (o) and the normal equations (∗) on (a)
4, (b) 36 and (c) 64 equidistant elements.

Since the use of the pseudoinverse needs extremely more time and produces
same accuracy as the use of QR decomposition we only used QR decomposition
for solving the systems. The application of normal equations is less expen-
sive but the quality of approximation is worse than the one obtained by using
QR decomposition. Furthermore, for time-dependent Stokes or Navier-Stokes
problems we use an explicit scheme and so the QR decomposition of the linear
system of equations must only be computed once. Hereafter, only matrix-vector
multiplications are performed. In the following section we apply our scheme to
the unsteady Stokes equations.

5.2 The unsteady Stokes equations

Now we consider the unsteady case of the Stokes equations. The exact velocity
components and the pressure are defined as in (19)-(21), the corresponding
forcing term by (22) and we recall that ν = 1

Re where Re denotes the Reynolds
number. Because we consider the unsteady case we set γ = 5 as in [11]. From
[15] it is known that for a well balanced system it is recommended to scale
the momentum equations by ∆t. By numerical experiments we observed the
same. Without scaling the incompressibility condition is no more fulfilled after
time integration. Figure 6 shows ||∇ · u|| on K2 = 4 equidistant elements with
N = 10, Re = 1 and ∆t = 1

58 in case without scaling.
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Figure 6: Temporal evolution of ||∇ · u|| on K2 = 4 equidistant elements with
N = 10, Re = 1, ∆t = 1

58 in the case without scaling.

In the scaled case we obtain a stable scheme. Figures 7 and 8 show the temporal
evolution of the L2-errors in the velocity components and in the pressure. We
observe no enlargement of the oscillating errors in time, expressing stability of
the numerical solution.

Figure 7: Temporal evolution of the velocity error for Re = 100, ∆t = 1
1000 and

N = 10 on K2 = 4 equidistant elements.
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Figure 8: Temporal evolution of the pressure error for Re = 100, ∆t = 1
1000 and

N = 10 on K2 = 4 equidistant elements.

Since the numerical results in the unsteady case are similar to those in the
steady case we here only show a few results. In Table 4 we demonstrate the
condition numbers of the matrices Â and recall that κ2(ÂT Â) ∼= κ2(Â)2.

Re ∆t κ2(Â)
100 1

10 3.1067 · 104

100 1
100 9.0105 · 104

1000 1
100 8.7253 · 104

Table 4: Condition numbers of the scaled matrix Â on K2 = 4 equidistant
elements with N = 10, different Reynolds numbers and different time steps.

In the tables 5 - 7 we show the approximation errors for the unsteady case of the
Stokes equations and we see the good performance of the here presented scheme
for time-dependent Stokes problems. The time derivative is approximated by
the second order BDF scheme (8). We set

Eu1 := max{||u1 − uN
1 ||L2 : t ∈ [0, 1]},

Eu2 := max{||u2 − uN
2 ||L2 : t ∈ [0, 1]},

Ep := max{||p− pN ||L2 : t ∈ [0, 1]}

since figures 7 and 8 show that the maximum error is obtained in [0, 1].

Since we use a second order scheme in time, the ratio of, e.g., Eu1 with time
step size h and Eu1 with time step size h/2 must approximate 2λ = 4, where
λ = 2 denotes the order of the scheme.
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∆t Eu1 = Eu2 Ratio Ep Ratio
1
10 2.885 · 10−3 — 2.496 · 10−1 —
1
20 7.386 · 10−4 3.906 6.331 · 10−2 3.943
1
40 1.858 · 10−4 3.975 1.586 · 10−2 3.992
1
80 4.657 · 10−5 3.990 3.973 · 10−3 3.992

Table 5: Approximation errors on K2 = 4 equidistant elements with N = 10
and Re = 1.

∆t Eu1 = Eu2 Ratio Ep Ratio
1
10 1.326 · 10−1 — 5.354 · 10−1 —
1
20 3.563 · 10−2 3.722 1.358 · 10−1 3.943
1
40 9.085 · 10−3 3.922 3.404 · 10−2 3.989
1
80 2.281 · 10−3 3.983 8.532 · 10−3 3.990

Table 6: Approximation errors on K2 = 36 equidistant elements with N = 8
and Re = 100.

∆t Eu1 = Eu2 Ratio Ep Ratio
1
10 1.890 · 10−1 — 7.322 · 10−1 —
1
20 5.067 · 10−2 3.730 1.855 · 10−1 3.947
1
40 1.292 · 10−2 3.922 4.656 · 10−2 3.984
1
80 3.244 · 10−3 3.983 1.166 · 10−2 3.993

Table 7: Approximation errors on K2 = 64 equidistant elements with N = 6
and Re = 100.

5.3 The Navier-Stokes equations

Now we apply our scheme to a smooth example for the steady Navier-Stokes
equations where the velocity and the pressure are given by (19)-(21) with γ = 0
and Ω = [0, 1]2. Since we have seen that the additional pressure condition leads
to linear system of equations with smaller condition numbers we will only use
the matrices Â. Furthermore, we have seen that solving the linear systems
of equations with QR decomposition leads to better approximations. Hence,
we will now only use the QR decomposition for solving the linear systems of
equations.
Since the numerical results for the velocity component u2 are similar to those
of the velocity component u1 we show only the results for u1. All results are
obtained by the explicit scheme.
In figure 9 we show the L2-error norms of the velocity component u1 and the
pressure on 64 equidistant elements with Re = 1.
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(a) (b)

Figure 9: L2-error of (a) the velocity component u1 and the (b) the pressure on
K2 = 64 equidistant elements with Re = 1.

In figure 10 we show the L2-errors for the velocity component u1 and for the
pressure on 64 CGL elements with Re = 1.

(a) (b)

Figure 10: L2-error of (a) the velocity component u1 and the (b) the pressure
on K2 = 64 CGL elements with Re = 1.

Figure 11 shows the L2-errors for the velocity component u1 and for the pressure
on 9-δ elements with Re = 1 and δ = 10−1.
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(a) (b)

Figure 11: L2-error of (a) the velocity component u1 and the (b) the pressure
on 9-δ elements with Re = 1 and δ = 10−1.

Figures 9-11 show the high spectral accuracy of our scheme on all here considered
domain decompositions. In figure 11 we observe the influence of round-off errors
for N ≥ 14.

5.4 The regularized cavity flow

Now we set Ω := (0, 1)2 and consider the regularized cavity flow (see [4]) where
the fluid velocity on the edge y = 1 is given by

u1(x, 1) := −16x2(1− x)2 , u2(x, 1) := 0 (23)

and u1 = u2 = 0 on the other three edges. The forcing term f is identical to
zero. As Botella in [4] we consider that the steady state is reached when

max
i,j

|ωn+1
i,j − ωn

i,j |
∆t ·max

i,j
|ωn+1

i,j | ≤ 2 · 10−6. (24)

Hereafter we calculate the stream function by solving the equation

∆ψ = −ω in Ω = (0, 1)2

ψ = 0 on ∂Ω (25)

Solving this equation we first transform (25) into an equivalent first-order sys-
tem. This system with the pointwise enforced continuity on the element in-
terfaces and the boundary conditions lead to an overdetermined system that is
solved by our least-squares scheme. As the simulations have shown it is recom-
mended to scale the boundary conditions of (25) by ||Astream

1 ||∞, otherwise the
streamfunction is not accurately zero on the boundary ∂Ω since the boundary
conditions are not well balanced against the other conditions. Here Astream

1

denotes the spectral system matrix of the first-order system of (25) on the first
element (lower left corner). Computations to solve (25) are performed with the
QR decomposition, too.
In order to compare our results with those of Botella in [4], we calculate the
maximal value of ψ on the collocation points of Ω, denoted by M1. Furthermore,
we computed the maximal value of ω on the edge y = 1. This value is denoted
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by M2. The benchmarks are shown in the last row of the tables.
Table 8 shows the results for Re = 100 on equidistant and CGL elements. The
coordinates of the point where the values are reached are given in brackets.

K2 N M1 M2 ∆t elements
64 6 8.36 · 10−2 (0.38/0.76) 13.48 (0.62) 1/50 equidistant
64 6 8.33 · 10−2 (0.40/0.77) 13.32 (0.60) 1/50 CGL
1 48 8.34 · 10−2 (0.40/0.74) 13.34 (0.60) [4]

Table 8: The regularized cavity flow with Re = 100. Results with explicit time
integration on equidistant and CGL elements with polynomial degree N = 6 and
time step size ∆t = 1/50.

Comparing our results with the results of Botella, we see the good performance
of our scheme. Furthermore, we see that our scheme on CGL elements leads
to better results than on equidistant elements. The reason is that the CGL
elements are closer to the boundary and this is the area where the functions are
not as smooth as in the middle of the cavity.
In the approach of Botella, there are only two unknown functions and one
element with N = 48, which results in 2 · 2401 degrees of freedom. For a similar
accuracy, the least-squares approach requires 64 elements with N = 6, which
results in 4 · 3136 d.o.f. Hence our scheme is more expensive for the regularized
cavity flow. But for more complex geometries and singularities (e.g., the lid-
driven cavity, see subection 5.5), our approach is more favorable.
Next we perform our scheme on 9-δ elements for various δ. The results are
shown in table 9.

δ M1 M2

0.18 8.36 · 10−2 (0.39/0.75) 13.42 (0.61)
0.1 8.31 · 10−2 (0.36/0.76) 13.38 (0.64)
0.075 8.26 · 10−2 (0.43/0.77) 13.30 (0.65)
[4] 8.34 · 10−2 (0.40/0.74) 13.34 (0.60)

Table 9: The regularized cavity flow with Re = 100. Results with explicit time
integration on 9-δ elements with polynomial degree N = 18 and time step size
∆t = 1/50.

For singular perturbation problems it is well-known that one has to take δ ∼= N ·ε
where ε denots the diffusion parameter. For the Navier-Stokes equations (ε =
ν = 1/Re) it is not clear how to choose δ and so we have chosen δ = N ·ν = N/Re
in the first row of table 9 and in the other rows we have chosen different δ. As
table 9 shows it seems to be the best choice to choose δ = 0.18 or δ = 0.1
depending on what should be approximated better (M1 or M2). Comparing
tables 8 and 9 we see that the CGL elements are preferable. The approximations
of the benchmarks show the well-known different performance for various δ.
In table 10 we check our scheme for Re = 400 on equidistant and CGL elements
and compare our approximations with the corresponding results of Botella in
[4].
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K2 N M1 M2 ∆t elements
64 6 8.63 · 10−2 (0.44/0.62) 25.61 (0.62) 1/100 equidistant
64 6 8.55 · 10−2 (0.40/0.60) 24.81 (0.64) 1/100 CGL
1 48 8.55 · 10−2 (0.40/0.60) 24.78 (0.65) [4]

Table 10: The regularized cavity flow with Re = 400. Results with explicit time
integration on equidistant and CGL elements with polynomial degree N = 6 and
time step size ∆t = 1/100.

Since the vorticity ω has strong variation on the points of the edge y = 1
and is not as smooth as the stream function ψ we do not obtain such good
approximations of M2 compared to the approximations of M1. Furthermore,
the CGL elements lead to better results than the equidistant ones.
In table 11 we show the results for the 9-δ decomposition for various δ with
Re = 400.

δ M1 M2

0.045 8.52 · 10−2 (0.42/0.58) 24.58 (0.66)
0.075 8.55 · 10−2 (0.43/0.65) 24.78 (0.65)
0.1 8.56 · 10−2 (0.43/0.64) 24.88 (0.64)
[4] 8.55 · 10−2 (0.40/0.60) 24.78 (0.65)

Table 11: Results for Re = 400 with explicit time integration on 9-δ elements
with polynomial degree N = 18 and time step size ∆t = 1/100.

As in table 9 the first row of table 11 shows the results for δ = N/Re. In the
other rows of table 11 we show the results for various δ. Comparing the values
of table 11 it seems to be the best choice to choose δ = 0.075. Again, the ap-
proximations of the benchmarks show the well-known different performance for
various δ.
Comparing tables 8-9 and 10-11 we see that the CGL elements are especially
preferable for increasing Reynolds numbers.

Obviously, our explicit scheme works well for Reynolds numbers up to 400.
Nevertheless, we have performed our compuations with the implicit scheme in-
troduced in subsection 2.2 on 4, 9, 16 and 25 equidistant elements and compared
the results obtained with the explicit scheme. We have seen that the implicit
scheme leads to the same approximation results. The well-known disadvantage
of the implicit scheme is that we have to solve the linear systems of equations in
each time step. This requires a lot of CPU-time. The number of Picard itera-
tions is 6 in the first time step and two in the last time step. From the literature
it is well-known that these are the usual numbers of linearization steps for the
implicit scheme.

5.5 The lid-driven cavity flow

Now we numerically solve the lid-driven cavity flow problem where the fluid
velocity on the edge y = 1 is given by

u1(x, 1) := −1 , u2(x, 1) := 0
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and u1 = u2 = 0 on the other three egdes. The source term f is identical to
zero.
Since the velocity is discontinuous at the two upper corners A(0, 1) and B(1, 1) of
the square box Ω = (0, 1)2 the solution of the Navier-Stokes equations becomes
singular at these corners. In particular, the vorticity and the pressure becomes
infinite at these two points. Because of the sharp gradients of the variables
and the singularities at these corners the lid-driven cavity flow is a difficult test
case. Furthermore, there are singularities at the points C(0, 0) and D(1, 0) but
they are much more weaker than the ones at A and B since only the second
derivatives of the pressure and the vorticity are unbounded.
Here we understand the lid-driven cavity flow as an stationary problem and, as
in [5], we assume that the steady state is reached if

max |φn+1 − φn|
∆t ·max |φn+1| ≤ 10−8, (26)

where φ := (u1, u2)T . When (26) is fulfilled we calculate the stream function ψ
by

−∆ψ = ω in Ω = (0, 1)2,
ψ = 0 on ∂Ω. (27)

Computations to solve (27) are performed as in the previous subsection.

For the regularized cavity flow we have seen that the explicit scheme is preferable
compared to the implicit scheme since it leads to the same approximation re-
sults with an enormous less amount of computing time. Hence, we here present
only the results obtained with the explicit scheme.

In table 12 we show the extrema of the velocity components on the centerlines
x = 0.5 and y = 0.5 and ω(0.5, 0.5) for Re = 100 on equidistant and CGL
elements with N = 6. In the last row of the tables we show the corresponding
benchmarks of Botella and Peyret in [5].

u1,max, ymax u2,max, xmax u2,min, ymin ω(0.5, 0.5) ∆t elements
0.211, 0.469 0.178, 0.758 -0.253, 0.188 1.173 1/50 equidistant
0.212, 0.452 0.178, 0.772 -0.251, 0.187 1.160 1/50 CGL
0.214, 0.458 0.180, 0.763 -0.254, 0.190 1.174 [5]

Table 12: Extrema of the velocity for the lid-driven cavity flow through the
centerlines x = 0.5 and y = 0.5 of the cavity and ω(0.5, 0.5) for Re = 100 on 64
equidistant and CGL elements.

Comparing our results with the benchmarks in table 12 we again see the good
performance of our scheme. Furthermore, we see that for Re = 100 we do not
obtain analog improvements on CGL elements as for the regularized cavity flow.
The reason is that the CGL elements are bigger than the equidistant ones in the
middle of the cavity and if the Reynolds number is relatively low the solution
is not as smooth as for higher Reynolds numbers in the middle of the cavity.
That means, the non-smooth parts extend more into the cavity. As a result
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of this, we expect better approximations on CGL elements than on equidistant
elements if we increase the Reynolds number since then the non-smooth parts
do not extend so far into the cavity.

In table 13 we show the results for the 9-δ decomposition for various δ.

δ u1,max, ymax u2,max, xmax u2,min, ymin ω(0.5, 0.5)
0.18 0.212, 0.444 0.178, 0.777 -0.252, 0.185 1.168
0.10 0.211, 0.431 0.179, 0.757 -0.253, 0.194 1.171
0.075 0.211, 0.426 0.179, 0.773 -0.252, 0.174 1.172
0.05 0.210, 0.422 0.178, 0.789 -0.250, 0.211 1.172
[5] 0.214, 0.458 0.180, 0.763 -0.254, 0.190 1.174

Table 13: Extrema of the velocity for the lid-driven cavity flow through the
centerlines x = 0.5 and y = 0.5 of the cavity and the value of the vorticity in
the middle of the cavity for Re = 100 on 9-δ elements with polynomial degree
N = 18 and time step size ∆t = 1/50.

As for the regularized cavity flow we have chosen δ = N/Re in the first row
of table 13. In the other rows we show the results for various δ. Table 13
shows that it seems to be the best choice to choose δ = 0.10 to obtain good
approximations for all values. The approximations of the benchmarks show the
well-knwon different performance for various δ.
Comparing tables 12 and 13 we see the better performance of our scheme on
equidistant elements.

Next, we check our scheme for Re = 1000. Table 14 shows the extrema of the
velocity components on the centerlines x = 0.5 and y = 0.5 for Re = 100 on
equidistant and CGL elements with N = 6.

u1,max, ymax u2,max, xmax u2,min, ymin ∆t elements
0.500, 0.188 0.497, 0.867 -0.640, 0.094 1/300 equidistant
0.397, 0.157 0.391, 0.843 -0.538, 0.092 1/300 CGL
0.389, 0.172 0.377, 0.842 -0.527, 0.091 [5]

Table 14: Extrema of the velocity for the lid-driven cavity flow through the
centerlines x = 0.5 and y = 0.5 of the cavity for Re = 1000 on 64 equidistant
and CGL elements.

Comparing our results with the benchmarks we see the good approximations
obtained by our scheme. Furthermore, we see that the CGL elements lead to
extremely better results. The reason that our values are not as good as the
benchmarks is that we have placed all variables in the singularities. However,
in [5] a subtraction method was used. More precisely, a subtraction method of
the leading terms of the asymptotic expansion of the solution in the vincinity
of the corners, where the velocity is discontinuous, was used.

Table 15 shows the results obtained on 9-δ elements with polynomial degree
N = 18 and time step size ∆t = 1/500 for Re = 1000. Choosing bigger time
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step sizes leads to a divergent scheme. Since we consider stationary problems,
the time step size does not influence the values of our computations.

δ u1,max, ymax u2,max, xmax u2,min, ymin

0.018 0.383, 0.190 0.367, 0.810 -0.519, 0.083
0.075 0.385, 0.174 0.371, 0.826 -0.517, 0.101
0.10 0.383, 0.194 0.377, 0.846 -0.528, 0.093
[5] 0.389, 0.172 0.377, 0.842 -0.527, 0.091

Table 15: Extrema of the velocity for the lid-driven cavity flow through the
centerlines x = 0.5 and y = 0.5 of the cavity for Re = 1000 on 9-δ elements
with polynomial degree N = 18 and time step size ∆t = 1/500.

The first row of table 15 shows the results for δ = N/Re. Here it seems to be
the best choice to choose δ = 0.10 to obtain good approximations for all values.
Again, the approximations of the benchmarks show the well-knwon different
performance for various δ.
Comparing tables 14 and 15 we see the better performance of our scheme on
9-δ elements. The disadvantage of 9-δ elements is that we have to choose δ
carefully.
Comparing the results for the regularized and lid-driven cavity flow we recom-
mend to use CGL elements since they lead to good approximations and they are
not depending on a parameter that has to be choosen as for the 9-δ elements.
In figure 12 we show the stream function of the lid-driven cavity flow for Re =
1000 on 64 CGL elements with polynomial degree N = 6 and time step size
∆t = 1/300. In figure 13 we show the velocity profile of the lid-driven cavity
flow for Re = 1000 on 64 CGL elements with polynomial degree N = 6 and
time step size ∆t = 1/300.
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Figure 12: Stream function of the lid-driven cavity flow for Re = 1000 on 64
CGL elements with polynomial degree 6 and time step size 1/300.
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Figure 13: Velocity profile of the lid-driven cavity flow for Re = 1000 on 64
CGL elements with polynomial degree 6 and time step size 1/300.

6 Conclusion

We presented a least-squares spectral collocation scheme for the steady and
unsteady Stokes equations and for the incompressible Navier-Stokes equations
where the original domain has been decomposed into quadrilateral subelements.
To avoid high condition numbers of normal equations a direct solver (QR de-
composition of the matrices) was used for the overdetermined systems. The
numerical simulations confirm the high accuracy of the proposed spectral least-
squares scheme and solving the overdetermined systems with QR decomposition
yields better approximation results. The computational cost of QR decompo-
sition is higher than using normal equations. Using pseudoinverse shows same
results as using QR decomposition but causes much higher computational costs.
In the unsteady case of the Stokes equations we have shown the good perfor-
mance of the here presented scheme for different Reynolds numbers, different
time steps and various numbers of elements.
Furthermore, we applied our scheme successfully to the regularized and lid-
driven cavity flow problems where we achieved good results.
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