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Abstract. We consider a new least-squares spectral collocation scheme for the Stokes and the Navier-Stokes equations.
By introducing the Clenshaw-Curtis quadrature rule for imposing the average pressure to be zero we reduce the condition
numbers of the over-determined systems. All computations are performed with an explicit scheme and saves a lot of CPU
time compared to implicit schemes. We compare two differenttypes of interface conditions and two different types of
decompositions of the domain. The over-determined linear systems of equations are solved byQR decomposition. Since
we avoid the normal equations (squared conditions numbers)we improved the quality of approximation. Finally, our scheme
is successfully applied to the regularized and lid-driven cavity flow.
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THE STOKES AND NAVIER-STOKES EQUATIONS

In order to apply least-squares we consider the Stokes and Navier-Stokes equations in a first-order formulation. For
the bounded domainΩ ⊂R

2 the Navier-Stokes equations are given by

∂u
∂ t

+u ·∇u+ ν∇×ω + ∇p = f in Ω , t ∈ [0,tend ] (1)

∇ ·u = 0 in Ω , t ∈ [0,tend ] (2)

ω −∇×u = 0 in Ω , t ∈ [0,tend ] (3)

whereuT = [u1,u2] denotes the velocity vector,p the pressure,ω the vorticity, fT = [ f1, f2] the forcing term and
ν = 1

Re the kinematic viscosity. Here it is assumed that the densityequals unity. For the Stokes equations the only
difference is that they do not contain the convective term in(1). Since the pressure is through (1)-(3) only determined
up to a constant for the Stokes respectively Navier-Stokes equations we have to introduce an additional condition for
the pressure. One procedure is to impose the pressure at an arbitrary point of the considered domain. Another way of
dealing with the pressure constant is imposing the average pressure to be zero; i.e.,

∫

Ω
pdx = 0. (4)

LEAST-SQUARES SPECTRAL COLLOCATION

Spectral methods employ global polynomials for the numerical solution of differential equations. Hence they give
very accurate solutions for smooth solutions with relatively few degrees of freedom. For analytical data exponential
convergence can be achieved. For the spectral approximation we introduce the polynomial subspace
PN = {Polynomials of degree≤ N in both variablesx1,x2}. Now all unknown functions are approximated by polyno-
mials of the same degreeN, i.e.,u1, u2, ω , p are approximated by interpolating polynomialsuN

1 , uN
2 , ωN , pN ∈ PN .

Furthermore, we have to introduce the standard Chebyshev Gauss-Lobatto collocation nodes which are explicitly

given by(ξi,η j) =
(

−cos
(

iπ
N

)

,−cos
(

jπ
N

))

, i, j = 0, . . . ,N. In the following we write the spectral derivatives. First



we have to introduce the transformation matrices from physical space to coefficient space. Since we employ a Cheby-

shev expansion we obtain the following matrix:T = (ti, j) =
(

cos
(

j (N−i)π
N

))

, i, j = 0, . . . ,N. Further, we need the

differentiation matrix in the Chebyshev coefficient space which is explicitly given byD̂ = (d̂i, j) ∈R
N+1,N+1 with

d̂i, j =











2 j
ci

, j = i+1, i+3, . . .,N

0 , else

and ci =

{

2 , i = 0
1 , else

.

Now we are able to write explicitly the spectral derivative matrix D for the first derivative which is given by
D = T D̂T−1 ∈R

N+1,N+1
. The spectral transformation operatorT can be efficiently evaluated by Fast Fourier Trans-

formations (FFTs) inO(N logN) arithmetic operations. We further introduce the identity matrix I ∈ R
N+1,N+1. By

tensor product representationA⊗B = (Abi, j)i, j we are now able to write the spectral derivatives:

∂
∂x

∼= D1 := D⊗ I ,

∂
∂y

∼= D2 := I⊗D. (5)

Furthermore, we have to discretize (4). This is performed bythe well-known Clenshaw-Curtis quadrature rule, see [9],
[10]. We use the Clenshaw-Curtis quadrature rule since thisis the appropriate quadrature rule for the Chebyshev Gauss-
Lobatto nodes. The advantage of the Chebyshev nodes is the fact that they are explicitly given and FFTs are available.
One could also use Gaussian quadrature, in the numerical experiments there is no big difference. Since we want to
simulate the lid-driven cavity flow (non-smooth solution with corner singularities) we have to decompose the domain
Ω into sub-elements. We performed our simulations with two different domain decompositions and a different number
of elementsK2. Figure 1 shows the different decompositions for equidistant elements and Chebyshev Gauss-Lobatto
(CGL) elements. Because we decompose the domainΩ into K2 sub-elements we have to transform the collocation

FIGURE 1. Different types of decomposition of the domainΩ into K2 = 9 elements withN = 8. Left: equidistant elements,
right: CGL elements

nodes(ξi,η j) and the spectral derivative matricesD1, D2 to the corresponding elements by a linear mapping. Now it
is an easy task to write the discrete version of the PDE with the here considered decompositions of the domain, see
[10]. For time integration we use BDF schemes and for the non-linear convective termC = (u ·∇)u of the Navier-
Stokes equations we used an explicit scheme (BDF scheme for viscous term combined with extrapolation based on
an Adams-Bashforth technique for convective term), see [9]. At the interfaces between the elements, we require two
different types of interface conditions and compare the numerical results. The two different interface conditions are:

1. C1 interface conditions, i.e. we require continuity of both the functions and normal derivatives ofu1, u2, continuity
of p and no explicit interface conditions forω .

2. C0 interface conditions, i.e. we require continuity ofu1, u2, continuity ofp and continuity ofω .

Since we particularly enforce the collocation conditions on the interfaces and on the boundary∂Ω and we additionally
enforce the pointwise continuity on the interfaces and enforce the values of the velocity on the boundary we get really
over-determined linear systems of equations, see [9]. The advantage of least-squares techniques is amongst others that
they do not require a stabilization, see e.g. [1].

NUMERICAL SIMULATIONS

Since it is well-known that the spectral derivative matrices have large condition numbers we have to care about
reducing them. We found out that the additional integral pressure condition (4) leads to linear systems of equations with



reduced condition numbers compared to imposing the pressure in one discrete point (see figure 2, left). Furthermore,
we use theQR decomposition for solving the over-determined linear system of equations to avoid solving with the
corresponding normal equations (see [7],[8]) with squaredcondition numbers (see figure 2, middle and right). Because
of avoiding the large condition numbers we achieved better approximations since our scheme is not as sensitive as the
scheme where the pressure is set in one discrete point ofΩ and the linear systems of equations are solved with normal
equations. A further disadvantage of setting the pressure in one discrete point of the cavity is, we do not know the
pressure if we consider the cavity flow problems. All computations for Stokes equations are performed on equidistant
elements since we only consider smooth examples. The computations for Navier-Stokes equations are done on the two
different element types. For smooth examples there is no nameable difference betweenC1 andC0 interface conditions.

The Stokes equations

With this new scheme we first numerically solve thesteady Stokes equationsfor the smooth example given in [9].
The computations has shown the exponential convergence of our scheme. Concerning computational costs we compare
solving the linear systems of equations withQR decomposition, pseudoinverse and normal equations. The results are
that usingQR decomposition and using pseudoinverse lead to the same accuracy but using pseudoinverse requires
much more computing time, see [9]. Using normal equations requires less time but does not show such good accuracies
(see figure 2, middle and right). From a theoretical point of view it is clear that all of the three solving techniques must
lead to the same results. Because of the influence of round-off errors we do not obtain the same approximations with
the three solvers. Furthermore, we compare both schemes to show numerically the better performance of the one with
Clenshaw-Curtis quadrature andQR decomposition.

FIGURE 2. The Stokes equations (Re = 1). Left (K2 = 4): Condition numbers with Clenshaw-Curtis quadrature for the pressure
(×), with imposing the pressure in one point (∗) and normal equations (o); middle (K2 = 36): L2-error of the pressure (with
Clenshaw-Curtis quadrature) on equidistant elements; right (K2 = 36): L2-error of the velocity component u1 (with Clenshaw-
Curtis quadrature) on equidistant elements

Next, we consider theunsteady Stokes equationswhere we use a second-order BDF scheme for time integration.
Here, our scheme shows a very good accuracy if a∆t-scaling of the momentum equations is introduced, see [9].
Without scaling our scheme becomes divergent since the incompressibility condition (2) is lost during time integration.

The Navier-Stokes equations

For the Navier-Stokes equations we first consider the steadyand smooth example given in [9]. Our computations
has shown the high spectral accuracy of our new (i.e., with Clenshaw-Curtis pressure condition and withQR decompo-
sition) scheme on equidistant and CGL elements. All computations of the Navier-Stokes equations are performed with
the explicit scheme described above and with regularization of the linear system of equations by the Clenshaw-Curtis
quadrature rule for the pressure. Our next test case is the"regularized cavity flow" for Reynolds numbersRe = 100
andRe = 400 where the fluid velocity on the edgey = 1 of cavityΩ := (0,1)2 is given byu1(x,1) := −16x2(1− x)2

andu2(x,1) := 0. On the other three edges the velocity equals zero. We compare our results with the benchmarks in
the literature and obtained the very good performance of ourscheme. We found that our scheme works best on CGL
elements (especially for higher Reynolds numbers) since these elements resolve the singularities in the corners(0,0),
(0,1), (1,1) and(0,1) in the best way. In table 1 we compare our results (64 equidistant and CGL elements withC1

respectivelyC0 interface conditions) with the benchmarks of Botella in [2]. When the steady state is reached (see [9]),



the stream functionΨ is computed by the solution of a Poisson equation where the right-hand side equals−ω and
zero boundary conditions are given. For the numerical solution of this second-order system we first transform it into an
equivalent first-order system and then again use our least-squares scheme for solving this system. The interface con-
ditions for this Poisson equation are the same as for the Navier-Stokes equations. For a more in-depth description see
[9]. The last challenging test case for our new scheme is the"lid-driven cavity flow" for Reynolds numbersRe = 100
andRe = 1000 where the fluid velocity on the edgey = 1 of the cavityΩ := (0,1)2 is given byu1(x,1) := −1 and
u2(x,1) := 0. On the other three edges the velocity equals zero. Becauseof this boundary conditions we have two sharp
singularities in the two upper corners and two weaker singularities in the two lower corners of the cavity (previous
work for spectral element methods has been done in [4]-[6], [11]-[12]). The comparison of our approximations with
the benchmarks show the good performance of our scheme for Reynolds numbers up toRe = 1000. As our simulations
has shown the CGL elements are preferable since they resolvethe singularities in the best way if the functions have
sharp gradients in the vicinity of the boundary. In table 2 weshow the extrema of the velocity for the lid-driven cavity
flow through the centerlinesx = 0.5 andy = 0.5 of the cavity forRe = 1000 on 64 equidistant and CGL elements with
C1 andC0 interface conditions. In [3] a subtraction method was used and so we do not obtain such good values since
we have placed allvariables in the singularities. Comparing table 1 and table2 we see thatC1 interface conditions
are preferable, if the functions have strong variations (lid-driven cavity flow) in some regions. The reason is that the
stronger (C1) interface conditions transport the information of the functions in a smoother way to the other elements.

TABLE 1. Maximal value of the stream functionΨ in Ω and maximal
value of the vorticityω on the edgey = 1 for the regularized cavity flow
with Re=400 on 64 equidistant and CGL elements withC1 respectively
C0 interface conditions

max
(x,y)∈Ω

|Ψ(x,y)| max
x∈[0,1]

ω(x,1) Elements
Interface

conditions

8.63×10−2(0.44,0.62) 25.61(0.62) Equidistant C1

8.55×10−2(0.40,0.60) 24.81(0.64) CGL C1

8.56×10−2(0.40,0.60) 24.81(0.64) CGL C0

8.55×10−2(0.40,0.60) 24.78(0.65) [2]

TABLE 2. Extrema of the velocity for the lid-driven cavity flow
(Re=1000) through the centerlinesx = 0.5 andy = 0.5 of the cavity on 64
equidistant and CGL elements withC1 respectivelyC0 interface conditions

u1,max,ymax u2,max,xmax u2,min,ymin Elements
Interface

conditions

0.500,0.188 0.497,0.867 -0.640,0.094 Equidistant C1

0.397,0.157 0.391,0.843 -0.538,0.092 CGL C1

0.407,0.157 0.404,0.854 -0.550,0.092 CGL C0

0.389,0.172 0.377,0.842 -0.527,0.091 [3]
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