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stability for the Stokes and the Navier-Stokes equations
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Abstract. We consider a new least-squares spectral collocation seHenthe Stokes and the Navier-Stokes equations.
By introducing the Clenshaw-Curtis quadrature rule for @sipg the average pressure to be zero we reduce the condition
numbers of the over-determined systems. All computatisasgparformed with an explicit scheme and saves a lot of CPU
time compared to implicit schemes. We compare two diffetgpes of interface conditions and two different types of
decompositions of the domain. The over-determined lingatems of equations are solved R decomposition. Since

we avoid the normal equations (squared conditions numbersinproved the quality of approximation. Finally, our sotee

is successfully applied to the regularized and lid-drivawity flow.
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THE STOKES AND NAVIER-STOKES EQUATIONS

In order to apply least-squares we consider the Stokes an@iNatokes equations in a first-order formulation. For
the bounded domaifd ¢ R? the Navier-Stokes equations are given by

du

0t+u-Du+vaw+Dp:f inQ ,t € [0,teng] Q)
O-u=0 inQ,te][0,teng] 2
w—0Oxu=0 inQ,te]0,teqg] 3

whereu” = [ug,u,] denotes the velocity vectop the pressureqw the vorticity, fT = [f, f,] the forcing term and
V= Rie the kinematic viscosity. Here it is assumed that the deresjyals unity. For the Stokes equations the only
difference is that they do not contain the convective terifi)nSince the pressure is through (1)-(3) only determined
up to a constant for the Stokes respectively Navier-Stogeatns we have to introduce an additional condition for
the pressure. One procedure is to impose the pressure dtirargrpoint of the considered domain. Another way of

dealing with the pressure constant is imposing the aversggspre to be zero; i.e.,

/Q pdx = 0. 4)

LEAST-SQUARES SPECTRAL COLLOCATION

Spectral methods employ global polynomials for the nunaéolution of differential equations. Hence they give
very accurate solutions for smooth solutions with reldyifew degrees of freedom. For analytical data exponential
convergence can be achieved. For the spectral approximaéantroduce the polynomial subspace

Py = {Polynomials of degre€ N in both variables, x,}. Now all unknown functions are approximated by polyno-
mials of the same degre¥¢, i.e.,us, Uy, w, p are approximated by interpolating polynomial,_”é uy, wN, pN € Py.
Furthermore, we have to introduce the standard Chebyshaggdaobatto collocation nodes which are explicitly

given by(&,n;) = (— cos(%r) ,—cos(’ﬁ")), i,j =0,...,N. In the following we write the spectral derivatives. First



we have to introduce the transformation matrices from glaysipace to coefficient space. Since we employ a Cheby-

shev expansion we obtain the following matrix= (tj j) = (cos(j W)) , 1,j=0,...,N. Further, we need the
differentiation matrix in the Chebyshev coefficient spadgal is explicitly given byD = (di ;) € RNN+1 with
2j . .
R ?J , J=i1+21i+3,...,N 2 i—0
dij = I and ¢ = { 1, else
0 else

3

Now we are able to write explicitly the spectral derivativatnx D for the first derivative which is given by
D=TDT ! e RN+LN+1 The spectral transformation operaforcan be efficiently evaluated by Fast Fourier Trans-
formations (FFTs) in(NlogN) arithmetic operations. We further introduce the identitgtrix | ¢ RN*1N+1 By
tensor product representatiéi® B = (Ab; j )i j we are now able to write the spectral derivatives:

7} 7}

aX—Dl.—D®| , ay—Dz.—|®D. (5)
Furthermore, we have to discretize (4). This is performethbywell-known Clenshaw-Curtis quadrature rule, see [9],
[10]. We use the Clenshaw-Curtis quadrature rule sincégltiie appropriate quadrature rule for the Chebyshev Gauss-
Lobatto nodes. The advantage of the Chebyshev nodes isctttbda they are explicitly given and FFTs are available.
One could also use Gaussian quadrature, in the numericatiexgnts there is no big difference. Since we want to
simulate the lid-driven cavity flow (non-smooth solutiortlweorner singularities) we have to decompose the domain
Q into sub-elements. We performed our simulations with tvifedént domain decompositions and a different number
of element«K?. Figure 1 shows the different decompositions for equidistéements and Chebyshev Gauss-Lobatto
(CGL) elements. Because we decompose the dofaimo K2 sub-elements we have to transform the collocation

FIGURE 1. Different types of decomposition of the domaihinto K2 = 9 elements wittN = 8. Left: equidistant elements,
right: CGL elements

nodes(¢;, n;j) and the spectral derivative matrid@s, D, to the corresponding elements by a linear mapping. Now it
is an easy task to write the discrete version of the PDE wighhiére considered decompositions of the domain, see
[10]. For time integration we use BDF schemes and for the lim@ar convective tern€ = (u- O)u of the Navier-
Stokes equations we used an explicit scheme (BDF schemésfmyus term combined with extrapolation based on
an Adams-Bashforth technique for convective term), seeABihe interfaces between the elements, we require two
different types of interface conditions and compare the enical results. The two different interface conditions are

1. Clinterface conditions, i.e. we require continuity of both fbinctions and normal derivativeswf, u,, continuity
of p and no explicit interface conditions fow.

2. CCinterface conditions, i.e. we require continuitywaf u,, continuity of p and continuity ofw.
Since we patrticularly enforce the collocation conditionglre interfaces and on the boundagy and we additionally
enforce the pointwise continuity on the interfaces and exfthe values of the velocity on the boundary we get really

over-determined linear systems of equations, see [9]. @ihardage of least-squares techniques is amongst othérs tha
they do not require a stabilization, see e.g. [1].

NUMERICAL SIMULATIONS

Since it is well-known that the spectral derivative matsideave large condition numbers we have to care about
reducing them. We found out that the additional integraspuee condition (4) leads to linear systems of equatioris wit



reduced condition numbers compared to imposing the pregsume discrete point (see figure 2, left). Furthermore,
we use theQR decomposition for solving the over-determined linear exysbf equations to avoid solving with the
corresponding normal equations (see [7],[8]) with squacedlition numbers (see figure 2, middle and right). Because
of avoiding the large condition numbers we achieved befipr@aimations since our scheme is not as sensitive as the
scheme where the pressure is set in one discrete pofheol the linear systems of equations are solved with normal
equations. A further disadvantage of setting the pressuomé discrete point of the cavity is, we do not know the
pressure if we consider the cavity flow problems. All comfiotes for Stokes equations are performed on equidistant
elements since we only consider smooth examples. The cetigma for Navier-Stokes equations are done on the two
different element types. For smooth examples there is neahta difference betwe@t andC? interface conditions.

The Stokes equations

With this new scheme we first numerically solve #teady Stokes equationfor the smooth example given in [9].
The computations has shown the exponential convergenes sEbeme. Concerning computational costs we compare
solving the linear systems of equations widR decomposition, pseudoinverse and normal equations. Hu#sere
that usingQR decomposition and using pseudoinverse lead to the sameaagdout using pseudoinverse requires
much more computing time, see [9]. Using normal equatiogsires less time but does not show such good accuracies
(see figure 2, middle and right). From a theoretical pointiefwit is clear that all of the three solving techniques must
lead to the same results. Because of the influence of rouratrofs we do not obtain the same approximations with
the three solvers. Furthermore, we compare both schemasworsumerically the better performance of the one with
Clenshaw-Curtis quadrature a@R decomposition.
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FIGURE 2. The Stokes equations (Re = 1). Left (K2 = 4): Condition numbers with Clenshaw-Curtis quadrature for the pressure
(x), with imposing the pressure in one point (x) and normal equations (0); middle (K% = 36): L?-error of the pressure (with
Clenshaw-Curtis quadrature) on equidistant elements; right (K2 = 36): L2-error of the velocity component uq (with Clenshaw-
Curtis quadrature) on equidistant elements

Next, we consider thansteady Stokes equations/here we use a second-order BDF scheme for time integration.
Here, our scheme shows a very good accuracy/M-acaling of the momentum equations is introduced, see [9].
Without scaling our scheme becomes divergent since thaipoessibility condition (2) is lost during time integratio

The Navier-Stokes equations

For the Navier-Stokes equations we first consider the staadysmooth example given in [9]. Our computations
has shown the high spectral accuracy of our new (i.e., wigm§haw-Curtis pressure condition and wWiR decompo-
sition) scheme on equidistant and CGL elements. All contjmria of the Navier-Stokes equations are performed with
the explicit scheme described above and with regularizatfdhe linear system of equations by the Clenshaw-Curtis
qguadrature rule for the pressure. Our next test case iselyalarized cavity flow" for Reynolds number@e = 100
andRe = 400 where the fluid velocity on the edge- 1 of cavityQ := (0,1)? is given byus(x,1) := —16x%(1—x)?
andux(x,1) := 0. On the other three edges the velocity equals zero. We aenopa results with the benchmarks in
the literature and obtained the very good performance osolseme. We found that our scheme works best on CGL
elements (especially for higher Reynolds numbers) sinesetlelements resolve the singularities in the corf@®6,
(0,1), (1,1) and(0,1) in the best way. In table 1 we compare our results (64 eqaidistnd CGL elements wil@i!
respective\C? interface conditions) with the benchmarks of Botella in [&hen the steady state is reached (see [9]),



the stream functioW is computed by the solution of a Poisson equation where tig-Hand side equals w and
zero boundary conditions are given. For the numerical enidf this second-order system we first transform it into an
equivalent first-order system and then again use our leastrss scheme for solving this system. The interface con-
ditions for this Poisson equation are the same as for theei&tbkes equations. For a more in-depth description see
[9]. The last challenging test case for our new scheme ilidh@riven cavity flow" for Reynolds numberRe= 100
andRe = 1000 where the fluid velocity on the edge- 1 of the cavityQ := (0,1)? is given byu;(x,1) := —1 and
uz(x, 1) := 0. On the other three edges the velocity equals zero. Becétitis boundary conditions we have two sharp
singularities in the two upper corners and two weaker seugfigs in the two lower corners of the cavity (previous
work for spectral element methods has been done in [4]-14]]-[12]). The comparison of our approximations with
the benchmarks show the good performance of our scheme joioRis numbers up tBe= 1000. As our simulations
has shown the CGL elements are preferable since they retba@\sngularities in the best way if the functions have
sharp gradients in the vicinity of the boundary. In table 2slvew the extrema of the velocity for the lid-driven cavity
flow through the centerlines= 0.5 andy = 0.5 of the cavity forRe = 1000 on 64 equidistant and CGL elements with
C! andC? interface conditions. In [3] a subtraction method was usetiso we do not obtain such good values since
we have placed aWNariables in the singularities. Comparing table 1 and t@olee see tha€’ interface conditions
are preferable, if the functions have strong variatiordsdliiven cavity flow) in some regions. The reason is that the
stronger CY) interface conditions transport the information of thedtions in a smoother way to the other elements.

TABLE 1. Maximal value of the stream functioH in Q and maximal

value of the vorticityw on the edge/ = 1 for the regularized cavity flow

with Re=400 on 64 equidistant and CGL elements withrespectively
CY interface conditions

Interface
max |W(x,y)] max w(x,1) Elements conditions
(xy)eQ xe[0,1]
8.63x 1072(0.44,0.62)  2561(0.62) Equidistant ct
8.55% 1072(0.40,0.60)  24.81(0. 64) CGL ct
8.56x 1072(0.40,0.60)  24.81(0.64) CGL co
8.55% 1072(0.40,0.60)  24.78(0.65) [2]

TABLE 2. Extrema of the velocity for the lid-driven cavity flow
(Re=1000) through the centerlines= 0.5 andy = 0.5 of the cavity on 64
equidistant and CGL elements witH respective\C? interface conditions

Interface
UL max; Ymax U2, max; Xmax U2, min, Ymin Elements conditions
0.500,0.188 0.497,0.867 -0.640,0.094 Equidistant ct
0.397,0.157 0.391,0.843 -0.538,0.092 CGL ct
0.407,0.157 0.404,0.854 -0.550,0.092 CGL cO
0.389,0.172  0.377,0.842 -0.527,0.091 [3]
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