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Abstract

A least-squares spectral collocation method for the one-dimensional inviscid
Burgers equation is proposed. This model problem shows the stability and
high accuracy of these schemes for nonlinear hyperbolic scalar equations.
Here we make use of a least-squares spectral approach which was already
used in an earlier paper for discontinuous and singular perturbation prob-
lems [10] . The domain is decomposed in subintervals where continuity is
enforced at the interfaces. Equal order polynomials are used on all subdo-
mains. For the spectral collocation scheme Chebyshev polynomials are em-
ployed which allow the efficient implementation with Fast Fourier Transforms
(FFTs). The collocation conditions and the interface conditions lead to an
overdetermined system which can be efficiently solved by least-squares. The
solution technique will only involve symmetric positive definite linear sys-
tems. The scheme exhibits exponential convergence where the exact solution
is smooth. In parts of the domain where the solution contains discontinuities
(shocks) the spectral solution displays a Gibbs-like behavior. Here this is
overcome by some suitable exponential filtering at each time level. Here we
observe that by over-collocation the results remain stable also for increasing
filter parameters and also without filtering. Furthermore by an adaptive grid
refinement we were able to locate the precise position of the discontinuity.
Numerical simulations confirm the high accuracy of our spectral least-squares
scheme.
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1 Introduction

Here we consider the nonlinear Burgers equation which plays a fundamental
role in computational gasdynamics (see Laney [18]). It models the nonlin-
ear interaction of waves with different wave numbers which may lead to the
development of shocks and expansion fans. Since spectral methods (see,
e.g., Canuto et al. [1], Gottlieb et al. [8] or Orszag [19]) employ global
polynomials they give very accurate approximations for smooth solutions
but only poor results for problems with discontinuities. In the part of the
domain where the solution contains discontinuities the spectral solution dis-
plays a Gibbs-like behavior. Here we approximate the above problem by a
spectral least-squares collocation scheme which was already introduced in
[10] for discontinuous and singular perturbation problems. Similar meth-
ods for spectral elements were already developed by Proot and Gerritsma
[7, 21, 22, 23, 24]. For nonlinear hyperbolic equations the method was pre-
sented in the paper of De Maerschalck and Gerritsma [2]. They employed
an edge detection method to determine the position of the shock. Piecewise
reconstruction of the numerical solution retrieves a monotone solution. Here
the differential equation is collocated at the usual Chebyshev Gauss-Lobatto
nodes including the boundary nodes. Hence on each subdomain we require
N+1 conditions of collocation. Equal order Chebyshev polynomials of degree
N are employed which allow the efficient implementation with Fast Fourier
Transforms (FFTs). The collocation conditions together with the interface
conditions lead to an overdetermined system which can be efficiently solved
by least-squares. The solution technique will only involve symmetric positive
definite linear systems. The scheme exhibits exponential convergence where
the exact solution is smooth. In parts of the domain where the solution
contains discontinuities (shocks) the spectral solution displays a Gibbs-like
behavior. Here this is overcome by some suitable exponential filtering at
each time level. Furthermore by an adaptive grid refinement we were able to
locate the precise position of the discontinuity. Numerical simulations con-
firm the high accuracy of our spectral least-squares scheme. Summarizing
our approach has the following advantages:

• equal order interpolation polynomials can be employed

• iterative solvers for symmetric and positive definite systems (e.g. con-
jugate gradient methods) can be used

• improved stability properties for hyperbolic problems (see [4, 10, 2])
and the Navier-Stokes equations (see [6, 11, 12, 24] and Jiang et al.
[14, 15, 16, 17])
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• filtering, over-collocation and adaptivity can easily be combined

The paper is organized as follows. In Section 2, the least-squares scheme
for the inviscid Burgers equation is introduced and in section 3 we describe
the spectral collocation scheme. This is followed by the methods of filtering,
adaptivity and over-collocation in section 4. Finally the numerical results
are discussed in section 5.

2 The Burgers Equation

We consider the one-dimensional inviscid Burgers equation

∂u

∂t
+

∂u2

∂x
= 0, 0 ≤ x ≤ L, t ≥ 0 (1)

with L = 4 and as initial condition a single cosine hill

u0(x) =

{
1
2
(1− cos πx) for 0 ≤ x ≤ 2,

0 for 2 ≤ x ≤ L.

Since the equation is nonlinear, linearization of the quadratic term is re-
quired. Here we prefer the Picard iteration which can be written as

∂ul

∂t
+ 2ul−1∂ul

∂x
= 0 for l = 1, 2, . . . (2)

The above treatment is also called nonconservative formulation. In our nu-
merical computations we observe that for an accuracy of about 10−10 only a
few steps (3-5) of the above Picard iteration per time level were necessary.
The conservative formulation can be obtained by introducing a new function
v = u2 which leads to the equations

∂u

∂t
+

∂v

∂x
= 0,

v − u2 = 0.

Because of the bad convergence results (strong oscillations) obtained in [2]
we did not follow this approach. Here we only consider the nonconservative
Picard iteration (2). For the time discretization we employ standard second
order backward differentation formulas (BDF). The numerical results are
presented at the fixed time level T = 2. More interesting is the discretization
in space where we propose a spectral least-squares collocation scheme which
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was already introduced in [10] for discontinuous and singular perturbation
problems. For this purpose the domain Ω = (0, L) is decomposed into K
subdomains Ωk = (xk−1, xk), k = 1, . . . , K with

0 = x0 < x1 < x2 < . . . < xK−1 < xK = L.

Now for each time level l the Picard equation (2) can be decomposed as
follows: Find functions ul

k, k = 1, . . . , K defined on Ωk such that

∂ul
k

∂t
+ 2ul−1

k

∂ul
k

∂x
= 0 in Ωk, k = 1, . . . , K, (3)

ul
k+1(xk)− ul

k(xk) = 0, k = 1, . . . , K − 1, (4)

u1
k(0) = 0 (5)

where we start with u0
k ≡ u0 in Ωk at time level 0. Here we allow no jumps

at the interface nodes and hence the solution is required to be continuous.

3 The Spectral Collocation Scheme

For the spectral approximation we introduce the polynomial subspace

IPN = {Polynomials of degree ≤ N}.
Now all unknown functions ul

k are approximated by polynomials ul
k,N of the

same degree N , i.e., ul
k,N ∈ IPN , k = 1, . . . , K. Furthermore we have to

introduce the standard Chebyshev Gauss-Lobatto collocation nodes. They
are explicitly given by

ξi = − cos
iπ

N
, i = 0, . . . , N.

In order to define the nodes on Ωk we have to introduce the mapping from
the interval (−1, 1) to Ωk. The nodes xk,i, i = 0, . . . , N, k = 1, . . . , K are
explicitly given by

xk,i =
1

2
[(xk − xk−1)ξi + xk−1 + xk] .

Hence we retrieve the interval left and right bounds by xk,0 = xk−1, xk,N = xk.
Now the collocation (or pseudo spectral) scheme determines the polynomial
functions ul

k,N ∈ IPN such that
(

∂ul
k,N

∂t
+ 2ul−1

k,N

∂ul
k,N

∂x

)
(xk,i) = 0, i = 0, . . . , N, k = 1, . . . , K, (6)

ul
k+1,N(xk)− ul

k,N(xk) = 0, k = 1, . . . , K − 1, (7)

ul
1,N(0) = 0. (8)
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These are K(N + 1) conditions of collocation for the same number of un-
knowns. The additional K initial and interface conditions lead to an overde-
termined system which can be efficiently solved by least-squares. In the
following we write the spectral derivative in matrix notation. First one has
to introduce the transformation matrices T from physical space to coefficient
space. For the Chebyshev expansion the matrix T is given by

Ti,k = cos(k
(N − i)π

N
), i, k = 0, . . . , N.

Further we need the differentation matrix in the Chebyshev coefficient space
which is explicitly given by D̂ = (d̂i,j) ∈ IRN+1,N+1 with

d̂i,j =

{
2j
ci

, j = i + 1, i + 3, . . . , N

0 , else

and

ci =

{
2, i = 0,
1, else.

Now we are able to write the spectral derivative matrix D for the first deriva-
tive. It is explicitly given by

D = TD̂T−1 ∈ IRN+1,N+1.

The spectral operator can be efficiently evaluated by Fast Fourier Transforms
(FFTs) in O(N log N) arithmetic operations. Because of the above transform
the derivative operator on Ωk is given by

Dk = dkD, dk = 2/(xk − xk−1), k = 1, . . . , K.

The first-order collocation system with K(N + 1) equations and the K ini-
tial/interface conditions lead to an overdetermined system of K(N + 1) + K
equations for K(N + 1) unknowns. For the corresponding matrix

A ∈ IRK(N+2),K(N+1)

the linear system Az = r is solved by least-squares in the discrete L2−norm
which leads to the normal equations

AtAz = Atr.

Hence the linear system resulting from the normal equations becomes sym-
metric and positive definite which allows the use of efficient iterative solvers
like (preconditioned) conjugate gradient methods.
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4 Filtering and Adaptive Refinement

In order to determine from the oscillatory numerical solution the location of
the discontinuity, the enhanced edge detection method developed by Gelb
and Tadmor [5] was used in [2]. The idea is to expand the numerical solution
in a filtered conjugate Fourier sum which converges faster than the unfiltered
Fourier representation. Once the discontinuity has been detected, it is possi-
ble to reconstruct the solution in the piecewise smooth subdomains defined
by the position of the edges and the boundary conditions (see [9]). In [2]
the piecewise reconstruction method is applied to the least-squares spectral
element method and the shock in the space-time domain is now presented
by a sharp edge. It is observed that the method improves the accuracy and
renders a monotone solution. Here we follow a different approach where we
employ techniques of filtering and adaptive refinement. We filter the spectral
approximation by some standard exponential filter given by

σq(k) = exp(−δ(k/N)q), k = 0, . . . , N (9)

where q denotes the order of the filter. For increasing q the effect of filtering
becomes smaller. The parameter δ is chosen such that σq(N) = ε̂ where ε̂
denotes the machine precision. This leads to δ = − ln ε̂. We apply the filter
in each time step and the solution ũ after filtering is given by

ũ =
N∑

k=0

σq(k)ûkTk

where Tk denotes the kth Chebyshev polynomial and ûk the coefficients of the
Chebyshev expansion. More information about filters can be obtained from
the paper of Vandeven [25]. Furthermore by an adaptive grid refinement
we were able to locate the precise position of the discontinuity. On each
element we evaluate an a-posteriori error indicator based on the H1-norm.
In particular, we refine where the solution gradients in each time step are
large, i.e., we require

|| ∂

∂x
uk,N || ≤ ε||uN ||1 (10)

everywhere on the mesh. Here || · || denotes the discrete L2 norm on element
k, || · ||1 the discrete H1 norm on (0, L), and ε is a given discretization tol-
erance. This is a common refinement criteriion in cases where no alternative
measure of solution errors is available. For spectral methods there exist other
refinement strategies which are based on the decay of the coefficients in the
polynomial expansion. A good survey on these methods can be taken from
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the review article of Henderson [13]. From the discussion in [13] it is not clear
that the other error indicators yield better results. Hence, for simplicity we
refer to the above refinement criteria.

In our computations we start with a coarse mesh of 4 elements and poly-
nomial degrees of order 1. In the case that the criterion is not fulfilled the
corresponding element is subdivided into two elements with half size. Simul-
taneously, the degree of the polynomials are increased till to a maximal order
of 8. Clearly, the shock is moving in time and in regions where the shock
has gone through the solution becomes smooth. Here we return to a coarse
mesh with low order polynomial degrees.

For spectral element methods it was observed in [3] that over-integration
leads to improved results for nonlinear hyperbolic problems. In the shock
region higher-order Gauss-Lobatto integration was used to approximate the
integrals involved. Then the discrepancies between the various lineariza-
tion methods (Picard’s method or Newton linearization) were considerably
reduced and under-relaxation was no longer necessary. Here we follow a sim-
ilar approach for the collocation scheme where we collocate in each element
at 2N + 1 points by maintaining the polynomial degree N . The nodes are
given by

ξo
i = − cos

iπ

2N
, i = 0, . . . , 2N

with corresponding transformation matrix on IPN

T o
i,k = cos(k

(2N − i)π

2N
), i = 0, . . . , 2N, k = 0, . . . , N.

The spectral derivative for the over-collocation scheme is given by

Do = T oD̂T−1 ∈ IR2N+1,N+1.

For the least-squares solver the normal equations still lead to a K(N + 1)×
K(N + 1) system and hence the computational amount of work is similar
to the treatment without over-collocation. But now one really has an over-
determined system which has to be solved by least-squares. Otherwise there
is always the danger that the matching conditions dominate the matrix and
the continuity conditions can be eliminated, thus leading to a least-squares
solution technique, but not to a least-squares problem. In our numerical
experiments we compare both approaches.
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5 Numerical Results

We calculated the solution of the Burgers equation on the time interval [0, T ]
with T = 2. We perform 1000 time iterations until the time level T = 2
is reached. Hence the time step is ∆t = 0.002. The tolerance for the grid
refinement in (10) is chosen to be ε = 0.1. In table I we present our numerical
results for different filter parameters σq. We calculated the shock position xs

and checked the accuracy of our spectral solution by computing the integral
I(uN). The latter one is performed by Clenshaw-Curtis quadrature (see, e.g.,
Peyret [20]) on each element and summing up these values. By integrating
the Burgers equation in the variables x, t and noticing that the boundary
values of u vanish in x = 0, L we derive

∫ L

0
u(x, T )dx =

∫ L

0
u(x, 0)dx ≡ 1.

Hence the integral I(uN) over the spectral solution should approximate the
value 1. In the case without over-collocation it can be observed from table
I that the shock position is best located for the filter of order q = 9. The
shock position is located in xs = 3.2095 whereas in [2] it was observed to be
in xs = 3.225. Since in [2] only 10 elements were used our shock position
is more close to the exact position xs = 3.209776. In fig. 1 we plotted the
spectral solutions for filter parameters q = 9, 12, 14,∞. For increasing filter
parameters q = 12, 13 the results become worse. In particular, in the case
without filtering (q = ∞) the spectral solution has strong oscillations behind
the shock position and hence is far away from the exact shock profile. In the
case with over-collocation we observe from table II no significant improve-
ment in accuracy. Further the convergence behaviour of the Picard iteration
is slightly worse. The advantage now is that the numerical results remain
stable also for increasing filter parameters. Also in the case without filtering
(q = ∞) we obtain the solution plotted in figure 2. Over-collocation itself
leads to a stable solution and hence filtering becomes superfluous.

6 Conclusion

A least-squares spectral collocation scheme for the Burgers equation is pre-
sented. The original domain is decomposed into several subdomains. The
spectral collocation conditions and the interface conditions lead to an overde-
termined system which is efficiently solved by least-squares. The solution
technique only involves symmetric positive definite algebraic systems which
allow the use of equal order interpolation polynomials in all subdomains. Ro-
bust iterative solvers such as the conjugate gradient method can be employed.
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The method is stabilized by standard exponential filters and over-collocation.
The shock position is located by techniques of adaptive refinement. The pre-
sented spectral least-squares scheme shows the ability to produce accurate
solutions for nonlinear hyperbolic equations and offers great potential for
more complex problems in gasdynamics, such as the Euler equations.
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q xs I(uN)
6 3.2012 0.9956
7 3.2006 0.9951
8 3.2023 0.9963
9 3.2095 1.0024
10 3.2083 1.0002
11 3.2084 1.0001
12 3.1728 0.9770
13 3.1765 0.9794
14 3.1923 0.9897
18 3.2007 0.9955
∞ 3.3115 1.0682

Table I. Results without over-collocation.

q xs I(uN)
6 3.2002 0.9949
7 3.2065 0.9985
8 3.2006 0.9955
9 3.2022 0.9957
10 3.2072 0.9994
11 3.2072 0.9995
12 3.2072 0.9995
13 3.2073 0.9995
14 3.2020 0.9960
18 3.2016 0.9957
∞ 3.2019 0.9959

Table II. Results with over-collocation.
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Figure 1: Shock profile for q = 9, 12, 14,∞ without over-collocation.
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Figure 2: Shock profile and final (adapted) grid.
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