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Abstract

From the literature it is known that spectral least-squares schemes
perform poorly with respect to mass conservation and compensate
this lack by a superior conservation of momentum. This should be re-
vised, since the here presented new least-squares spectral collocation
scheme leads to an outstanding performance with respect to conserva-
tion of momentum and mass. The reasons can be found in using only
a few elements, each with high polynomial degree, avoiding normal
equations for solving the overdetermined linear systems of equations
and by introducing the Clenshaw-Curtis quadrature rule for impos-
ing the average pressure to be zero. Furthermore, we combined the
transformation of Gordon and Hall (transfinite mapping) with our
least-squares spectral collocation scheme to discretize the internal flow
problems.

Keywords: Stokes equations, internal flow, spectral collocation, least-squares,
Gordon and Hall transformation, Clenshaw-Curtis quadrature, direct solver

1 Introduction

Spectral methods (see, e.g., Canuto et al. [2], Gottlieb and Orszag [10], [26]
or Deville et.al. [6]) employ global polynomials for the numerical solution of
differential equations.
Hence they give very accurate approximations for smooth solutions with rel-
atively few degrees of freedom. For analytical data exponential convergence
can be achieved.
If one deals with problems with non-smooth solutions the usual (global)
spectral approach yields very poor approximation results. To avoid these

1thorsten.kattelans@uni-due.de
2wilhelm.heinrichs@uni-due.de

University of Duisburg-Essen, Engineering Mathematics, Universitaetsstr. 3, D-45117
Essen, Germany

1



difficulties the original domain can be decomposed into several sub domains
and least-squares techniques can be applied, see e.g. [11]–[16], [22]–[23],
[28]–[30] and [31]–[34]. Least-squares techniques for such problems offer the-
oretical and numerical advantages over the classical Galerkin type methods
which must fulfill the well-posedness (or stability) criterion, the so called
LBB condition. The advantage of least-squares techniques is that they lead
to positive definite algebraic systems which circumvent the LBB stability
condition, see, e.g. [1], [18]–[21]. One very special least-squares technique
is the least-squares spectral element method. These least-squares spectral
element methods for the Stokes problem were first introduced by Gerritsma
and Proot in [31], [32]. Spectral least-squares for the Navier-Stokes equa-
tions were first presented by Pontaza and Reddy in [28], [29], [30], followed
by Gerritsma and Proot in [34]. Heinrichs investigated least-squares spectral
collocation schemes in [13], [14], [15], [16] that lead to symmetric and posi-
tive definite algebraic systems which circumvent the LBB stability condition.
Furthermore, Heinrichs and Kattelans presented in [16] and [23] least-squares
spectral collocation schemes where they improved the conditions numbers of
the algebraic systems, considered different types of decompositions of the do-
main and different interface conditions between the elements for the Stokes
and Navier-Stokes equations.

Here, we consider internal flow problems to investigate the mass and momen-
tum conservation of the least-squares spectral collocation method (LSSCM).
A typical example of such a flow problem is a small channel of width h in
which a cylinder with diameter d moves along the centerline of the channel,
see e.g. [4], [35].

In [4] it has been shown that the LSFEM leads to an unsatisfactory velocity
profile along the smallest cross-section between the channel wall and the
cylinder. Using this calculated velocity profile to calculate the mass flow
through the cross-section it has been observed that the calculated mass flow
is significant lower than the mass inflow into the channel.
The important questions are:

1. Why are least-squares methods more susceptible to loss of mass con-
servation than, e.g., Galerkin-type methods?

2. How important is mass conservation for the overall performance of the
numerical scheme?

The main reason why least-squares methods are more susceptible to loss of
mass conservation than Galerkin methods is that they are based on min-
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imization of a functional which includes the continuity equation. On the
contrary, within Galerkin-type methods the mass conservation, i.e. ∇·u = 0
is a constraint. Because of this, the continuity equations plays not such an
significant role in the least-squares formulation as in the Galerkin formula-
tion. Thus, it is clear why least-squares methods are more susceptible to loss
of mass conservation than ”direct methods”.
This insight is the key for the second question. To discuss the overall per-
formance, we have not only to discuss the mass conservation but also the
conservation of momentum. Thus, the conservation of momentum has to be
verified, too.

One way overcoming the problem of the LSFEM is using the so called re-
stricted LSFEM, see [4], which is based on the least-squares functional with
the extension of mass conservation ∇ · u = 0.
Proot and Gerritsma have shown in [33], [35] that least-squares spectral el-
ement methods (LSSEM) lead to good results for such flow problems, since
the LSSEM compensate the loss of mass conservation by a superior conser-
vation of the momentum equations.

In this paper we consider the least-squares spectral collocation method (LSSCM)
and we will show that our method leads to superior mass and momentum
conservation.
Furthermore, our approach has the following advantages:

• equal order interpolation polynomials can be employed

• it is possible to vary the polynomial order from element to element

• improved stability properties for small perturbation parameters in sin-
gular perturbation problems, [11] and Stokes or Navier-Stokes equa-
tions [13]-[16], [23], [31], [32], [34]

• good performance in combination with domain decomposition tech-
niques

• direct and efficient iterative solvers for positive definite systems can be
used

• implementation is straightforward.

The paper is organized in the following way. In Section 2, the internal flow
problem is described. Section 3 introduces the first-order formulation of the
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Stokes equations. The least-squares spectral collocation scheme and the dis-
cretization is presented in Section 4. The numerical results of our simulations
are discussed in Section 5, where we present our results in Subsection 5.1 and
compare our results with the ones in the literature in Subsection 5.2. The
Conclusion is presented in Section 6.

2 The problem set-up

In order to investigate the mass and momentum conservation of our LSSCM
we use the same test case as in [4] and [33], [35] to compare our results with
those. The flow problem is defined by a cylinder of diameter d = 1 which
moves at a speed of one along the centerline of a channel of width h = 1.5,
see Fig. 1.
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Figure 1: The problem set-up.

The domain of the channel is defined as a rectangle and the center of the
cylinder is located at the origin, i.e. we solve the Stokes equations on the
domain

Ω := Ωc\K,

where Ωc := [−1.5, 3]×[−0.75, 0.75] and K := {(x, y) ∈ R
2 : x2 + y2 < 0.52}.

The boundary conditions of the velocity are given by

u|∂Ω :=






[1, 0]T on ∂Ωc

[0, 0]T on ∂K
.
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3 The Stokes problem

In order to apply least-squares the Stokes problem is transformed into an
equivalent first-order system of a partial differential equation. This is ac-
complished by introducing the vorticity ω = ∇× u as an auxiliary variable.
By using the identity

∇×∇× u = −∆u + ∇(∇ · u)

and the incompressibility constraint ∇ · u = 0 we obtain

∇× ω + ∇p = f in Ω (1)

∇ · u = 0 in Ω (2)

ω −∇× u = 0 in Ω (3)

where uT = [u1, u2] denotes the velocity vector, p the pressure and fT =
[f1, f2] the forcing term.
Since the pressure is through (1)–(3) only determined up to a constant we
have to introduce an additional condition for the pressure. This is done by
imposing the average pressure to be zero; i.e.,

∫

Ω

p dx = 0. (4)

Another way of dealing with the pressure constant is imposing the pressure
in one point of Ω. In [16] and [23] we have seen, that it is better to use (4)
since this leads to over-determined linear systems of equations with lower
conditions numbers. Hence, the accuracy can be increased since the round-
off errors do not have such a big influence to the approximations.

Using the formulation (1)–(3) the Stokes equations can be written as





0 0
∂

∂x2

∂

∂x1

0 0 − ∂

∂x1

∂

∂x2

∂

∂x2

− ∂

∂x1

1 0

∂

∂x1

∂

∂x2

0 0









u1

u2

ω

p





=





f1

f2

0

0





in Ω. (5)
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4 The least-squares spectral collocation scheme

For the spectral approximation we introduce the polynomial subspace

PN = {Polynomials of degree ≤ N in both variables x1, x2}.

Now all unknown functions are approximated by polynomials of the same
degree N , i.e., u1, u2, ω, p are approximated by interpolating polynomials
uN

1 , uN
2 , ωN , pN ∈ PN . Furthermore, we have to introduce the standard

Chebyshev Gauss-Lobatto (CGL) collocation nodes which are explicitly given
by

(ξi, ηj) =

(
− cos

(
iπ

N

)
,− cos

(
jπ

N

))
, i, j = 0, . . . , N. (6)

In the following we write the spectral derivatives. First one has to introduce
the transformation matrices from physical space to coefficient space. Since
we employ a Chebyshev expansion we obtain the following matrix:

T = (ti,j) =

(
cos

(
j
(N − i)π

N

))
, i, j = 0, . . . , N.

Further, we need the differentiation matrix in the Chebyshev coefficient space
which is explicitly given by D̂ = (d̂i,j) ∈ R

N+1,N+1 with

d̂i,j =






2j

ci

, j = i + 1, i + 3, . . . , N

0 , else

and

ci =

{
2 , i = 0
1 , else.

Now we are able to write explicitly the spectral derivative matrix D for the
first derivative which is given by

D = TD̂T−1 ∈ R
N+1,N+1. (7)

The spectral operator can be efficiently evaluated by Fast Fourier Trans-
formations (FFTs) in O(N log N) arithmetic operations. We further intro-
duce the identity matrix I ∈ R

N+1,N+1. By tensor product representation
A ⊗ B = (Abi,j)i,j we are now able to write the spectral derivatives:

∂

∂x
∼= D1 := D ⊗ I ,

∂

∂y
∼= D2 := I ⊗ D. (8)
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Next we have to realize the discrete formulation of equation (4). This is
performed by the Clenshaw-Curtis quadrature rule (see, e.g. [27]):

∫

Ωs

p dx ∼=
N∑

i=0

N∑

j=0

ωiωjp(ξi, ηj)

where Ωs := [−1, 1]2 denotes the standard domain, (ξi, ηj) the Chebyshev
Gauss-Lobatto nodes on Ωs and

ωi :=






1

N2 − 1
, i ∈ {0, N}

4

N

N

2∑

j=0

1

c̄j

cos
(

2πij

N

)

1 − 4j2
, 1 ≤ i ≤ N − 1

with

c̄j :=

{
2 , j ∈ {0, N/2}
1 , 1 ≤ j ≤ N/2 − 1

the integration weights.
We use the Clenshaw-Curtis quadrature rule since this is the appropriate
quadrature rule for the Chebyshev Gauss-Lobatto nodes.
One could also use Gauss Legendre or Gauss Lobatto-Legendre nodes. In the
numerical results there is no big difference. The advantage of the Chebyshev
nodes is the fact that they are explicitly given and fast Fourier transforms
(FFTs) are available.

Furthermore, we have to decompose the domain Ω into quadrilaterals (some
with curved boundaries). Since for spectral least-squares methods it is better
to use only a few elements, each with high polynomial degree (see, e.g. [7]),
we here only use 12 elements, i.e.,

Ω =
12⋃

i=1

Ωi,

where Ωi, i = 1, . . . , 12 are defined as in Fig. 2.
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Figure 2: Decomposition of Ω into 12 elements.

In order to apply our least-squares spectral collocation scheme, we have to
define a transformed problem on the square. Instead of introducing polar
coordinates we prefer the transfinite mapping of Gordon and Hall, see e.g.
[2],[8],[9],[12]. The advantage of the transfinite mapping of Gordon and Hall
is that it is a very simple transformation where no singularities (as by using
polar coordinates) occur, see, e.g., [12].
To construct the mapping Ψi of the square Ωs with boundaries Γν into one
of the quadrilaterals Ωi with (curved) boundaries Γ̂i

ν we use the mappings

πi
ν : Γν −→ Γ̂i

ν , i = 1, . . . , 12 , ν = 1, . . . , 4.

As an example, in the following we write the functions π2
ν , ν = 1, . . . , 4, for
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element Ω2:

π2
1(ξ) =

( 1

2
[(−0.5 + 0.75)ξ − 0.75 − 0.5]

0

)
,

π2
2(η) =

( −0.75
1

2
[(0 + 0.75)η − 0.75 + 0]

)
,

π2
3(ξ) =





1

2

[(
− 1

2
√

2
+ 0.75

)
ξ − 1

2
√

2
− 0.75

]

1

2

[(
− 1

2
√

2
+ 0.75

)
ξ − 1

2
√

2
− 0.75

]




,

π2
4(η) =





−

√

0.52 −
{

1

2

[(
0 +

1

2
√

2

)
η − 1

2
√

2
+ 0

]}2

1

2

[(
0 +

1

2
√

2

)
η − 1

2
√

2
+ 0

]




,

where (ξ, η) ∈ Ωs.
Following Gordon and Hall, the mapping Ψ2 : Ωs −→ Ω2 can be written
explicitly in terms of the π2

ν as:

Ψ2(ξ, η) =
1 − η

2
π2

3(ξ) +
1 + η

2
π2

1(ξ)

+
1 − ξ

2

[
π2

2(η) − 1 + η

2
π2

2(1) − 1 − η

2
π2

2(−1)

]
(9)

+
1 + ξ

2

[
π2

4(η) − 1 + η

2
π2

4(1) − 1 − η

2
π2

4(−1)

]
.

The whole discretization of Ω is shown in Fig. 3.
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Figure 3: Discretization of Ω into 12 elements. In each element polynomial
degree N = 10 is used. This grid is called G12.

Since we are interested in the solution of a first-order partial differential
equation we have to transform the first-order partial derivatives from the
coordinates (ξ, η) ∈ Ωs into the coordinates (x, y) ∈ Ωi, i = 1, . . . , 12. The
coordinates of Ωi are given as functions x = x(ξ, η) and y = y(ξ, η). Hence,
the transformation reads as follows:

(
ux

uy

)
=

1

xξyη − xηyξ

(
yη −yξ

−xη xξ

)(
uξ

uη

)
.

At the interfaces between the elements we enforce pointwise C0 interface
conditions of all functions, i.e. continuity of the velocity, continuity of the
vorticity and continuity of the pressure. One could also require (as Heinrichs
and Kattelans in [15], [16], [23]) continuity of both the functions and normal
derivatives of u1, u2 , continuity for p and no explicit interface condition
for ω. In the numerical results there are no nameable differences concerning
these two different types of interface conditions (see [23]). The reason, we
here use C0 interface conditions is, the resulting linear systems of equations
have lower condition numbers and the dimension of the matrices are smaller.

The corresponding discrete system of differential equations together with the
discrete boundary, the discrete interface conditions and the discrete version of
(4) are written into a matrix A and compiled into an overdetermined system

10



Az = r where the matrix A is given by

A =





A1

. . .

A12

MI

B
Mp





. (10)

Here Ai (dense matrix), i = 1, . . . , 12 denotes the discrete version of the ma-
trix in (5) on the corresponding element Ωi. The matrix MI represents the
discrete interface conditions, B the given discrete boundary conditions for
the velocity components u1 and u2 and Mp the additional discrete pressure
condition in (4). In [16] we have shown, that these types of linear systems
of equations are really overdetermined and it is better to use QR decom-
position for solving these systems instead of forming the normal equations.
The reason is, the normal equations square the condition numbers of the
algebraic systems and because of this the round-off errors have a stronger
influence. Hence, all over-determined linear systems of equations in this pa-
per are solved by QR decomposition if we do not explicitly mention an other
solver.

Furthermore, we compare the performance of our least-squares spectral col-
location scheme with the performance of the least-squares spectral element
method of Gerritsma and Proot, see [33] and [35]. To do this we have to use
the same decomposition of the domain Ω, the same polynomial degrees and
the same norms as used in [33], [35]. The decomposition of the domain as
used by Gerritsma and Proot is shown in Figure 4. The norms used for the
computations are shown in the Section of the numerical simulations.
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Figure 4: Discretization of Ω into 86 elements. In each element polynomial
degree N = 4 is used. This grid is called G86.

5 Numerical simulations

In this section, we present the results of our scheme on both of the grids G12

and G86. First, we present the results on G12 and after that the results of
our scheme on G86 are compared with the ones using the different methods
of Gerritsma and Proot in [33], [35].

5.1 Results on G12

First, we consider a smooth model problem to verify the convergence rates
of our new least-squares spectral collocation scheme. This is demonstrated
by means of an analogical model problem as in [16]. The exact velocity
components and the pressure are defined on Ω by

u1(x, y) := sin
(πx

2

)
cos
(πy

2

)

u2(x, y) := − cos
(πx

2

)
sin
(πy

2

)

p(x, y) :=
1

4
(sin(πx) + sin(πy)) + 10(x + y).

Calculating the discrete errors we use the discrete H1-error norm and the
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discrete L2-error norm which are given by

||v||H1 = α

[
12∑

k=1

N∑

i,j=0

v(xk
i , y

k
j )2 +

(
∂

∂x
v(xk

i , y
k
j )

)2

+

(
∂

∂y
v(xk

i , y
k
j )

)2
] 1

2

||v||L2 = α

[
12∑

k=1

N∑

i,j=0

v(xk
i , y

k
j )2

] 1

2

,

where (xk
i , y

k
j ) denotes the collocation nodes on element Ωk and

α = [(N + 1)
√

12]−1.
In Table 1 we present the H1-errors of the velocity components, the L2-errors
of the pressure and the divergence of the velocity field.

N ||u1 − uN
1 ||H1 ||u2 − uN

2 ||H1 ||p − pN ||L2 ||∇ · uN ||L2

2 5.013 · 10−1 4.840 · 10−1 7.200 · 10−1 7.727 · 10−2

4 1.638 · 10−1 1.172 · 10−1 3.818 · 10−1 3.825 · 10−3

6 8.487 · 10−2 2.963 · 10−2 6.484 · 10−1 3.092 · 10−4

8 4.103 · 10−3 2.430 · 10−3 2.634 · 10−2 3.543 · 10−5

10 1.654 · 10−4 1.087 · 10−4 3.785 · 10−4 2.032 · 10−6

12 5.858 · 10−6 4.680 · 10−6 8.978 · 10−6 5.373 · 10−8

14 2.175 · 10−7 2.267 · 10−7 4.707 · 10−7 9.149 · 10−10

16 1.316 · 10−8 1.286 · 10−8 2.106 · 10−8 5.083 · 10−11

18 2.338 · 10−9 2.337 · 10−9 3.977 · 10−9 6.556 · 10−12

20 2.420 · 10−10 2.330 · 10−10 3.926 · 10−10 7.297 · 10−12

Table 1: Approximation errors of the smooth model problem in Ω on G12. Dis-
crete H1-error of the velocity, discrete L2-error of the pressure and discrete
L2-error of the divergence of the velocity field.

We see the high spectral accuracy of our scheme. From polynomial degree
four to polynomial degree six the error in the pressure increases slightly,
hereafter the error decreases exponentially. The reason of this performance
is that our scheme is not able to resolve the function in the best way since
for polynomial degree six there are not enough degrees of freedom. Increas-
ing the d.o.f. and the collocation conditions (e.g. increasing the polynomial
degree) our scheme shows consistently high spectral accuracy.
For polynomial degree 20 we see that the error of the divergence of the veloc-
ity field increases slightly. The reason is that the round-off errors disturb the
spectral accuracy because of the large conditions numbers of the algebraic
systems. This is a well-known performance of our scheme, see, e.g. [16], [23].
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Next, we simulate the problem described in Section 2. To compare our
results with those of Chang and Nelson in [4], we calculate the maximum
of the velocity component u1 on the line between (0, 0.5) and (0, 0.75) (the
cross-section, defined as γ2). Furthermore, we compute the loss of mass in
the cross-section, as in [35], which is given by

M :=
1

2

∫

γ1

u1 ds −
∫

γ2

u1 ds, (11)

where γ1 is defined as the line between (−1.5,−0.75) and (−1.5, 0.75). These
line integrals are approximated by the Clenshaw-Curtis quadrature rule,
again. To avoid the influence of the quadrature rule to the approximations
of M in (11) and thus the conclusions drawn from the date, we again use
refined grids for the approximation of the integrals. Our simulations have
shown that the numerical integration on refined grids has no effect on the
conclusions, since the error between the first two computed values is less than
10−10.
The percentaged loss of mass is denoted by M%. The results of our compu-
tations are shown in Table 2.

N max{u1(0, y) : 0.5 ≤ y ≤ 0.75} |M| M%

2 0.8417 4.465 · 10−1 7.829 · 101

4 1.0230 5.098 · 10−1 7.957 · 101

6 1.9020 3.232 · 10−1 4.695 · 101

8 4.1316 1.012 · 10−2 1.353 · 100

10 4.2020 2.081 · 10−4 2.775 · 10−2

12 4.2035 3.010 · 10−6 4.013 · 10−4

14 4.2036 2.593 · 10−7 3.458 · 10−5

16 4.2036 1.986 · 10−8 2.648 · 10−6

18 4.2036 9.915 · 10−9 1.322 · 10−6

Table 2: Maximum value of u1 along γ2, |M| and M% for different polyno-
mial degrees N on G12.

Comparing our results (especially for large polynomial degrees) with the re-
sult of Chang and Nelson in [4] (Figure 8 and 9 in their paper), we see that
our scheme leads to very good results. The maximal value of u1 along γ2 of
Chang and Nelson is 4.17. Chang and Nelson had to use a ”restricted LS-
FEM” to obtain this value. Using their ”mesh-dependent, weighted LSFEM”
they obtain very bad results. Here, we obtain the very good results shown
in Table 2 with our scheme directly, e.g. without any further modification of
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our scheme. Furthermore, from the table we observe that our scheme leads to
an outstanding performance with respect to conservation of mass along the
cross-section. Comparing the percentaged loss of mass in the cross-section of
our scheme with the least-squares spectral element scheme of Gerritsma and
Proot in [33], [35] we see that our scheme leads to much better results. The
largest number of d.o.f of our scheme is 17328 whereas the largest number
of d.o.f in [33], [35] is 27864 and they only reach a loss of 9.8% with their
least-squares scheme. That means that our scheme leads to much better re-
sults with less d.o.f.. This performance of spectral least-squares schemes was
already observed in [16]. The spectral least-squares scheme lead to improved
results when only a few elements each with high polynomial degrees is used,
instead of using a lot of elements each with low polynomial degrees.

We do not only obtain very good results with our scheme for the maximum of
u1 along the cross-section but also for all values of u1 along the cross-section,
see Figure 5. The values calculated here (for large N), show the same perfor-
mance as the corresponding ones in [4] for the ”restricted LSFEM” of Chang
and Nelson (see Figure 9 in their paper).
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y
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Figure 5: Values of u1 along the cross-section γ2 for different polynomial
degrees N on G12.

Furthermore, in Figure 6 we show the profile of velocity component u1 in the
whole domain Ω.
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Figure 6: Profile of velocity component u1 in Ω for polynomial degree N = 18
on G12.

Comparing this figure with the corresponding ones in [4] we again see, that
our scheme leads to very good approximations. Further, our scheme is not
only able to resolve the velocity in the critical cross-section γ2 but even
around the whole cylinder.
Next, we check mass and momentum conservation of our least-squares spec-
tral collocation scheme in the whole domain Ω. Since we collocate on CGL
nodes, we verify the conservation of mass and momentum on Chebyshev
Gauss (CG) nodes. Using CGL nodes to check mass and momentum con-
servation is not the right way, since then one only studies the least-squares
errors of our scheme and not the ”really” conservation properties. The CG
nodes on the standard domain Ωs are explicitly given by

(ξCG
i , ηCG

j ) =

(
− cos

(
(2i + 1)π

2N + 2

)
,− cos

(
(2j + 1)π

2N + 2

))
, i, j = 0, . . . , N.(12)

The corresponding transformation matrix between physical and coefficient
space is given by

TCG = (tCG
i,j ) = cos

(
j
2(N − i) + 1

2N + 2
π

)
, i, j = 0, . . . , N. (13)

Evaluating the divergence of the velocity field and the momentum equations
on CG nodes we use the computed (on CGL nodes) solutions of u, ω and
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p and evaluate them on CG nodes. Hence, we need the matrix for the first
derivative, which is given by

DCG = TCGD̂T−1 ∈ R
N+1,N+1,

where D̂ and T are given as in (7). Transformations to obtain the CG nodes
and the derivative matrices on the corresponding element Ωi, i = 1, . . . , 12
of Ω are performed as described in Section 4, again.
In Table 3 we show the mass and momentum conservation of our scheme in
the whole domain Ω using the discrete L2-error norm and the maximum-error
norm.

N ||∇ · u||L2 ||∇ · u||∞ ||f ||L2 ||f ||∞
2 3.488 · 10−2 1.056 · 10−1 2.134 · 10−2 6.824 · 10−2

4 1.597 · 10−2 8.291 · 10−2 6.844 · 10−3 2.472 · 10−2

6 6.945 · 10−3 2.316 · 10−2 1.954 · 10−2 5.943 · 10−2

8 6.988 · 10−4 3.588 · 10−3 5.407 · 10−3 1.740 · 10−2

10 9.069 · 10−5 5.318 · 10−4 6.479 · 10−4 2.636 · 10−3

12 7.548 · 10−6 4.442 · 10−5 9.849 · 10−5 7.046 · 10−4

14 7.418 · 10−7 6.825 · 10−6 1.543 · 10−5 1.149 · 10−4

16 1.821 · 10−7 1.988 · 10−6 2.332 · 10−6 1.936 · 10−5

18 4.069 · 10−8 4.828 · 10−7 3.248 · 10−7 2.526 · 10−6

Table 3: Mass and momentum conservation of our scheme with respect to
the discrete L2 norm and the maximum norm on Chebyshev-Gauss nodes for
different polynomial degrees in Ω on G12. Approximations of the functions
are computed on CGL nodes and evaluated on CG nodes.

In Table 3 we see that our scheme is able to fulfill mass and momentum
conservation up to 10−8 and 10−7, respectively. Hereby, it is disproved that
least-squares schemes in general perform poorly with respect to mass con-
servation. Gerritsma and Proot have already reported in [35], that spectral
least-squares schemes have good conservation properties for such an inter-
nal flow problem, since they lead to an superior conservation of momentum
that compensate the lack in mass conservation. For the standard LSSEM
in [35] it is shown that for the first component of the momentum equations
the absolute error in the maximum norm equals about 10−1 and in the sec-
ond component of the momentum equations the error in the maximum norm
equals about 10−4. Here, our scheme leads to a conservation of momentum
that equals about 10−6 in the maximum norm. Comparing this result with
those of Gerritsma and Proot, we see that our scheme performs much better,
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since the standard LSSEM of Gerritsma and Proot only conserves the mo-
mentum equations up to 10−1 using the maximum norm, as we do (e.g. for
both components of the momentum equation in one step).
Concerning conservation of mass, we see in Table 3 that our scheme leads to
a superior conservation of mass, too. The standard LSSEM in [35] conserves
mass about 100. Here, our scheme again shows a better performance. In [4]
it is reported that restricted LSFEM leads to conservation of mass of about
10−4.
In Figure 7 we show the pressure profile in Ω.

Figure 7: Pressure in Ω for polynomial degree N = 18 on G12.

For the LSFEM in [4] the pressure was set equal to zero at point (3, 0) and
for the LSSEM in [35] the pressure constant was set equal to zero at point
(−1.5, 0.75). Using this approach, we have shown in [16] and [23] that the
accuracy of the LSSCM is not as high as using the additional condition (4),
since (4) reduces the condition numbers of the linear systems of equations.
It is clear, that the pressure constant does not influence the conservation of
momentum if exact arithmetic is used. But since we only approximate the
unknown functions numerically, the condition numbers of the linear systems
of equations influence the accuracy.

To see the influence of using QR decomposition instead of forming normal
equations for solving the linear systems in Figure 8 we show ||∇ · u||L2 for
both techniques.

18



2 4 6 8 10 12 14 16 18
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

N

||∇
⋅

u
|| L2

 

 
QR
normal equation

Figure 8: ||∇ · u||L2 for different polynomial degrees. (−©−) using QR
decomposition, (−+−) using normal equations for solving the linear systems
of equations on G12.

As we observe from Figure 8 using QR decomposition leads to better results
when the round-off errors become noticeable. Using normal equations the
divergence increases for N ≥ 14. The reason is that round-off errors influence
the accuracy. This performance of our scheme was already observed in [16]
and [23]. Furthermore, using QR decomposition we reach an accuracy of
10−8 whereas using normal equations leads only to an accuracy of 10−6. A
disadvantage of using QR decomposition is the larger amount of CPU-time.
In Figure 9 we compare the required CPU-time for solving the linear systems
with QR decomposition and with normal equations.
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Figure 9: CPU-time required for solving the linear systems of equations for
different polynomial degrees. (−©−) using QR decomposition, (−+−) using
normal equations on G12.

An analog performance of the least-squares methods can be found in [17] and
[37].

5.2 Results on G86: LSSCM versus LSSEM

Here, we compare the performance of our least-squares spectral collocation
method (LSSCM) with the least-squares spectral element method (LSSEM)
in [33], [35]. Consequently, we have to use the same spectral element grid,
the same polynomial degrees and the same norms as in [33], [35]. The grid
G86 consisting of 86 elements, where on each element the unknown functions
are approximated by polynomials of degree N is shown in Figure 4.
Furthermore, in [33], [35] a control volume Ω̃ was defined in the computa-
tional grid to measure conservation of mass and momentum which is pre-
sented in Figure 10. In order to avoid interpolation of the data the boundary
Γ̃ of the control volume is located along the edges of the elements of G86.
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Figure 10: The control volume Ω̃.

In this control volume, conservation of mass and momentum should hold.
With f = 0 in (1) the conservation of mass and momentum can be expressed
by

∫

Ω̃

∇ · u dΩ̃ = 0 (14)

and
∫

Ω̃

−∆u + ∇p dΩ̃ = 0. (15)

Let now nT := [n1, n2] represent the outward unit vector and Γ̃ the boundary
of Ω̃. Using Gauss’s Theorem, (14) is equivalent to

∫

Γ̃

n1u1 + n2u2 dΓ̃ = 0 (16)

and (15) is equivalent to

∫

Γ̃

n1

(
∂u1

∂x
− p

)
+ n2

∂u1

∂y
dΓ̃ = 0 (17)

and
∫

Γ̃

n1

∂u2

∂x
+ n2

(
∂u2

∂y
− p

)
dΓ̃ = 0, (18)

where ∇ · u = 0 has been used in (17) and (18), respectively.
The integrals (16), (17) and (18) are approximated by the Clenshaw-Curtis
quadrature rule, again. As in [33], [35] we approximated these integrals on a
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refined, interpolated grid where the difference between the last two computed
values act as an absolute error bound. The idea of this approach was to en-
sure that the numerical integration has no effect on the approximations. Our
simulations have shown that the numerical integration on refined grids has
no effect on the conclusions, since the error between the first two computed
values is less than 10−10. Here, we used the Clenshaw-Curtis quadrature rule
since this is the appropriate one using CGL nodes. One could also use Gauss
Legendre or Gauss Lobatto-Legendre nodes. In the numerical results there is
no big difference, see [36]. The advantage of the Chebyshev nodes is the fact
that they are explicitly given and fast Fourier transforms (FFT) are available.

We will not only compare the performance of our scheme with the per-
formance of the least-squares spectral element method but also with the
weighted least-squares spectral element method, with the constrained least-
squares spectral element method and with the Galerkin spectral element
method. For a in-depth description of these methods see, e.g., [33], [35].
Here, we present only the basic ideas of these methods.
The least-squares spectral element method is based on the minimization of
the least-squares functional

I(U) =
1

2

(
||∇p + ∇× ω − f ||2L2 + ||∇ · u||2L2 + ||ω −∇× u||2L2

)
, (19)

where U := (u, ω, p).
The weighted least-squares spectral element-method is based on the mini-
mization of the least-squares functional

IW (U) =
1

2

(
||∇p + ∇× ω − f ||2L2 + W ||∇ · u||2L2 + ||ω −∇× u||2L2

)
, (20)

which is based on (19) with an additional weighting of the continuity equa-
tion. With the weighting factor W the influence of the continuity equation
can be modified.
The constrained least-squares spectral element method is based on the min-
imization of (19) with the extension of mass conservation, i.e. ∇ · u = 0.
Lagrange multipliers are used enforcing mass conservation. The constrained
least-squares spectral element method is based on the Lagrangian functional

L(U) = I(U) +

∫

Ω

∇ · u dΩ,

where I(U) is given in (19). Thus, this method leads to a saddle-point prob-
lem and not to a minimization problem as the other methods.
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The last method is the standard ”mixed” Galerkin spectral element method
which can be found in, e.g., [6], [24]. Avoiding spurious pressure modes, the
PN ×PN−2 formulation has been used, where the velocity is approximated by
a polynomial of degree N and the pressure by a polynomial of degree N − 2,
see, e.g., [25].

The numerical results of these four methods originate from [33], [35]. Here, we
show these results to compare our results directly with the other methods.
Since we here use a large number of elements, each with low polynomial
degrees, we expect similar results of our least-squares spectral collocation
method (LSSCM) compared to the least-squares spectral element method
(LSSEM) and not such superior improvements as shown in Subsection 5.1.
The mass conservation properties of the different schemes are shown in Figure
11, where the absolute value of the boundary integral (16) is shown as a
function of the polynomial degree. In Figure 12 we compare the percentage
loss of mass of the LSSCM and of the LSSEM, calculated in the cross-section
γ2. In Figures 13 and 14 we compare the conservation of momentum of
the different numerical schemes, where the absolute values of the boundary
integrals (17) and (18) are plotted as a function of the polynomial degree.
The overall quality of the different numerical schemes is shown in Figure
15. There, the sum of the absolute values of the mass integral and the two
momentum integrals is plotted as a function of the polynomial degree.
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Figure 11: Absolute value of line integral (16) for different polynomial degrees
on G86. (− + −) LSSCM; (−�−) LSSEM, (−△−) the constrained LSSEM,
(−▽−) the weighted LSSEM with W = 10, (−⊲−) the weighted LSSEM with
W = 50, (−⊳−) the weighted LSSEM with W = 100, (−♦−) the weighted
LSSEM with W = 500, (−©−) the Galerkin spectral element method.

4 6 8
5

10

15

20

25

30

35

N

Lo
ss

 o
f M

as
s 

at
 C

ro
ss

−
se

ct
io

n 
(in

 %
)

 

 
LSSEM
LSSCM

Figure 12: The percentage loss of mass calculated in the cross-section γ2

for different polynomial degrees on G86. (− + −) the least-squares spectral
collocation method; (−�−) the least-squares spectral element method.

From Figure 11 we observe, that our LSSCM leads to slightly improved
results compared to the LSSEM.
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In Figure 12 we observe that the LSSCM leads to slightly improved results for
N = 4 and N = 8. Furthermore, the LSSCM leads much faster to improved
results than the LSSEM, see N = 6.

4 6 8
10

−2

10
−1

10
0

10
1

10
2

N

| ∫
(n

1(∂
 u

1/∂
 x

−
p)

+
n 2∂ 

u 1/∂
 y

dΓ
 |

 

 
LSSEM
LSSCM

Figure 13: Absolute value of line integral (17) for different polynomial degrees
on G86. (− + −) LSSCM; (−�−) LSSEM, (−△−) the constrained LSSEM,
(−▽−) the weighted LSSEM with W = 10, (−⊲−) the weighted LSSEM with
W = 50, (−⊳−) the weighted LSSEM with W = 100, (−♦−) the weighted
LSSEM with W = 500, (−©−) the Galerkin spectral element method.
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Figure 14: Absolute value of line integral (18) for different polynomial degrees
on G86. (− + −) LSSCM; (−�−) LSSEM, (−△−) the constrained LSSEM,
(−▽−) the weighted LSSEM with W = 10, (−⊲−) the weighted LSSEM with
W = 50, (−⊳−) the weighted LSSEM with W = 100, (−♦−) the weighted
LSSEM with W = 500, (−©−) the Galerkin spectral element method.

From Figures 13 we observe that our LSSCM leads to improved conservation
of the x-component of momentum compared to the LSSEM. In Figure 14 we
see that the LSSEM method leads to better conservation of the y-component
of momentum. Comparing the performance of the LSSEM in Figures 13 and
14 we see that the y-component of the momentum is much better conserved
compared to the x-component. The differences of conservation of the two
components is about 10−3. Comparing the same figures for the LSSCM we
see that the conservation properties of the LSSCM are more consistent and
we observe that the difference of conservation of the two components is only
about 10−1. Because of this it is clear that our LSSCM leads to better results
concerning the overall performance shown in Figure 15.
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Figure 15: The overall conservation for different polynomial degrees on G86.
(− + −) LSSCM; (−�−) LSSEM, (−△−) the constrained LSSEM, (−▽−)
the weighted LSSEM with W = 10, (−⊲−) the weighted LSSEM with W =
50, (−⊳−) the weighted LSSEM with W = 100, (−♦−) the weighted LSSEM
with W = 500, (−©−) the Galerkin spectral element method.

Concluding, we can say that the LSSCM leads to slightly improved results
compared directly to the LSSEM.

6 Conclusion

We presented a new least-squares spectral collocation scheme, that leads to
superior conservation of mass and momentum for internal flow problems. The
opinion that least-squares methods in general perform poorly with respect
to mass conservation should be revised. The reasons that our LSSCM leads
to much better results than the standard LSSEM are:

1. We use only a few elements (12), each with a high polynomial degree
(up to 18). Gerritsma and Proot used in [35] more elements (86) with
lower polynomial degrees (up to 8).

2. We use a direct solver (QR decomposition) to solve the linear systems
of equations. Avoiding solving by normal equations leads to algebraic
systems with reduced condition numbers. Because of this we have less
influence of round-off errors, see [16], [23].

3. We did not set the pressure in one point, since we have shown in [16]
that the better way to avoid the natural mode is using the additional
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pressure condition in (4). Because of this we again reduced the condi-
tion numbers of the algebraic systems and this leads to a more stable
scheme, see [16],[23].

4. We used the transformation of Gordon and Hall to discretize the in-
ternal flow problem. This leads to a high order approximation of the
curved boundaries.

Since all these changes influence the accuracy, in Subsection 5.2 we compared
our results directly with the results of Gerritsma and Proot in [33], [35]. To
do this we used the same grids, the same polynomial degrees and the same
norms. The computations have shown that our scheme leads to slightly
improved results on G86. Using only a few elements as on G12 our scheme
leads to superior results which are further improved by solving the linear
systems of equations by QR decomposition instead of using normal equations
with squared condition numbers.
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