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Abstract

New sets of points with improved Lebesgue constants in the triangle are calculated. Starting with the Fekete points a

direct minimization process for the Lebesgue constant leads to better results. The points and corresponding quadrature

weigths are explicitly given. It is quite surprising that the optimal points are not symmetric. The points along the bound-

ary of the triangle are the 1D Gauss–Lobatto points. For all degrees, our points yield the smallest Lebesgue constants

currently known. Numerical examples are presented, which show the improved interpolation properties of our nodes.
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1. Introduction

Points which minimize the Lebesque constant are interesting since they yield optimal interpolation

properties. Hence they are also important for the numerical solution of partial differential equations with

spectral methods. The standard spectral methods (Galerkin, tau, collocation) are based on these points

and corresponding stable quadrature formulas. Since the theoretical progress is very slow, it is necessary

to do numerical calculations and experiments. For tensor-product domains as the square the 1D Gauss–

Lobatto nodes can be easily extended to the 2D case. This does not mean that they are the best

interpolation points but they have good interpolation properties and are efficient in the implementation

of boundary conditions and the application of fast Fourier transforms (FFTs) in the Chebyshev case.
The Lebesque points (which are know numerically for the interval) have a lower Lebesque constant and

thus a tensor product of Lebesque points will have a lower Lebesque constant than the Gauss–Lobatto
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nodes. But also on the square there may be a non-tensor-product set of points with a lower Lebesque

constant. On non-tensor-product domains as the triangle the 1D points cannot be extended. In earlier

approaches (see [5,6,8,9]) mapping techniques from the square to the triangle were used. This leads to

the typical spectral accuracy but due to the corner singularity the condition number becomes large.

Other approaches (see [1,2,7,11]) directly deal with finding optimal interpolation nodes on the triangle.
Hesthaven [7] uses a second-order time evolution method to minimize an electrostatic energy function.

Bos [1], Chen and Babus̆ka [2] and Taylor et al. [11] investigate the Fekete points which maximize the

determinant of the Vandermonde matrix. They were explicitly calculated in [11] and applied in [10] to

spectral element methods. A good review on these techniques can be found in the book of Deville et

al. [3]. Here we start our iteration with the Fekete points and then employ a direct minimization process

for the Lebesgue constants. Since the Lebesque function is a significantly more complex function without

analytic expressions for its derivatives it is necessary to start the iteration with a good initial guess ob-

tained from easier functionals (Fekete, electrostatics). For the minimization we combine a steepest des-
cent algorithm with a damped Newton method. In the Fekete approach the points along the boundary

of the triangle are the 1D Gauss–Lobatto points (see the conjecture of Bos [1]). For calculating the

quadrature weights we employ the Dubiner basis functions [4] which yield well conditioned matrices.

In the first approach our iteration does not preserve any symmetry conditions. Hence we obtain unsym-

metric distributions of nodes. Some quadrature weights (only belonging to the edge of the triangle) be-

come negative and the usefulness of the schemes for numerical integration is doubtful. In a second

approach the points follow some (but not all) symmetries of the triangle. The resulting Lebesgue con-

stants are somewhat worse but still better than for the Fekete points. Some quadrature weights still re-
main negative. Anyhow, our approach produces points with the best known Lebesgue constants. The

improved interpolation properties are demonstrated by two numerical examples.

The paper is organized as follows. First we introduce the Lebesgue constant on the triangle (Section 2).

Then we describe in Section 3 our minimization procedure. The corresponding numerical results are pre-

sented in Section 4. Finally our results are summarized in a conclusion.
2. The Lebesgue constant

We consider an optimization process on the triangle T given by
T ¼ fðx; yÞ : x P �1; y P �1; xþ y 6 0g:

For triangles, the usual choice for interpolation is a triangular truncation of polynomials, spanned by the

monomials
fxmyn; mþ n 6 Ng:

The polynomial subspace spanned by these monomials is denoted by PN with dim PN ¼ ðN þ 1ÞðN þ 2Þ=2.
Since monomials yield very bad condition numbers for the Vandermonde matrix, it is practically useful to

choose Dubiner basis functions [4] given by
Lm 2
1þ x
1� y

� 1

� �
ð1� yÞmP 2mþ1;0

n ðyÞ; mþ n 6 N
� �
with the Legendre polynomials Lm and the Jacobi polynomials P 2mþ1;0
n . The Dubiner basis is orthogonal in

the triangle and hence leads to a well-conditioned Vandermonde matrix. Taylor et al. [11] obtained for the

Fekete points (N 6 19) a MATLAB reported condition number less than 50. For given nodes
ðxij; yijÞ; 0 6 iþ j 6 N ;
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and basis functions /mn the Vandermonde matrix V = (vij,mn) is given by
vij;mn ¼ /mnðxij; yijÞ; 0 6 iþ j 6 N ; 0 6 mþ n 6 N :
The Vandermonde matrix represents the interpolation at the above nodes. Its inverse is denoted by

U = V�1 = (umn,ij). Now, the Lebesgue constant kN on the triangle T can be written as
kN ¼ max
ðx;yÞ2T

XN
iþj¼0

XN
mþn¼0

umn;ij/mnðx; yÞ
�����

�����
�����

�����: ð1Þ
The maximum overall points in the triangle are approximated by the maximum over a grid of 2485 equally

spaced points. Here we start a direct minimization process for the Lebesgue constant. After convergence,

we further calculate the corresponding quadrature weights wij by solving the linear system
XN
iþj¼0

wij/mnðxij; yijÞ ¼
Z

/mn dT : ð2Þ
This requires inverting the Vandermonde matrix, so again it is important that this matrix is well condi-

tioned. For increasing N it becomes necessary to use Dubiner basis functions.
3. The minimization procedure

We start our minimization procedure with the Fekete points which were explicitly calculated by Taylor et

al. [11]. Since the method is sensitive to the initial condition for the grid points, it is important to initialize the

algorithm with a good initial guess. Without such a good starting approximation, we were not able compute

improved Lebesque constants. The main reason is that the Lebesque constant is a significantly more complex

function without analytic expression for its derivatives. Hence, it is more difficult to obtain optimal solu-
tions, thus making it necessary to start the iteration with near-optimal nodes from easier functionals (Fekete,

electrostatics). Then we apply the steepest descent method to minimize the functional belonging to the Lebes-

gue constant. It is implemented in the following way. First we approximate the partial derivatives of the

Lebesgue function with central finite differences, i.e., for each point (xij,yij) we calculate
kN ;xðxij; yijÞ ffi ðkN ðxij þ h; yijÞ � kN ðxij � h; yijÞÞ=2h;
kN ;yðxij; yijÞ ffi ðkN ðxij; yij þ hÞ � kN ðxij; yij � hÞÞ=2h;
with sufficiently small step size h. Here we choose h = 1/512. The method was not very sensitive to the choice

of h. Also, larger step sizes of h = 1/128, 1/256 yield similar results. Since N is relatively small, there is no

specific choice in dependence of N required. Now, the steepest descent method iterates as follows:
xij ¼ xij � axkN ;xðxij; yijÞ; ð3Þ

yij ¼ yij � aykN ;yðxij; yijÞ; ð4Þ
with sufficiently small relaxation parameters ax,ay. In our numerical experiments, for N P 6, we made good

experience with the choice
ax ¼ 1=ðN 2 � 26ÞkkN ;xk; ð5Þ

ay ¼ 1=ðN 2 � 26ÞkkN ;yk; ð6Þ

where iÆi denotes the discrete L2-norm. If the relaxation parameters are too small there is a very slow con-

vergence. If they are too large some points leave the triangle. In our numerical experiments, we apply 1000
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iterations of the steepest descent method followed by only a few iterations with a damped Newton method.

Here, the main reduction of the Lebesque constant comes from the steepest descent method. The damped

Newton method converges quite fast but only yields a slight reduction. For the Newton method second

derivatives of the Lebesgue function are required which are once more approximated by central finite

differences, i.e.,
Table

Lebesg

N

6

9

12

15

18
kN ;xxðxij; yijÞ ffi ðkN ðxij � h; yijÞ � 2kN ðxij; yijÞ þ kNðxij þ h; yijÞÞ=h2;
kN ;yyðxij; yijÞ ffi ðkN ðxij; yij � hÞ � 2kN ðxij; yijÞ þ kN ðxij; yij þ hÞÞ=h2;
with h = 1/512. Clearly, the Lebesque function is only piecewise smooth but the above finite difference

schemes approximated the second derivatives well. Now, we are able to apply the decoupled Newton
method to each component, i.e.,
1

ue constants

Unsym. Sym. Taylor CB L2 Hesthaven Ratio

3.67 3.87 4.17 3.79 4.07 1.11

5.58 5.89 6.80 5.92 6.92 1.19

7.12 7.59 8.03 10.08 12.52 1.11

8.41 9.25 9.97 – 29.69 1.17

10.08 11.86 13.5 – – 1.31
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Fig. 1. Lebesgue constants.
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xij ¼ xij � bxkN ;xðxij; yijÞ=kN ;xxðxij; yijÞ; ð7Þ

yij ¼ yij � bykN ;yðxij; yijÞ=kN ;yyðxij; yijÞ; ð8Þ
where the parameters bx,by are chosen in a suitable way. They are successively reduced until the Lebesgue
constant becomes smaller. If the normalized residual reaches a lower bound of 10�5, we stop the iteration.

From numerical experiments, we observed a better performance of the above decoupled Newton approach

instead of using the full 2D-Newton scheme.
4. Numerical results

In Table 1 and Fig. 1, we present our improved Lebesgue constants in compare to the results for the
Fekete points obtained by Taylor et al. [11]. Also for small N, our Lebesque constants are better than Chen

and Babus̆kas [2] optimal L2-norm points and the points of Hesthaven [7]. Obviously, for increasing N the

improvement becomes more significant. In Tables 6–8 we list our points for N = 6,9,12. Although the de-

grees of polynomials are too low for an asymptotic prediction it may be expected form Fig. 1 that the

Lebesgue constants grow linearly in N. Our iteration does not preserve any symmetry. Hence we obtain

unsymmetric distributions of points. This result is surprising and it hints that the actual Lebesque points
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Fig. 2. Optimal points for N = 6.



630 W. Heinrichs / Journal of Computational Physics 207 (2005) 625–638
may not contain any symmetry. But here we do not claim that. We are only able to state that our method

yields unsymmetric distributions of nodes. This does not mean that the really optimal Lebesque nodes are

unsymmetric. Furthermore, we calculated, the corresponding weights where we observed, that some

weights belonging to the edge of the triangle become small but negative. Hence the stability properties

of the schemes for numerical integration is doubtful. Here, we do not optimize on barycentric coordinates.
But we were interested to see how symmetry conditions influence the Lebesque constant. For this purpose

we started an optimization process on the triangle
T � ¼ fðx; yÞ : �1 6 y 6 2xþ 1;�1 6 x 6 0; �1 6 y 6 �2xþ 1; 0 6 x 6 1g;

which is symmetric with respect to the axis x = 0. We started the above optimization procedure only on

coordinates xij 6 0 and afterwards set
ðxN�i�jj; yN�i�jjÞ ¼ ð�xij; yijÞ for i ¼ 0; . . . ; ðN � jÞ=2; j ¼ 0; . . . ;N :
From Table 1 and Fig. 1, we observe that the corresponding Lebesgue constants are larger than for the

unsymmetric treatment but smaller than for the Fekete points. In Figs. 2–6, we plotted our points on

the triangle T* for N = 6,9,12,15,18. In general, it can be expected that more symmetry leads to worse

Lebesgue constants. This makes sense in terms of a constrained optimization should do worse than an

unconstrained optimization.
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Fig. 3. Optimal points for N = 9.
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Furthermore, it is interesting to know how sensitive the maximum is to the number of points or would it

be better if the points were clustered near the edges. Here, we only consider the unsymmetric case. The max-

imum was calculated on a grid of 70 · 71/2 = 2485 equidistant points. In Table 2, we also give numerical

results for 80 · 81/2 = 3240 and 90 · 91/2 = 4095 equidistant points. As it could be expected the maximum

is increasing. This becomes more obvious if we take the maximum over a Chebyshev Gauss–Lobatto grid
where the points are clustering near the three edges. We choose a Chebyshev grid with nodes (xi,yj) given by
yj ¼ cos j
p
M

� �
; j ¼ 1; . . . ;M ;

xi ¼ � 1

2
� ðyj � 1Þ cos ðj� iÞ p

j

� �
þ yj þ 1

� �
; i ¼ 0; . . . ; j;
for M = 69,79,89. By adding the corner point (�1,1) we obtain grids with 2485, 3240 and 4095 Chebyshev

points. From Table 2, we observe a strong increase in the maximum value which remains stable for increas-

ing M. Obviously, the maximum is attained near the edges. A similar behavior can be observed for the Fek-

ete points in Table 3. Furthermore, we checked the accuracy of the interpolation based on our unsymmetric

nodes for two examples. They are given by

Example I
uðx; yÞ ¼ ðxþ 1Þðy þ 1Þðexþy � 1Þ:
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Fig. 5. Optimal points for N = 15.
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Example II
uðx; yÞ ¼ 10ðxþ 1Þðy þ 1Þðcoshðxþ yÞ � 1Þ:
We calculated the discrete interpolation errors in the maximum norm over grids of 2485, 4095 equidis-

tant points and 4095 Chebyshev points. In general, the errors are slightly increasing for increasing numbers

of points or for the Chebyshev grid. From the numerical results in Tables 4 and 5 we observe a slight

improvement by using our points. It is well known that the interpolation error can be estimated by the Leb-

esque constant as follows:
ku� INuk1 6 ð1þ kNÞeN ðuÞ;

where IN denotes the interpolation operator and
eN ðuÞ ¼ inffku� pNk1 : pN 2 PNg

the approximation error. Hence in order to compare error estimates for different nodes we have to calculate

the ratio between 1 + kN for the Fekete points and our unsymmetric distribution of nodes. From Table 1 we

obtain values in between 1.11 and 1.31. The ratio between the interpolation errors for the above examples

with 4095 Chebyshev points is given in Tables 4 and 5 and it is even better than the behavior of the Leb-

esque constants. The improvement becomes obvious for increasing N with ratios of about 1.24–1.80.
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Table 2

Lebesgue constants for unsym. points on equid. and Cheb. grids

N 2485 p. 3240 p. 4095 p. 2485 Ch.p. 3240 Ch.p. 4095 Ch.p.

6 3.67 3.69 3.68 3.69 3.69 3.68

9 5.58 5.58 5.60 5.59 5.59 5.58

12 7.12 7.41 7.49 7.42 7.48 7.50

15 8.41 8.71 8.83 8.73 8.82 8.73

18 10.08 11.76 12.77 13.86 13.48 13.78

Table 3

Lebesgue constants for Fekete points on equid. and Cheb. grids

N 2485 p. 3240 p. 4095 p. 2485 Ch.p. 3240 Ch.p. 4095 Ch.p.

6 4.10 4.17 4.16 4.15 4.17 4.16

9 6.80 6.80 6.77 6.77 6.79 6.80

12 8.03 9.64 9.61 9.61 9.57 9.67

15 9.97 9.91 9.98 9.93 9.98 9.90

18 13.5 13.76 14.26 14.66 14.69 14.71
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Table 6

Points and weights for N = 6

x y Weights

�1.0000000000 �1.0000000000 �0.0048224886

�0.8302291554 �1.0000000000 0.0304687335

�0.4688697196 �1.0000000000 0.0269823678

0.0000000000 �1.0000000000 0.0457765688

0.4688697196 �1.0000000000 0.0280944010

0.8302291554 �1.0000000000 0.0237130559

1.0000000000 �1.0000000000 �0.0001337281

�1.0000000000 �0.8302291554 0.0274721838

�0.7652509351 �0.7504601980 0.1168568092

�0.3716634059 �0.7270784196 0.1827228637

0.0771571795 �0.7394530985 0.1715141862

0.5202206843 �0.7578421807 0.1358555904

0.8302291554 �0.8302291554 0.0196485280

�1.0000000000 �0.4688697196 0.0295124820

�0.7251686126 �0.3504561918 0.1744737376

�0.2920792639 �0.3304823387 0.1178571302

0.0728865230 �0.3557412342 0.1564972947

0.4688697196 �0.4688697196 0.0349523174

�1.0000000000 0.0000000000 0.0428160453

�0.7420679319 0.0841263110 0.1829659071

�0.3292750199 0.0612978608 0.1837683005

0.0000000000 0.0000000000 0.0433703389

�1.0000000000 0.4688697196 0.0270875177

�0.7663604173 0.5375895923 0.1278322343

�0.4688697196 0.4688697196 0.0303304059

�1.0000000000 0.8302291554 0.0240449990

�0.8302291554 0.8302291554 0.0220546481

�1.0000000000 1.0000000000 �0.0017124304

Table 4

Interpolation errors for Example I

N Present 2485 p. Taylor 2485 p. Present 4095 p. Taylor 4095 p. Present 4095 Ch.p. Taylor 4095 Ch.p. Ratio

12 1.64 · 10�12 2.45 · 10�12 1.70 · 10�12 2.46 · 10�12 1.72 · 10�12 2.47 · 10�12 1.44

15 5.72 · 10�15 1.00 · 10�14 6.08 · 10�15 1.03 · 10�14 6.25 · 10�15 9.96 · 10�15 1.60

18 1.28 · 10�14 1.95 · 10�14 1.29 · 10�14 1.97 · 10�14 1.28 · 10�14 2.30 · 10�14 1.80

Table 5

Interpolation errors for Example II

N Present 2485 p. Taylor 2485 p. Present 4095 p. Taylor 4095 p. Present 4095 Ch.p. Taylor 4095 Ch.p. Ratio

12 4.00 · 10�11 5.49 · 10�11 4.32 · 10�11 5.52 · 10�11 4.37 · 10�11 5.54 · 10�11 1.27

15 2.96 · 10�14 3.94 · 10�14 2.96 · 10�14 4.02 · 10�14 3.09 · 10�14 3.83 · 10�14 1.24

18 7.71 · 10�14 6.36 · 10�14 6.33 · 10�14 7.79 · 10�14 6.28 · 10�14 9.20 · 10�14 1.46

634 W. Heinrichs / Journal of Computational Physics 207 (2005) 625–638
5. Conclusion

Starting with the Fekete points we obtain improved Lebesgue constants on the triangle. Here, a minimi-

zation procedure based on a combination of the steepest descent algorithm with a damped Newton method

is employed. The optimal points along the boundary of the triangle are the 1D Gauss–Lobatto points. We



Table 7

Points and weights for N = 9

x y Weights

�1.0000000000 �1.0000000000 0.0027614993

�0.9195339860 �1.0000000000 0.0010745157

�0.7387741816 �1.0000000000 0.0114670460

�0.4779256080 �1.0000000000 0.0111138988

�0.1652794130 �1.0000000000 0.0121590502

0.1652794130 �1.0000000000 0.0146081034

0.4779256080 �1.0000000000 0.0084917022

0.7387741816 �1.0000000000 0.0102722987

0.9195339860 �1.0000000000 �0.0003797630

1.0000000000 �1.0000000000 0.0029760753

�1.0000000000 �0.9195339860 0.0004443573

�0.8970170978 �0.8823000088 0.0375669118

�0.6584034284 �0.8623617857 0.0514402802

�0.3628452596 �0.8694908590 0.0650879241

�0.0549679730 �0.8644977271 0.0619762636

0.2446985666 �0.8650788533 0.0610740162

0.5201404749 �0.8792433132 0.0510004553

0.7953853302 �0.8983757215 0.0373311414

0.9195339860 �0.9195339860 �0.0002724360

�1.0000000000 �0.7387741816 0.0086996743

�0.8716313408 �0.6710778092 0.0441245636

�0.6272738975 �0.6337635383 0.0747087146

�0.3426436967 �0.6356519405 0.0741150243

�0.0360875403 �0.6158559450 0.0833512298

0.2595718532 �0.6291250229 0.0699109786

0.5291180820 �0.6679094700 0.0526021623

0.7387741816 �0.7387741816 0.0104743918

�1.0000000000 �0.4779256080 0.0122166226

�0.8671529699 �0.3735076157 0.0720805916

�0.6307765647 �0.3351681337 0.0800342681

�0.3365578062 �0.3478376149 0.1033485060

�0.0193134591 �0.3437245259 0.0829288036

0.2664760896 �0.3947759410 0.0595823395

0.4779256080 �0.4779256080 0.0104880205

�1.0000000000 �0.1652794130 0.0109371107

�0.8661309341 �0.0615062096 0.0567665379

�0.6121111450 �0.0430769119 0.0774924035

�0.3483137871 �0.0182856034 0.0865623953

�0.0673716394 �0.0612490064 0.0689137970

0.1652794130 �0.1652794130 0.0132626678

�1.0000000000 0.1652794130 0.0156110254

�0.8659060922 0.2374911740 0.0667956173

�0.6330776864 0.2504635954 0.0694730827

�0.3942499421 0.2623631727 0.0596988470

�0.1652794130 0.1652794130 0.0118984367

�1.0000000000 0.4779256080 0.0079094812

�0.8660518130 0.5156355674 0.0506963102

�0.6689999522 0.5391728608 0.0529739398

�0.4779256080 0.4779256080 0.0120256444

�1.0000000000 0.7387741816 0.0127695609

�0.8966337273 0.7892172212 0.0358131791

�0.7387741816 0.7387741816 0.0078155931

�1.0000000000 0.9195339860 �0.0010827624

�0.9195339860 0.9195339860 0.0021333781

�1.0000000000 1.0000000000 0.0026745228
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Table 8

Points and weights for N = 12

x y Weights

�1.0000000000 �1.0000000000 �0.0017352022

�0.9533098466 �1.0000000000 0.0033358747

�0.8463475646 �1.0000000000 0.0023824146

�0.6861884690 �1.0000000000 0.0023751816

�0.4829098210 �1.0000000000 0.0063893073

�0.2492869302 �1.0000000000 0.0035878762

0.0000000000 �1.0000000000 0.0054374279

0.2492869302 �1.0000000000 0.0060406611

0.4829098210 �1.0000000000 0.0026395147

0.6861884690 �1.0000000000 0.0053274724

0.8463475646 �1.0000000000 0.0010554009

0.9533098466 �1.0000000000 0.0033309399

1.0000000000 �1.0000000000 �0.0010571742

�1.0000000000 �0.9533098466 0.0047790873

�0.9219009766 �0.9201052124 0.0127137502

�0.7492410600 �0.9399006992 0.0215408918

�0.5103575968 �0.9403499904 0.0205159325

�0.4321198360 �0.8465677488 0.0339843788

�0.1880301145 �0.9337926179 0.0344257426

0.0964351963 �0.9229969309 0.0314638418

0.2778805235 �0.8459161672 0.0330129128

0.4031052378 �0.9439546054 0.0243542916

0.6856149142 �0.9425112148 0.0190415648

0.8436694782 �0.9234065040 0.0148735392

0.9533098466 �0.9533098466 0.0030533373

�1.0000000000 �0.8463475646 0.0002372244

�0.9483662493 �0.7345120001 0.0251087886

�0.8145728953 �0.8239213998 0.0249062914

�0.6394373688 �0.7997248691 0.0318890695

�0.1809726292 �0.7959761078 0.0380507052

�0.2155764744 �0.6143967746 0.0587582828

0.0137758327 �0.7496793837 0.0429848851

0.4746810969 �0.8275505928 0.0259093947

0.6223721207 �0.8264041680 0.0246608518

0.6948621890 �0.7530961006 0.0223996090

0.8463475646 �0.8463475646 0.0014624224

�1.0000000000 �0.6861884690 0.0026756561

�0.9556648041 �0.4646982593 0.0206122661

�0.8189960092 �0.6534744389 0.0245403089

�0.6960274740 �0.5390285091 0.0454742347

�0.4934232404 �0.6837532870 0.0428011926

0.2254956916 �0.6710567221 0.0431631723

0.1853242648 �0.5116174273 0.0427033385

0.4433755625 �0.5040138672 0.0264761380

0.4533492441 �0.6484211924 0.0317617345

0.6861884690 �0.6861884690 0.0034281861

�1.0000000000 �0.4829098210 0.0020434612

�0.8400054990 �0.4430292346 0.0389583911

�0.7542150701 �0.2365297128 0.0268033578

�0.4916084278 �0.4810104380 0.0624877852

�0.3304295394 �0.3310059092 0.0684694209

�0.0352531069 �0.4898915021 0.0583082123

0.0147568977 �0.2122611402 0.0385977876
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Table 8 (continued)

x y Weights

0.2742071061 �0.4383085383 0.0285406100

0.4829098210 �0.4829098210 0.0030938709

�1.0000000000 �0.2492869302 0.0062394831

�0.9231919765 �0.1756908478 0.0363318914

�0.6799468025 0.1823935177 0.0445578163

�0.6215028749 �0.1769644322 0.0666397774

�0.5368826189 0.2234000013 0.0439960327

�0.1839259335 �0.1964618180 0.0662082809

0.1213585137 �0.1957914645 0.0311912442

0.2492869302 �0.2492869302 0.0068061152

�1.0000000000 0.0000000000 0.0037723120

�0.9284891809 0.1198691438 0.0344264079

�0.7867341316 �0.0479808067 0.0391854516

�0.4741667003 �0.0212720727 0.0578816516

�0.2344937875 0.0045453667 0.0343812742

�0.1792246758 0.1010930397 0.0351868559

0.0000000000 0.0000000000 0.0054066609

�1.0000000000 0.2492869302 0.0066156969

�0.9449945881 0.4482106621 0.0198623047

�0.8437483687 0.2971709638 0.0393975312

�0.4691753462 0.4203502209 0.0235415032

�0.4300368131 0.2722874703 0.0318177891

�0.2492869302 0.2492869302 0.0058791198

�1.0000000000 0.4829098210 0.0034088422

�0.8163193352 0.6408019800 0.0268674294

�0.7992366134 0.4449727193 0.0260154023

�0.6434964587 0.4652495937 0.0300989243

�0.4829098210 0.4829098210 0.0018301766

�1.0000000000 0.6861884690 0.0040370853

�0.9390291177 0.6811798646 0.0226135477

�0.7426299536 0.6901548707 0.0203013160

�0.6861884690 0.6861884690 0.0042070412

�1.0000000000 0.8463475646 0.0012022591

�0.9271329058 0.8502700028 0.0130808975

�0.8463475646 0.8463475646 0.0009141136

�1.0000000000 0.9533098466 0.0035984890

�0.9533098466 0.9533098466 0.0039075341

�1.0000000000 1.0000000000 �0.0015838735
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obtain both symmetric and unsymmetric distributions of nodes. Some quadrature weights (only belonging

to the edge of the triangle) become negative and hence the usefulness of our approach for numerical quad-

rature is doubtful. But for all degrees our points yield the smallest Lebesgue constants currently known.

Numerical examples are presented which demonstrate the improved interpolation properties.
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