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Abstract We present a new least-squares scheme that leads to a sumerser-
vation of mass and momentum: The Least-Squares Spectrilc@tbn Method
(LSSCM). From the literature it is known that the LSFEM hatomodified to
obtain a mass conserving scheme. The LSSEM compensatexckhia Iconserva-
tion of mass by a superior conservation of momentum. The &eyhe superior
conservation of mass and momentum of the LSSCM can be foundiig only
a few elements, the transfinite mapping of Gordon and Halbfscretization, the
Clenshaw-Curtis quadrature rule for imposing the averagespire to be zero and
using QR decomposition for solving the overdeterminedlaigie systems to mini-
mize the influence of round-off errors.

1 Introduction

For spectral methods it is well-known that if the velocitydahe pressure are ap-
proximated by polynomials of the same degree eight spumeades occur which
lead to an instable system, see e.qg. [1, 2, 4]. Least-sqd@m@®tizations avoid this
problem and lead to symmetric positive definite systems,esge[2]. For least-
squares schemes it is a well-known problem that they perfuvorly for internal
flow problems (e.g. a cylinder that moves along a channek. fEason is that the
equations must only be fulfilled in the least-squares sdmsast-squares spectral
element methods compensate the lack in mass conservatian fyperior conser-
vation of momentum, see [16]. Here, we present a least-egsgectral collocation
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scheme with an outstanding performance that leads to supemservation of mass
andmomentum.

2 The Stokes and Navier-Stokes equations — Discretization

In order to apply least-squares the Stokes and Navier-Syakdlem is transformed
into an equivalent first-order system of partial differahéquations. This is accom-
plished by introducing the vorticitso = [1 x u as an auxiliary variable. Furthermore,
the identity

OxOxu=-Au+0(0O-u)

and the incompressibility constraiit- u = 0 is used. Time integration is carried
out by the standard BDF2 scheme for the viscous term combirithdthe second
order Adams-Bashforth scheme for the convective t&m= (u-O)u. For a in-
depth description, see, e.g. [9]. If nalt denotes the step size irand the index
n+ 1 indicates that the functions are evaluated at the timetgtep= (n+ 1)At,
n=0,1,2,..., the complete system at time stgp; can explicitly be written as
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with ¢ := [¢1, $2]". The big advantage of the explicit scheme is that the sysfem o
equations must only be solved once. During time integratieronly have to com-
pute matrix-vector multiplications which are very fast. Bymerical experiments
we found out that for a well balanced system it is recommerndestale the mo-
mentum equations &t, asin [8, 9, 12]. Then, for the least-squares scheme the in-
compressibility condition is well balanced against the reatnm equations. In par-
ticular, we observed that without scaling the scheme besativergent for increas-
ing Reynolds numbers since the diagonal entrjg\3 become large for decreasing
step size, see, e.g. Figure 6 in [9]. For spatial discrétinate use the Least-Squares
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Spectral Collocation Method (LSSCM) where we use Clens@antis quadrature
rule for imposing the average pressure to be zero, see9%12,[13]. The domain is
decomposed into 12 quadrilaterals (some with curved baiggjasee Fig. 3 right)
using the transfinite mapping of Gordon and Hall, where orn edement Cheby-
shev Gauss-Lobatto (CGL) nodes are used for collocatiomnd\the interfaces we
enforce pointwise continuity conditions for all unknowm#tionsuy, up, w, p. Now,
the discrete system of differential equations (on the spoading elemen®; de-
noted byA;) together with the discrete boundary conditions (denotgd); the
discrete interface conditions (denoted My) and the Clenshaw-Curtis quadrature
(for the average pressure to be zero - denoteklipyare written into a matriXA and
are compiled into an overdetermined syst&m-= r, where the matriXA is given by

A

3 The internal flow problem

In order to investigate the mass and momentum conservatiour € SSCM we use
the same test case as in [3, 13, 15, 16]. The flow problem isetkby a cylinder
of diameterd which moves at a speed of one along the centerline of a chaifnel
width h = 1.5, see Fig. 1. The domain of the channel is defined as a reetangl

Fig. 1 The internal flow problem o 5: Discretization (left) and problem set-up (right)

the center of the cylinder is located at the origin, i.e. weesthe partial differential
equations on the domain

Qr = Qc\Kr,



4 Thorsten Kattelans and Wilhelm Heinrichs

whereQ. := [-1.5,3] x [-0.75,0.75 andK; := {(x,y) € R? : x> +y? < r?}.
The boundary conditions of the velocity are given by

[1,0]" on Q.

U‘agr = .
[0,0]T on dK,

4 Numerical simulation

For the numerical experiments we consider the steady Seakegtions (withv = 1)
and summarize results in the literature. The new numergsallts are presented for
the incompressible Navier-Stokes equations. We compar@dhformance of our
scheme for different viscosities concerning conservatfomass and momentum.

4.1 Stokes equations

In [13] we have seen, that the LSSCM leads to an outstandirigrpgance concern-
ing conservation of mass and momentum. In Table 1 we showethdts and com-
pare them with other values, available in the literaturéiwi= 1). The presented
values mean that mass and momentum, respectively, arereedse to this value.
The reason that the LSSCM leads to such outstanding resultsesfound in using

Table 1 Mass and Momentum conservation of different least-squares schiemése steady
Stokes equations afg 5

Method Mass Momentum Velocity Reference
conservation conservation profile

standard LSFEM — — invalid [3]

restricted LSFEM 10* n/a ok [3]

standard LSSEM 10 104 ok [16]

standard LSSCM 16 1077 ok [13]

only a few elements, usin@R decomposition instead forming normal equations for
solving the overdetermined algebraic systems, using GeemsCurtis quadrature
for imposing the average pressure to be zero and using thsfitviie mapping of
Gordon and Hall for the discretization, see [13].
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4.2 Navier-Stokes equations

For the Navier-Stokes equations we define

My= | Yds— | Yds, 3
W /V1 S / S 3)
where

i :={(-15y):-15<y<15}
Yo == {(0,y): —15<y < -0.125, U{(0,y) : 0.125< y < 1.5}.

The line integrals in (3) are evaluated using Clenshawi€qguadrature. To avoid
the influence of the quadrature rule to the value, the integrals are approx-
imated on refined lines. To see the influence of the viscosithé mass and mo-
mentum conservation, we show the results for diffenerih one plot. Forv = 1
we useAt = 1/10, forv = 400~ we useAt = 1/700 and forv = 600~ we use
At =1/1100. In Fig. 2 we present the loss of mass along the crossxsgg during
time integration for different viscosities.

= v=600""
3 v=400""
v=1

Fig. 2 Navier-Stokes flow
past the cylinder of2g 125 107
Loss of mass along the cross-

section forv € {1, 7%, =5} . ‘ ‘ ‘ ‘ ‘ ‘ ‘
with ¢ = uy + Uy during time 0 1 2 3 4 5 6 7 8
integration

From Fig. 2 we observe the well-known performance that tlss tof mass in-
creases for decreasing viscosities, i.e. for increasiygm&ds numbers. For = 4%0
andv = 6—%0 there are no big differences in the results since for thesmsities we
reach similar Reynolds numbers. Here, we see clearly teditin Karman Effect”
occurs earlier for the larger Reynolds number. In Fig. 3 amee4how the conser-
vation of the different velocity components alopg As we observe from the plot
in Fig. 3 our scheme leads to the same values during timeratteg for this sta-
tionary problem if the initial conditions are overcome. Fgshows the well-known
oscillations forys = up. Thus, our scheme leads to the well-known performance for

such a channel flow problem.
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Fig. 3 Navier-Stokes flow
past the cylinder of2g 125
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N ~ _ Y=u +u,
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Loss of mass alongy for 10° ‘ ‘ ‘ ‘ ‘ ‘ ‘ =
V = 550 Wherey = uy, o 1 2z 3 4 5 6 7T 8 09
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In Fig. 5 we show the divergence of the velocity field for thiéegient viscosities
in the whole domainQg 125 during time integration. Since we collocate on CGL
nodes we use Chebyshev-Gauss (CG) nodes to evdlluatg|, > obtaining the real
conservation and not the least-squares error. Again, weredshe well-known per-
formance for the different viscosities. Comparing the djemce forv = ﬁ) and
V= 6—(1)0 we see the earlier occurrence of the “Von Karman Effect” kar $maller
viscosity, again. This is represented in the plot by thelladicin of the divergence.

Momentum conservation for the different viscosities issprged in Fig. 6.
Again, we use CG nodes to evaluate the error of the (on CGL s)octemputed
solutions. To compute the solutions we have to scale the mtumeequations by
At to obtain a stable scheme, where all involved equations atiebalanced. Ob-
taining the real conservation of momentum we use this coetpablutions and
evaluated this in the unscaled system of partial diffeedm@fjuations. Thus, the re-
sults in Fig. 6 are not as good as the results in Fig. 5. Furtbes, the conservation
of momentum is influenced by the velocity, vorticity and b fressure, whereas
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Fig. 5 Navier-Stokes flow

past the cylinder of2g 125

||0-ul| 2 in the whole domain 10 ‘ ‘ ‘ ‘ ‘ ‘ ‘

during time integration for 0 1 2 3 4 5 6 7
11

Ve {1, 200’ W)}

the conservation of mass is only influenced by the velocity.

The well-known performance of our scheme is observed, affam both of the fig-
ures. Furthermore, we see that the oscillating startseeddr the larger Reynolds
number, as expected.
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Fig. 6 Navier-Stokes flow 10l

past the cylinder o2 125

|If|l_2 in the whole domain - ‘ ‘ ‘ ‘ ‘

during time integration for 0 1 2 3 4 5
11

v {1, 750> 500

5 Conclusion

We studied the conservation of mass and momentum of the Sepstres Spec-
tral Collocation Method (LSSCM) for the incompressible avStokes equations
using an internal flow problem. For least-squares schentesuith problems in
general it is known that they have problems with mass coasierv. For the Stokes
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equations the LSFEM does not conserve mass and must be rdduljfie restric-
tion, see, e.g. [3]. Using the LSSEM for the Stokes equatlends to good re-
sults, since the LSSEM compensates the lack in conservatiorass by an supe-
rior conservation of momentum, see, e.g. [16]. As shown ingtesent paper, the
LSSCM leads to superior conservation of mass mmwnentum for the Stokes and
the Navier-Stokes equations. Thus, the LSSCM is an infageatternative to other
least-squares schemes such as the LSSEM or the LSFEM.
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