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1 Einleitung 

Im Rahmen einer Studie zur Prozeßoptimierung unter Anwendung von Fuzzy-Logic und neuronalen 
Netzen sollten an einem 550 t/h-Braunkohlekessel im KW Weisweiler die NOx-Emissionen gesenkt 
werden. Ziel war es, den Prozeß sowohl ökologisch als auch ökonomisch durch Verzicht auf den 
bisher notwendigen Einsatz von Rezirkulationsgas zu optimieren; die mit der Kaltgasrückführung 
verbundenen Betriebs- und Instandhaltungskosten könnten somit eingespart werden. Nach einer 
kurzen Einführung der zu Grunde liegenden Technologie wird über die Versuchsergebnisse der 
Studie und die daraus gewonnenen Erkenntnisse sowie die wirtschaftlichen Aspekte berichtet. 
 
Im Gegensatz zu herkömmlichen Feuerungsregelungen basieren intelligente Systeme wie neurona-
le Netze nicht auf physikalischen Gesetzmäßigkeiten. Ihre Wirkungsweise besteht darin, daß sie 
mit Hilfe adaptiver Algorithmen die Abhängigkeiten von Prozeßein- und -ausgangsgrößen durch 
sog. Modelltraining auf Grundlage gemessener Datenmengen erlernen können. Der Prozeß wird 
hierbei durch mehrdimensionale und nicht-lineare Modelle abgebildet. Durch Invertierung der erlern-
ten Übertragungsfunktion lassen sich zu den im Sinne einer Optimierung angestrebten Ausgangs-
größen die äquivalenten Eingangsgrößen bestimmen. 
 
Neuronale Fuzzysysteme bieten überall dort Vorteile, wo eine zwecks Optimierung möglichst ge-
naue Prozeßmodellierung notwendig ist, diese jedoch aufgrund der Komplexität des realen Prozes-
ses - wenn überhaupt - nur unter hohem Experimentier- und Engineeringaufwand möglich ist. Die 
Braunkohlestaubfeuerung stellt ein solches mehrdimensionales System dar. Im ersten Ansatz wur-
de ein Optimierungspotential in der Verbesserung der Emissionssituation gesehen, indem auf den 
Einsatz der Primärmaßnahme Rezirkulationsgaseindüsung in den Feuerraum bei nachhaltiger 
Senkung des NOX-Niveaus verzichtet werden kann. Auf diese Weise können Betriebs- und In-
standhaltungskosten gesenkt werden. 

2 Prinzip und Vorgehensweise 

2.1 Neuronale Fuzzy-Systeme 

Ein neuronales Fuzzy-Systemstellt die Kombination eines durch seine Lernfähigkeit gekennzeich-
neten neuronalen Netzes mit einer Fuzzy Logic dar. Mit Fuzzy-Systemen in Form von Fuzzy-
Controllern lassen sich regelungstechnische Aufgaben auf der Basis von Wenn-Dann-Regeln mit 
Hilfe von Zuordnungen von Meßwerten zu unscharfen Beschreibungen (z.B. hoch, mittel, tief) lösen. 
Die Modellierung eines Problems wird durch diese Anpassung an menschliche Denkweisen we-
sentlich einfacher und anschaulicher als bei Verwendung von exakten Informationen. Schwierigkei-
ten bereitet in diesem Zusammenhang jedoch die optimale Gestaltung der Zugehörigkeiten der 
Meßwerte zu den unscharfen Beschreibungen. Daher bietet sich die Synthese von Fuzzy-
Controllern mit einem adaptiven neuronalen Netz an. Die Aufgabe, den Fuzzy-Regler an das ge-
stellte Problem optimal anzupassen, wird durch ein Training des neuronalen Netzes mit Hilfe von 
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gemessenen Prozeßein- und –ausgangswerten wahrgenommen4. Solche Systeme sind seit An-
fang der 90er Jahre stark in den Mittelpunkt des Interesses gerückt und finden insb. bei komplexen 
mehrdimensionalen, nichtlinearen Problemen Anwendung. Es liegt daher nahe, die Einsatzmög-
lichkeiten auch im Bereich der Feuerungsregelung von Kraftwerkskesseln zur Optimierung von 
Emissionen und Wirkungsgraden zu ergründen. 

2.2 Dampferzeuger und Versuchsziele 

2.2.1 Dampferzeuger 

In Zusammenarbeit mit der Universität/GH-Essen wurde von RWE Energie AG mit Hilfe des Soft-
warepaketes Process Insights®5 der Firma Pavilion Technologies die Anwendbarkeit eines Neuro-
Fuzzy-System zur Feuerungsoptimierung an einem Braunkohledampferzeuger (siehe Abbildung 
2-1) getestet. Bei der Anlage handelt es sich um einen braunkohlebefeuerten 2-Zug-Kessel mit 
Tangentialfeuerung (6 Gebläseschlägermühlen) und einer maximalen Dampfleistung von 550 t/h.  
 
Braunkohlefeuerungen zeichnen sich dadurch aus, daß der maßgebliche Anteil der erzeugten 
Stickoxide aus dem Brennstoff stammt. Thermisches NOx  spielt in diesem Zusammenhang auf-
grund der relativ geringen Feuerraumtemperaturen praktisch keine Rolle. Die Oxidation des brenn-
stoffgebundenen Stickstoffs wird einerseits durch eine hohe Verfügbarkeit an Sauerstoff und ande-
rerseits durch hohe Temperaturen während der Verflüchtigungsphase begünstigt. Maßnahmen zur 
Reduzierung der NOx-Emissionen zielen daher auf eine Dämpfung dieser Faktoren ab. Aufgrund 
dieser Randbedingungen wurde der Kessel Ende der 80er-Jahre mit den im Braunkohlebereich der 
RWE-Kraftwerke bekannten NOx-Primärmaßnahmen ausgestattet: 
 

• Reduzierung des Gesamtluftüberschusses, 

• 3-fache Luftstufung durch Brennerluft (unterstöchiometrische Verbrennung im Brennerbereich) 
plus 2-stufige Ausbrandluft (ABL), 

• Rauchgasrückführung (Rezirkulationsgebläse). 
 
 

                                                 
4 D. Nauck, F. Klawonn, R. Kruse: Neuronale Netze und Fuzzy-Systeme; 2. Auflage; Vieweg-Verlag 1996 
5 User’s Guide Process Insights V. 4.1. Pavilion Technologies Inc. 
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Abbildung 2-1:  Schematischer Aufbau des untersuchten Dampferzeugers 

 

2.2.2 Versuchsziele 

Ziel der durchgeführten Versuche war es, die folgenden Fragen zu beantworten: 
 

• Läßt sich eine großtechnische Braunkohlefeuerung in befriedigendem Maße bzgl. des NOx-
Emissionsverhaltens  modellieren? 

• Kann das System zur Optimierung der Feuerung eingesetzt werden? Die Optimierung soll mit 
der Zielrichtung erfolgen, die gesetzlichen NOx-Grenzwerte auch ohne den Einsatz von Rezir-
kulationsgas einzuhalten. 

2.3 Versuchsprogramm 

Das Versuchsprogramm läßt sich in folgende Schritte unterteilen: 
 

• Modelltraining mit Meßdaten, 

• Sensitivitätsanalyse, 

• Reduktion der Modellparameter, 

• Versuche (Step-Tests), 

• Modelltraining mit Versuchsdaten, 

• Modellanalyse, 

• Generierung des Optimierungsmodells durch Modellinvertierung, 

• Validierung des Optimierungsmodells. 
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Das Modelltraining geschieht unter Verwendung von gemessenen Eingangsgrößen und der dazu-
gehörigen Ausgangsgröße. Ziel des Trainings ist die Entwicklung eines Prozeßmodells, bei dem die 
Abweichung zwischen gemessener und prognostizierter Ausgangsgröße möglichst gering ist (sie-
he Abbildung 2-2). Das Lernprinzip besteht darin, die sog. Gewichtungsfaktoren der Neuronen, die 
die untereinander vernetzten kleinsten Einheiten des neuronalen Netzes repräsentieren, solange zu 
verändern, bis ein optimaler Abgleich von prognostizierter NOx-Konzentration und tatsächlich ge-
messener NOx-Konzentration  herbeigeführt ist. 

 

 
Abbildung 2-2: Aufbau des neuronalen Modells 

 
Im Rahmen der ersten Trainingsphase wurde das Modell mit 225 Eingangsgrößen, die durch ein 
vorhandenes Datenarchivierungssystem6 bereit gestellt wurden, sowie mit der simultan gemesse-
nen NOx-Konzentration6 im Abgas trainiert. Meßdatenerfassung und Modelltraining sind dabei zeit-
lich getrennt. Während der ersten Meßkampagne wurden über einen Zeitraum von 8 Wochen Meß-
daten ohne gezielte Veränderung der Eingangsgrößen gewonnen7. Der Kessel wurde also mit in 
Betrieb befindlicher Brennstoff-/Luftregelung im “Normalbetrieb” gefahren. Veränderungen der Ein- 
und Ausgangsgrößen ergaben sich demnach ausschließlich durch netzbedingte Lastveränderun-
gen, Schwankungen der Kohlequalität und sonstige Einflußfaktoren. 
 
Durch eine mit Hilfe des trainierten Modells vorgenommene Sensitivitätsanalyse (siehe Abbildung 
2-3) lassen sich nun aus der Gesamtheit der Eingangsgrößen diejenigen selektieren, die für die 
betrachtete Ausgangsgröße „NOx-Konzentration im Abgas“ relevant sind. Diese Datenreduktion 
erhöht während der weiteren Projektschritte die Anschaulichkeit und Handhabbarkeit des Modells. 
Im konkreten Anwendungsfall wurden folgende Eingangsgrößen selektiert: 

                                                 
6 Datenaufzeichnung mit Hilfe des Datenarchivierungssystems Convisa der Fa. H&B bzw. mit Hilfe des  Emissions-
rechners ZEUS 
7 Bei einem Meßtakt von 60 sec. ergibt sich eine Datenmenge von 1,8*107 
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• die Drehzahlen der 6 Kohlezuteiler (als Maß für den Brennstoffmassenstrom),  

• die Volumenströme der 6 Brennerlüfte (in 2 Gruppen mit je 3 Düsen),  

• die Volumenströme der Ausbrandlüfte (2x ABL 1 + 2x ABL 2),  

• der O2-Gehalt in der Feuerung (als Maß für den tatsächlichen Luftüberschuß),  

• die Volumenströme des rezirkulierten Rauchgases (2x), 

• der Massenstrom des erzeugten Frischdampfes (als Maß für die Kesselleistung). 
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Abbildung 2-3: Sensitivitäten der maßgeblichen Eingangsparameter 

 
Da neuronale Fuzzy-Systeme über eine ausgezeichnete Interpolationsfähigkeit verfügen, bei Extra-
polation aber ausgesprochen schlechte Ergebnisse erzielen, war es notwendig, die selektierten 
Eingangsgrößen sog. “Step-Tests” zu unterziehen. Auf diese Weise wurden die Nachteile, die sich 
für die Variationsbreite im Normalbetrieb ergeben, beseitigt. Die Eingangsgrößen wurden schritt-
weise gezielt über einen großen Bereich verändert, wobei die Beharrungszeit um stationäre Werte 
zu erhalten ca. 2h betrug. Die Variation geschah in dieser Phase zunächst ohne Rücksicht auf Ver-
schlechterung oder Verbesserung des NOx-Niveaus. Man erweitert auf diese Weise den Gültig-
keitsbereich des Modells im Hinblick auf die später im Rahmen der Optimierung erforderlichen Va-
riationen der Parameter. Insbesondere die Rezirkulationsgasmenge wurde von ca. 135 Nm³/h auf 0 
Nm³/h abgesenkt, da es gerade das Hauptziel war, unter Einhaltung der Emissionsgrenzwerte auf 
einen Rezirkulationsgasbetrieb zu verzichten. Die Kohle-/Luftregelung wurde während der Versu-



K. Pflipsen et al.                                            Feuerungsoptimierung mit neuronalen Netzen und Fuzzy Logic 

- 7 - 

che außer Betrieb genommen, um einerseits die notwendigen Handeingriffe zu ermöglichen und 
andererseits zu verhindern, daß die Regelung den gewünschten Eingriffen entgegenwirkt. 
 
Die Generierung des Optimierungsmodells geschieht letztlich durch Invertierung des zuvor trainier-
ten Prognosemodells (siehe Abbildung 2-4). Dieses Optimierungsmodell ermöglicht es, durch 
Festlegung einer für den Betreiber optimalen Begrenzung des Ausgangswertes die zur Erreichung 
dieses Wertes erforderlichen Eingangsgrößen einzustellen. Das bedeutete in diesem Fall, eine 
Empfehlung für die Einstellung der Prozeßeingangsgrößen zu geben, die es ermöglicht, den ge-
setzlichen NOx-Grenzwert bei einer Rezi-Menge von 0 Nm³/h nicht zu überschreiten. Bzgl. der Ein-
gangsgrößen lassen sich darüber hinaus frei definierbare Variationsgrenzen festlegen. Hier kamen 
die folgenden Restriktionen zur Anwendung: 
 
1. Die Summe der Zuteilerdrehzahlen soll konstant sein. Diese Forderung resultiert aus der Tatsa-

che, daß die geforderte Kesselleistung durch den Optimierungsvorschlag nicht beeinflußt wer-
den darf. 

2. Die Dampfmenge soll konstant sein. Dies geschieht aus dem gleichen Grund wie unter Punkt 1. 
3. Der für das Vorhersagemodell als Eingangsgröße definierte O2-Wert vor Luvo wird im Optimie-

rungsmodell nicht verwendet, da es sich um eine abhängige Größe handelt, die nicht unmittelbar 
beeinflußbar ist. 

4. Der Versuchsbetrieb wird mit abgeschalteter Rauchgasrückführung durchgeführt, d.h. Rezi-
gasmenge 0 Nm³/h. Diese Vorgehensweise wird gewählt, um das Optimierungsziel - Betrieb 
ohne Rezi-Gas - a priori im Modell fest zu schreiben. 

5. Die Obergrenze der NOx-Konzentration wurde so gewählt, daß die gesetzlich zulässige Grenze 
nicht überschritten wird. 

 
Nach Festlegung der Restriktionen und Start des Optimierungslaufes gab das System für einen 
zuvor eingelesenen Meßzeitraum die optimierten Eingangswerte aus. Da die Optimierung im Offli-
ne-Betrieb vorgenommen werden mußte und zwischen Meßzeitraum und Optimierungszeitraum 
eine Zeitspanne von einer Woche lag, war es erforderlich, aus dem Meßzeitraum  eine Kombination 
von Eingangsparametern  zu wählen, die der zum Zeitpunkt der Optimierung möglichst gut ent-
sprach. Die Eingangsparameter wurden nun entsprechend der Vorschläge des Systems korrigiert. 
Das Optimierungspotential ergibt sich dann aus der Differenz der NOx-Konzentrationen vor und 
nach der Korrektur. 
 

 
Abbildung 2-4: Optimierungsmodell 

3 Versuchsergebnisse 
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3.1 Vorhersagemodell 

Das Vorhersagemodell soll den Prozeß möglichst realistisch abbilden. Die Qualität des Modells läßt 
sich aus dem Vergleich der gemessenen mit der prognostizierten NOx-Konzentration beurteilen. 
Dieser Zusammenhang ist in Abbildung 3-1 und Abbildung 3-2 dargestellt. Für ein ideales Modell 
liegen die Wertepaare in Abbildung 3-1 auf der Winkelhalbierenden. Wie zu erkennen ist, streut der 
Punkthaufen über den gesamten Gültigkeitsbereich nur relativ gering um die Ideallinie. Statistisch 
kommt dies durch einen hohen Regressionskoeffizienten von R²=0,872 zum Ausdruck. Auch beim 
Vergleich (siehe Abbildung 3-2) der zeitlichen Verläufe von gemessenen und vorhergesagten 
Werten sind keine gravierenden Differenzen in der Dynamik festzustellen. 
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Abbildung 3-1: Vergleich der NOx-Werte Messung-Simulation 
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Abbildung 3-2: Vergleich der NOx-Werte Messung-Simulation (zeitlicher Verlauf) 
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Darüber hinaus erkennt man aus den Sensitivitäten der 13 Eingangsgrößen (siehe Abbildung 2-3) 
und ihrer  Wirkrichtung, daß das Modell durchaus den theoretischen  Erwartungen entspricht. 
Erwartungsgemäß hat der O2-Wert hinter Kessel und der mit diesem korrespondierende 
Luftüberschuß im Kessel den bedeutensten Einfluß auf die NOx-Produktion. Gleiches gilt für die 
Kesselleistung (HD-Dampfmenge). Mit steigender Kesselleistung verringert sich die Verweilzeit des 
Rauchgases im Feuerraum und damit die Reaktionszeit in der unterstöchiometrischen 
Reduktionszone. Die negative Sensitivität der ABL-Gesamtmenge und insbesondere der ABL2-
Menge ergibt sich aus der Intensivierung des Reduktionsniveaus durch Verringerung der Luftzahl im 
Brennerbereich bei gleicher Gesamtheißluftmenge. 
 

3.2 Optimierungsmodell 

In der Hauptsache wurden entsprechend den Vorschlägen des Modells die folgenden Korrekturen 
zur Optimierung vorgenommen (siehe Abbildung 3-3): 
 

• Verringerung des Gesamtluftüberschusses, 

• Vertrimmung der Luftzugabe von Brennerluft zu ABL-Gesamt und insbesondere ABL2, 

• Vertrimmung der Brennstoffzuteilung. (Die unterschiedliche Gewichtung der Brenner/Zuteiler 
entsprach dabei den zuvor gefundenen Sensibilitäten). 

 

ABL 1

ABL 2

ABL gesamt

Brennerlüfte 4-6

Brennerlüfte 1-3

N
m

³/h

Zeit
 

Abbildung 3-3: Optimierung der Eingangsparameter 

 
Die Ergebnisse des Optimierungsversuchs sind in Abbildung 3-4 dargestellt. Man erkennt, daß die 
aus der Abschaltung des Rezirkulationsgebläses resultierende NOx-Erhöhung zu einem großen 
Teil kompensiert werden konnte (Minderungspotential ca. 20 mg/Nm³). Gleichzeitig fällt auf, daß die 
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Schwankungsbreite wesentlich geringer ist als vor der Optimierung. Diese Aussage gilt auch für 
den Vergleich mit dem Normalbetrieb mit Rezirkulationsgas. Der CO-Grenzwert konnte während 
des gesamten Zeitraumes nach optimierter Einstellung ebenfalls eingehalten werden. 
 

Rezi 1-3

Rezi 4-6

NOx

CO

Zeit

N
m

³/h

 

Abbildung 3-4: NOx-Konzentrationen bei optimierter Fahrweise 

 
Angesichts der Tatsache, daß es sich hierbei um einen Offline-Versuch handelte, sind die Ergeb-
nisse außerordentlich positiv zu bewerten. Im Online-Betrieb dürfte die Auswirkung günstiger aus-
fallen, da die Echtzeitauswertung und –regelung wirklich den aktuellen Zustand des Prozesses be-
trifft. 
 

4 Zusammenfassung und Ausblick 

Es wurde die Offline-Anwendung eines neuronalen Fuzzy-Programms in zwei Schritten getestet: 
 
1. Abbildungsgüte des Vorhersagemodells, 
2. Reproduzierbarkeit und Wirkungsgrad des Optimierungsmodells. 
 
Das Training des Modells wurde sowohl auf Basis einer großen Datenmenge ohne gezielte Verän-
derungen der Eingangsparameter als auch mit Daten aus gezielten “Step-Tests” vorgenommen. 
 
Die Ergebnisse des Vorhersagemodells zeigen, daß die Software den Prozeß mit ausreichender 
Güte abbilden kann. Auch die mit Hilfe des Modells gefundenen Sensitivitäten entsprechen den the-
oretischen Erwartungen und praktischen Erfahrungen. 
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Das durch Invertierung gewonnene Optimierungsmodell kann aufgrund der Offline-Verwendung und 
der daraus resultierenden zeitlichen Verschiebung zwischen dem Zeitpunkt der Datengewinnung 
und des Trainings einerseits und dem Zeitpunkt des Optimierungsversuches andererseits nur quali-
tativ beurteilt werden. Unter diesen Einschränkungen war es möglich, die NOx-Konzentration nach 
erfolgter Außerbetriebnahme des Rezi-Gebläses durch Einstellung der empfohlenen Eingangspa-
rameter erheblich zu senken. 
 
Obwohl die CO-Grenzwerte während der Optimierungsversuche eingehalten wurden, besteht eine 
Verbesserungsmöglichkeit darin, die bisher fehlende Einbindung der CO-Konzentration in das Mo-
dell vorzunehmen. Da ein enger und i.d.R. reziproker Zusammenhang zwischen CO- und NOx-
Konzentration im Rauchgas besteht, ist es von Vorteil, durch Aufnahme des CO-Wertes in das 
Modell als zweite Ausgangsgröße zu einer Gesamtoptimierung und damit Einhaltung der Grenzwer-
te beider Größen zu gelangen.  
 
Die aufgezeigten Ergebnisse lassen erwarten, daß bei einem Online-Einsatz der Software mit di-
rektem Eingriff in den Prozeß die gewünschte Zielsetzung - Betrieb ohne Rezigas unter gleichzeiti-
ger Einhaltung der gesetzlichen Grenzwerte - dauerhaft erreicht werden kann. Die unter Punkt 2.2.2 
gesteckten Versuchsziele wurden demnach in zufrieden stellendem Umfang erreicht. Ein zukünfti-
ger Online-Einsatz zur Feuerungsoptimierung an 4 Kesseln der Blöcke E und F im Kraftwerk 
Weisweiler wird daher angestrebt. 
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