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1 Einleitung

Im Rahmen einer Studie zur ProzeRoptimierung unter Anwendung von Fuzzy-Logic und neuronalen
Netzen sollten an einem 550 t/h-Braunkohlekessel im KW Weisweiler die NOx-Emissionen gesenkt
werden. Ziel war es, den Prozel3 sowohl 6kologisch als auch 6konomisch durch Verzicht auf den
bisher notwendigen Einsatz von Rezirkulationsgas zu optimieren; die mit der Kaltgasruckfihrung
verbundenen Betriebs- und Instandhaltungskosten kdnnten somit eingespart werden. Nach einer
kurzen Einfihrung der zu Grunde liegenden Technologie wird tber die Versuchsergebnisse der
Studie und die daraus gewonnenen Erkenntnisse sowie die wirtschaftlichen Aspekte berichtet.

Im Gegensatz zu herkdmmlichen Feuerungsregelungen basieren intelligente Systeme wie neurona-
le Netze nicht auf physikalischen Gesetzméaligkeiten. Ihre Wirkungsweise besteht darin, daf3 sie
mit Hilfe adaptiver Algorithmen die Abhangigkeiten von Prozel3ein- und -ausgangsgrofien durch
sog. Modelltraining auf Grundlage gemessener Datenmengen erlernen kénnen. Der Prozel3 wird
hierbei durch mehrdimensionale und nicht-lineare Modelle abgebildet. Durch Invertierung der erlern-
ten Ubertragungsfunktion lassen sich zu den im Sinne einer Optimierung angestrebten Ausgangs-
grofden die &quivalenten Eingangsgrolen bestimmen.

Neuronale Fuzzysysteme bieten tberall dort Vorteile, wo eine zwecks Optimierung moglichst ge-
naue Prozelmodellierung notwendig ist, diese jedoch aufgrund der Komplexitéat des realen Prozes-
ses - wenn Uberhaupt - nur unter hohem Experimentier- und Engineeringaufwand maglich ist. Die
Braunkohlestaubfeuerung stellt ein solches mehrdimensionales System dar. Im ersten Ansatz wur-
de ein Optimierungspotential in der Verbesserung der Emissionssituation gesehen, indem auf den
Einsatz der PrimdrmalRnahme Rezirkulationsgaseindiisung in den Feuerraum bei nachhaltiger
Senkung des NOx-Niveaus verzichtet werden kann. Auf diese Weise kénnen Betriebs- und In-
standhaltungskosten gesenkt werden.

2 Prinzip und Vorgehensweise

2.1 Neuronale Fuzzy-Systeme

Ein neuronales Fuzzy-Systemstellt die Kombination eines durch seine Lernfahigkeit gekennzeich-
neten neuronalen Netzes mit einer Fuzzy Logic dar. Mit Fuzzy-Systemen in Form von Fuzzy-
Controllern lassen sich regelungstechnische Aufgaben auf der Basis von Wenn-Dann-Regeln mit
Hilfe von Zuordnungen von MeRwerten zu unscharfen Beschreibungen (z.B. hoch, mittel, tief) |6sen.
Die Modellierung eines Problems wird durch diese Anpassung an menschliche Denkweisen we-
sentlich einfacher und anschaulicher als bei Verwendung von exakten Informationen. Schwierigkei-
ten bereitet in diesem Zusammenhang jedoch die optimale Gestaltung der Zugehorigkeiten der
MeRwerte zu den unscharfen Beschreibungen. Daher bietet sich die Synthese von Fuzzy-
Controllern mit einem adaptiven neuronalen Netz an. Die Aufgabe, den Fuzzy-Regler an das ge-
stellte Problem optimal anzupassen, wird durch ein Training des neuronalen Netzes mit Hilfe von
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gemessenen ProzeRein- und —ausgangswerten wahrgenommen”. Solche Systeme sind seit An-
fang der 90er Jahre stark in den Mittelpunkt des Interesses gertickt und finden insb. bei komplexen
mehrdimensionalen, nichtlinearen Problemen Anwendung. Es liegt daher nahe, die Einsatzmdg-
lichkeiten auch im Bereich der Feuerungsregelung von Kraftwerkskesseln zur Optimierung von
Emissionen und Wirkungsgraden zu ergriinden.

2.2 Dampferzeuger und Versuchsziele

2.2.1 Dampferzeuger

In Zusammenarbeit mit der Universitat/GH-Essen wurde von RWE Energie AG mit Hilfe des Soft-
warepaketes Process Insights® der Firma Pavilion Technologies die Anwendbarkeit eines Neuro-
Fuzzy-System zur Feuerungsoptimierung an einem Braunkohledampferzeuger (siehe Abbildung
2-1) getestet. Bei der Anlage handelt es sich um einen braunkohlebefeuerten 2-Zug-Kessel mit
Tangentialfeuerung (6 Geblaseschlagermuiihlen) und einer maximalen Dampfleistung von 550 t/h.

Braunkohlefeuerungen zeichnen sich dadurch aus, daf3 der maf3gebliche Anteil der erzeugten
Stickoxide aus dem Brennstoff stammt. Thermisches NOx spielt in diesem Zusammenhang auf-
grund der relativ geringen Feuerraumtemperaturen praktisch keine Rolle. Die Oxidation des brenn-
stoffgebundenen Stickstoffs wird einerseits durch eine hohe Verfiigbarkeit an Sauerstoff und ande-
rerseits durch hohe Temperaturen wahrend der Verflichtigungsphase begunstigt. Maf3nahmen zur
Reduzierung der NOx-Emissionen zielen daher auf eine Dampfung dieser Faktoren ab. Aufgrund
dieser Randbedingungen wurde der Kessel Ende der 80er-Jahre mit den im Braunkohlebereich der
RWE-Kraftwerke bekannten NOx-Primdrmafinahmen ausgestattet:

Reduzierung des Gesamtluftiiberschusses,

3-fache Luftstufung durch Brennerluft (unterstochiometrische Verbrennung im Brennerbereich)
plus 2-stufige Ausbrandluft (ABL),

Rauchgasruckfuhrung (Rezirkulationsgeblase).

*D. Nauck, F. Klawonn, R. Kruse: Neuronale Netze und Fuzzy-Systeme; 2. Auflage; Vieweg-Verlag 1996
®User’s Guide Process Insights V. 4.1. Pavilion Technologies Inc.
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Abbildung 2-1: Schematischer Aufbau des untersuchten Dampferzeugers

2.2.2 Versuchsziele

Ziel der durchgefuhrten Versuche war es, die folgenden Fragen zu beantworten:

LaRt sich eine gro3technische Braunkohlefeuerung in befriedigendem Mal3e bzgl. des NOx-
Emissionsverhaltens modellieren?

Kann das System zur Optimierung der Feuerung eingesetzt werden? Die Optimierung soll mit
der Zielrichtung erfolgen, die gesetzlichen NOx-Grenzwerte auch ohne den Einsatz von Rezir-
kulationsgas einzuhalten.

2.3 Versuchsprogramm

Das Versuchsprogramm laRt sich in folgende Schritte unterteilen:

Modelltraining mit Mel3daten,

Sensitivitatsanalyse,

Reduktion der Modellparameter,

Versuche (Step-Tests),

Modelltraining mit VVersuchsdaten,

Modellanalyse,

Generierung des Optimierungsmodells durch Modellinvertierung,
Validierung des Optimierungsmodells.
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Das Modelltraining geschieht unter Verwendung von gemessenen Eingangsgréf3en und der dazu-
gehorigen Ausgangsgrolie. Ziel des Trainings ist die Entwicklung eines Proze3modells, bei dem die
Abweichung zwischen gemessener und prognostizierter Ausgangsgréf3e moglichst gering ist (sie-
he Abbildung 2-2). Das Lernprinzip besteht darin, die sog. Gewichtungsfaktoren der Neuronen, die
die untereinander vernetzten kleinsten Einheiten des neuronalen Netzes reprasentieren, solange zu
verandern, bis ein optimaler Abgleich von prognostizierter NOx-Konzentration und tatsachlich ge-
messener NOx-Konzentration herbeigefuhrt ist.

- ™
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Input A
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Luftmenge Cutput
Rezigas NO,
u.a.

J

AN

PLS

N/
[ NO,-Messung

Lern-
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Abbildung 2-2: Aufbau des neuronalen Modells

Y

Im Rahmen der ersten Trainingsphase wurde das Modell mit 225 Eingangsgré3en, die durch ein
vorhandenes Datenarchivierungssystem® bereit gestellt wurden, sowie mit der simultan gemesse-
nen NOx-Konzentration® im Abgas trainiert. MeRdatenerfassung und Modelltraining sind dabei zeit-
lich getrennt. Wahrend der ersten MelRkampagne wurden Uber einen Zeitraum von 8 Wochen Mel3-
daten ohne gezielte Veranderung der EingangsgrofRen gewonnen’. Der Kessel wurde also mit in
Betrieb befindlicher Brennstoff-/Luftregelung im “Normalbetrieb” gefahren. Veranderungen der Ein-
und AusgangsgrofRen ergaben sich demnach ausschlie3lich durch netzbedingte Lastveranderun-
gen, Schwankungen der Kohlequalitat und sonstige EinfluRfaktoren.

Durch eine mit Hilfe des trainierten Modells vorgenommene Sensitivitdtsanalyse (siehe Abbildung
2-3) lassen sich nun aus der Gesamtheit der Eingangsgrof3en diejenigen selektieren, die fur die
betrachtete Ausgangsgrol3e ,NOx-Konzentration im Abgas*” relevant sind. Diese Datenreduktion
erhoht wahrend der weiteren Projektschritte die Anschaulichkeit und Handhabbarkeit des Modells.
Im konkreten Anwendungsfall wurden folgende Eingangsgrof3en selektiert:

® Datenaufzeichnung mit Hilfe des Datenarchivierungssystems Convisa der Fa. H&B bzw. mit Hilfe des Emissions-
rechners ZEUS
" Bei einem MeRtakt von 60 sec. ergibt sich eine Datenmenge von 1,810"
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die Drehzahlen der 6 Kohlezuteiler (als Mal3 fir den Brennstoffmassenstrom),
die Volumenstrome der 6 Brennerlufte (in 2 Gruppen mit je 3 Disen),

die Volumenstrome der Ausbrandliifte (2x ABL 1 + 2x ABL 2),

der O,-Gehalt in der Feuerung (als Malf3 fur den tatséchlichen Luftliberschul3),
die Volumenstrome des rezirkulierten Rauchgases (2x),

der Massenstrom des erzeugten Frischdampfes (als Mal fiir die Kesselleistung).

Sensitivitaten absolut

Sensitivitat
o
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Abbildung 2-3: Sensitivitaten der maf3geblichen Eingangsparameter

Da neuronale Fuzzy-Systeme Uber eine ausgezeichnete Interpolationsfahigkeit verfigen, bei Extra-
polation aber ausgesprochen schlechte Ergebnisse erzielen, war es notwendig, die selektierten
Eingangsgrolien sog. “Step-Tests” zu unterziehen. Auf diese Weise wurden die Nachteile, die sich
fur die Variationsbreite im Normalbetrieb ergeben, beseitigt. Die Eingangsgrof3en wurden schritt-
weise gezielt Gber einen grofRen Bereich verandert, wobei die Beharrungszeit um stationare Werte
zu erhalten ca. 2h betrug. Die Variation geschah in dieser Phase zunéchst ohne Rucksicht auf Ver-
schlechterung oder Verbesserung des NOx-Niveaus. Man erweitert auf diese Weise den Gililtig-
keitsbereich des Modells im Hinblick auf die spater im Rahmen der Optimierung erforderlichen Va-
riationen der Parameter. Insbesondere die Rezirkulationsgasmenge wurde von ca. 135 Nm?h auf O
Nm?3/h abgesenkt, da es gerade das Hauptziel war, unter Einhaltung der Emissionsgrenzwerte auf
einen Rezirkulationsgasbetrieb zu verzichten. Die Kohle-/Luftregelung wurde wahrend der Versu-
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che aul3er Betrieb genommen, um einerseits die notwendigen Handeingriffe zu ermdglichen und
andererseits zu verhindern, dal3 die Regelung den gewiinschten Eingriffen entgegenwirkt.

Die Generierung des Optimierungsmodells geschieht letztlich durch Invertierung des zuvor trainier-
ten Prognosemodells (siehe Abbildung 2-4). Dieses Optimierungsmodell ermdglicht es, durch
Festlegung einer fur den Betreiber optimalen Begrenzung des Ausgangswertes die zur Erreichung
dieses Wertes erforderlichen Eingangsgrof3en einzustellen. Das bedeutete in diesem Fall, eine
Empfehlung fir die Einstellung der Prozel3eingangsgrof3en zu geben, die es erméglicht, den ge-
setzlichen NOx-Grenzwert bei einer Rezi-Menge von 0 Nmé/h nicht zu tGberschreiten. Bzgl. der Ein-
gangsgrofRen lassen sich dartiber hinaus frei definierbare Variationsgrenzen festlegen. Hier kamen
die folgenden Restriktionen zur Anwendung:

1. Die Summe der Zuteilerdrehzahlen soll konstant sein. Diese Forderung resultiert aus der Tatsa-
che, daf3 die geforderte Kesselleistung durch den Optimierungsvorschlag nicht beeinfluf3t wer-
den darf.

2. Die Dampfmenge soll konstant sein. Dies geschieht aus dem gleichen Grund wie unter Punkt 1.

3. Der fir das Vorhersagemodell als Eingangsgrof3e definierte O,-Wert vor Luvo wird im Optimie-
rungsmodell nicht verwendet, da es sich um eine abhéngige Grof3e handelt, die nicht unmittelbar
beeinflul3bar ist.

4. Der Versuchsbetrieb wird mit abgeschalteter Rauchgasrickfihrung durchgefihrt, d.h. Rezi-
gasmenge 0 Nms/h. Diese Vorgehensweise wird gewéhlt, um das Optimierungsziel - Betrieb
ohne Rezi-Gas - a priori im Modell fest zu schreiben.

5. Die Obergrenze der NOx-Konzentration wurde so gewahlt, dal3 die gesetzlich zulassige Grenze
nicht Uberschritten wird.

Nach Festlegung der Restriktionen und Start des Optimierungslaufes gab das System fir einen
zuvor eingelesenen Mel3zeitraum die optimierten Eingangswerte aus. Da die Optimierung im Offli-
ne-Betrieb vorgenommen werden muf3te und zwischen Mef3zeitraum und Optimierungszeitraum
eine Zeitspanne von einer Woche lag, war es erforderlich, aus dem Mel3zeitraum eine Kombination
von Eingangsparametern zu wahlen, die der zum Zeitpunkt der Optimierung méglichst gut ent-
sprach. Die Eingangsparameter wurden nun entsprechend der Vorschlage des Systems Korrigiert.
Das Optimierungspotential ergibt sich dann aus der Differenz der NOx-Konzentrationen vor und
nach der Korrektur.

Anfangswerte x. v ——; :
angestrebte - _ © _19 = FOhrungsgrofen
Ausgangsgrofien Ysa . M

Abbildung 2-4: Optimierungsmodell

3 Versuchsergebnisse
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3.1 Vorhersagemodell

Das Vorhersagemodell soll den Prozeld mdglichst realistisch abbilden. Die Qualitat des Modells Iaf3t
sich aus dem Vergleich der gemessenen mit der prognostizierten NOx-Konzentration beurteilen.
Dieser Zusammenhang ist in Abbildung 3-1 und Abbildung 3-2 dargestellt. Fir ein ideales Modell
liegen die Wertepaare in Abbildung 3-1 auf der Winkelhalbierenden. Wie zu erkennen ist, streut der
Punkthaufen Uber den gesamten Gultigkeitsbereich nur relativ gering um die Ideallinie. Statistisch
kommt dies durch einen hohen Regressionskoeffizienten von R2=0,872 zum Ausdruck. Auch beim
Vergleich (siehe Abbildung 3-2) der zeitlichen Verlaufe von gemessenen und vorhergesagten
Werten sind keine gravierenden Differenzen in der Dynamik festzustellen.

Vergleich Messung-Simulation |

NOx simuliert

Ideales iModell

NOx gemessen

Abbildung 3-1: Vergleich der NOx-Werte Messung-Simulation
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= —
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|I( ||I ~  NOx-gemesser|

—.- NOx-simuliert

5800
Datensatz

Abbildung 3-2: Vergleich der NOx-Werte Messung-Simulation (zeitlicher Verlauf)
-8-



K. Pflipsen et al. Feuerungsoptimierung mit neuronalen Netzen und Fuzzy Logic

Daruiber hinaus erkennt man aus den Sensitivitaten der 13 Eingangsgrof3en (siehe Abbildung 2-3)
und ihrer Wirkrichtung, daf3 das Modell durchaus den theoretischen Erwartungen entspricht.
Erwartungsgeman hat der O,-Wert hinter Kessel und der mit diesem korrespondierende
Luftiiberschuld im Kessel den bedeutensten Einflu auf die NOx-Produktion. Gleiches gilt fiir die
Kesselleistung (HD-Dampfmenge). Mit steigender Kesselleistung verringert sich die Verweilzeit des
Rauchgases im Feuerraum und damit die Reaktionszeit in der unterstéchiometrischen
Reduktionszone. Die negative Sensitivitdt der ABL-Gesamtmenge und insbesondere der ABL2-
Menge ergibt sich aus der Intensivierung des Reduktionsniveaus durch Verringerung der Luftzahl im
Brennerbereich bei gleicher Gesamtheil3luftmenge.

3.2 Optimierungsmodell

In der Hauptsache wurden entsprechend den Vorschlagen des Modells die folgenden Korrekturen
zur Optimierung vorgenommen (siehe Abbildung 3-3):

Verringerung des Gesamtluftiiberschusses,

Vertrimmung der Luftzugabe von Brennerluft zu ABL-Gesamt und insbesondere ABL2,
Vertrimmung der Brennstoffzuteilung. (Die unterschiedliche Gewichtung der Brenner/Zuteiler
entsprach dabei den zuvor gefundenen Sensibilitaten).

Brennerlufte 1-3

110525 o
B

200000 -
P

TSI ] e o T T T T T et e e et

100000 -

Nms3/h

B/15, 2:00p B/15, 2:00p B/15, B:00p /15, 7:00p

Zeit

Abbildung 3-3: Optimierung der Eingangsparameter

Die Ergebnisse des Optimierungsversuchs sind in Abbildung 3-4 dargestellt. Man erkennt, daf3 die
aus der Abschaltung des Rezirkulationsgeblases resultierende NOx-Erh6hung zu einem grol3en
Teil kompensiert werden konnte (Minderungspotential ca. 20 mg/Nmg). Gleichzeitig fallt auf, dal? die

-9-



K. Pflipsen et al. Feuerungsoptimierung mit neuronalen Netzen und Fuzzy Logic

Schwankungsbreite wesentlich geringer ist als vor der Optimierung. Diese Aussage gilt auch ftr
den Vergleich mit dem Normalbetrieb mit Rezirkulationsgas. Der CO-Grenzwert konnte wahrend
des gesamten Zeitraumes nach optimierter Einstellung ebenfalls eingehalten werden.

Nm3/h

Abbildung 3-4: NOx-Konzentrationen bei optimierter Fahrweise

Angesichts der Tatsache, dal3 es sich hierbei um einen Offline-Versuch handelte, sind die Ergeb-

nisse aul3erordentlich positiv zu bewerten. Im Online-Betrieb diirfte die Auswirkung gilinstiger aus-
fallen, da die Echtzeitauswertung und —regelung wirklich den aktuellen Zustand des Prozesses be-
trifft.

4 Zusammenfassung und Ausblick

Es wurde die Offline-Anwendung eines neuronalen Fuzzy-Programms in zwei Schritten getestet:

1. Abbildungsgute des Vorhersagemodells,
2. Reproduzierbarkeit und Wirkungsgrad des Optimierungsmodells.

Das Training des Modells wurde sowohl auf Basis einer grol3en Datenmenge ohne gezielte Veran-
derungen der Eingangsparameter als auch mit Daten aus gezielten “Step-Tests” vorgenommen.

Die Ergebnisse des Vorhersagemodells zeigen, daf3 die Software den Prozel3 mit ausreichender

Gute abbilden kann. Auch die mit Hilfe des Modells gefundenen Sensitivitdten entsprechen den the-
oretischen Erwartungen und praktischen Erfahrungen.
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Das durch Invertierung gewonnene Optimierungsmodell kann aufgrund der Offline-Verwendung und
der daraus resultierenden zeitlichen Verschiebung zwischen dem Zeitpunkt der Datengewinnung
und des Trainings einerseits und dem Zeitpunkt des Optimierungsversuches andererseits nur quali-
tativ beurteilt werden. Unter diesen Einschrankungen war es moglich, die NOx-Konzentration nach
erfolgter Aul3erbetriebnahme des Rezi-Geblases durch Einstellung der empfohlenen Eingangspa-
rameter erheblich zu senken.

Obwohl die CO-Grenzwerte wahrend der Optimierungsversuche eingehalten wurden, besteht eine
Verbesserungsmaoglichkeit darin, die bisher fehlende Einbindung der CO-Konzentration in das Mo-
dell vorzunehmen. Da ein enger und i.d.R. reziproker Zusammenhang zwischen CO- und NOx-
Konzentration im Rauchgas besteht, ist es von Vorteil, durch Aufnahme des CO-Wertes in das
Modell als zweite Ausgangsgrofie zu einer Gesamtoptimierung und damit Einhaltung der Grenzwer-
te beider Grol3en zu gelangen.

Die aufgezeigten Ergebnisse lassen erwarten, daf3 bei einem Online-Einsatz der Software mit di-
rektem Eingriff in den Prozel3 die gewlinschte Zielsetzung - Betrieb ohne Rezigas unter gleichzeiti-
ger Einhaltung der gesetzlichen Grenzwerte - dauerhaft erreicht werden kann. Die unter Punkt 2.2.2
gesteckten Versuchsziele wurden demnach in zufrieden stellendem Umfang erreicht. Ein zukinfti-
ger Online-Einsatz zur Feuerungsoptimierung an 4 Kesseln der Blocke E und F im Kraftwerk
Weisweiler wird daher angestrebt.
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