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Abstract

We show that in the two-dimensional case, every objective, isotropic and isochoric energy

function which is rank-one convex on GL+(2) is already polyconvex on GL+(2). Thus we neg-

atively answer Morrey’s conjecture in the subclass of isochoric nonlinear energies, since poly-

convexity implies quasiconvexity. Our methods are based on different representation formulae

for objective and isotropic functions in general as well as for isochoric functions in particular.

We also state criteria for these convexity conditions in terms of the deviatoric part of the log-

arithmic strain tensor.
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1 Introduction

We consider different convexity properties of a real-valued function W : GL+(2) → R on the group
GL+(2) = {X ∈ R

2×2 | detX > 0} of invertible 2× 2-matrices with positive determinant. Our work
is mainly motivated by the theory of nonlinear hyperelasticity, where W (∇ϕ) is interpreted as the
energy density of a deformation ϕ : Ω → R

2; here, Ω ⊂ R
2 corresponds to a planar elastic body in

its reference configuration. The elastic energy W is assumed to be objective as well as isotropic, i.e.
to satisfy the equality

W (Q1 F Q2) = W (F ) for all F ∈ GL+(2) and all Q1, Q2 ∈ SO(2) ,

where SO(2) = {X ∈ R
2×2 |XTX = 1, detX = 1} denotes the special orthogonal group.

Different notions of convexity play an important role in elasticity theory. Here, we focus on the
concepts of rank-one convexity, polyconvexity and quasiconvexity. Following a definition by Ball [7,
Definition 3.2], we say that W is rank-one convex on GL+(2) if it is convex on all closed line segments
in GL+(2) with end points differing by a matrix of rank one, i.e

W (F + (1− θ) ξ ⊗ η) ≤ θW (F ) + (1 − θ)W (F + ξ ⊗ η)

for all F ∈ GL+(2), θ ∈ [0, 1] and all ξ, η ∈ R
2 with F + t ξ⊗η ∈ GL+(2) for all t ∈ [0, 1], where ξ⊗η

denotes the dyadic product. For sufficiently regular functions W : GL+(2) → R, rank-one convexity
is equivalent to Legendre-Hadamard ellipticity (cf. [29]) on GL+(2):

D2
FW (F )(ξ ⊗ η, ξ ⊗ η) ≥ 0 for all ξ, η ∈ R

2 \ {0}, F ∈ GL+(2) .

The rank-one convexity is connected with the study of wave propagation [2, 79, 68, 21] or hyperbol-
icity of the dynamic problem, and plays an important role in the existence and uniqueness theory
for linear elastostatics and elastodynamics [59, 34, 32, 73], cf. [33, 45]. It also ensures the correct
spatial and temporal behaviour of the solution to the boundary value problems for a large class of
materials [19, 20, 35, 36]. Important criteria for the rank-one convexity of functions were established
by Knowles and Sternberg [44] as well as by Šilhavý [71] and Dacorogna [26].

The notion of polyconvexity was introduced into the context of nonlinear elasticity theory by
John Ball [7, 6] (cf. [6, 65, 27]). In the two-dimensional case, a function W : GL+(2) → R is called
polyconvex if and only if it is expressible in the form

W (F ) = P (F, detF ), P : R
2×2 × R ∼= R

5 → R ∪ {+∞} ,

where P (·, ·) is convex. Since the polyconvexity of an energy W already implies the weak lower-
semicontinuity of the corresponding energy functional, it is of fundamental importance to the direct
methods in the calculus of variations. In particular, this implication is still valid for functions W
defined only on GL+(2) which do not satisfy polynomial growth conditions; this is generally the case
in nonlinear elasticity.

Lastly, a function W is called quasiconvex at F ∈ GL+(n) if the condition
∫

Ω

W (F +∇ϑ) dx ≥
∫

Ω

W (F ) dx = W (F ) · |Ω| for every bounded open set Ω ⊂ R
n (1.1)

holds for all ϑ ∈ C∞
0 (Ω) such that det(F + ∇ϑ) > 0. Note carefully that there are alternative

definitions of quasiconvexity for functions on GL+(n), cf. [11]. Although quasiconvexity of an energy
function W is sufficient for the weak lower-semicontinuity of the corresponding energy functional if
W : Rn×n → R is continuous and satisfies suitable growth conditions [74, 18], it is generally not
sufficient in the case of energy functions defined only on GL+(n).
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It is well known that the implications

polyconvexity =⇒ quasiconvexity =⇒ rank-one convexity

hold for arbitrary dimension n. However, it is also known that rank-one convexity does not imply
polyconvexity in general (see the Alibert-Dacorogna-Marcellini example [1], cf. [27, p. 221] and [4]),
and that for n > 2 rank-one convexity does not imply quasiconvexity [12, 75, 64, 27].

The question whether rank-one convexity implies quasiconvexity in the two-dimensional case is
considered to be one of the major open problems in the calculus of variations [8, 10, 23, 60, 61].
Morrey conjectured in 1952 that the two are not equivalent [48, 63, 3, 52, 42, 43], i.e. that there
exists a function W : R2×2 → R which is rank-one convex but not quasiconvex. A number of possible
candidates have already been proposed: for example, the function (see [77]) W# : R2×2 → R with

W#(F ) =

{
−4 detF if

√
‖F‖2 − 2 detF +

√
‖F‖2 + 2 detF ≤ 1,

2
√
‖F‖2 − 2 detF − 1 otherwise,

(1.2)

=

{
−4λmin λmax if λmax ≤ 1

2 ,
2 (λmax − λmin)− 1 otherwise,

where λmin, λmax denote the smallest and the largest singular value of F , respectively, is known to
be rank-one convex1, but it is not known whether this function is quasiconvex at F = 0.

There are, however, a number of special cases for which the two convexity conditions are, in
fact, equivalent: for example, every quasiconvex quadratic form is polyconvex [76, 70, 47, 75] and,
as Müller [49] has shown, rank-one convexity implies quasiconvexity in dimension two on diagonal
matrices [24, 17, 22]. Moreover, Ball and Murat [12] showed that every energy function W : R2×2 →
R of the form W (F ) = ‖F‖α + h(detF ) with a function h : R → R and 1 ≤ α < 2 is polyconvex if
and only if it is rank-one convex. Iwaniec et al. even conjectured that “continuous rank-one convex
functions W : R2×2 → R are quasiconvex ” [3, Conjecture 1.1] in general2 (whereas Pedregal found
“some evidence in favour ” [63] of the hypothesis that the two conditions are not equivalent [62]).

In this spirit, we present another condition under which rank-one convexity implies polyconvexity
(and thus quasiconvexity), thereby further complicating the search for a counterexample: we show
that any function W : GL+(2) → R which is isotropic and objective (i.e. bi-SO(2)-invariant) as well
as isochoric is rank-one convex if and only if it is polyconvex. A function W : GL+(2) → R is called
isochoric3 if

W (aF ) = W (F ) for all a ∈ R
+ := (0,∞) .

Note carefully that we explicitly consider functions which are defined only on GL+(2), and not
on all of R

2×2. Such a function W can equivalently be expressed as a (discontinuous) function
W : R

2×2 → R ∪ {+∞} with W (F ) = +∞ for all F /∈ GL+(2). In many fields, these energy
functions are more suitable for applications than finite-valued functions on R

2×2. In the theory
of nonlinear hyperelasticity, for example, the requirement W (F ) → ∞ as detF → 0 is commonly
assumed to hold. The left- and right-SO(2)-invariance is also motivated by applications in nonlinear

1This follows from the convexity of the function λmax ± λmin =
√

‖F‖2 ± 2 detF =
√

(F11 ± F22)2(F21 ∓ F12)2,
see [24, Lemma 2.2]. In [24, Remark 1] it is also noticed that any SO(2)-invariant polyconvex function can be written as
supremum of linear combinations of the functions ϕ±

c = λmax ± λmin − λmaxλmin
c

, for c ∈ R \ {0}, ϕ±

0 = −λmax λmin,
by writing it first as supremum of polyaffine functions and then exploiting SO(2)-invariance. Thus the individual
branches of W# are polyconvex.

2Interestingly, the related (but not equivalent) question whether isotropic rank-one convex sets in R
2×2 are already

quasiconvex has a positive answer [46, 38].
3In elasticity theory, isochoric energy functions measure only the change of form of an elastic body, not the change

of size. For more general elastic energy functions W : GL+(2) → R, an additive isochoric-volumetric split [50] of the
form

W (F ) = W iso(F ) +W vol(detF ) = W iso

(

F

(detF )1/2

)

+W vol(detF )

into an isochoric part W iso : GL+(2) → R and a volumetric part W vol : R+ → R is sometimes assumed, cf. Section
5.1.
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elasticity and corresponds to the requirements of objectivity and isotropy, respectively.4 While
Morrey’s conjecture is usually stated for finite-valued functions on all of R2×2 only, energy functions
on GL+(2) have long been a valuable source of inspiring examples; indeed, for n > 2, an early
example of a non-continuous function mapping R

n×n to R ∪ {+∞} which is rank-one convex but
not quasiconvex was given by Ball [9], even before Šverák [75] found a continuous finite-valued
counterexample. Additional conditions for rank-one convexity of objective and isotropic energy
functions on GL+(2) have also been considered by Šilhavý [72], Parry and Šilhavý [61], Aubert [5]
and Davies [28].

Note also that a function W : GL+(2) → R is isotropic, objective and isochoric if and only if W
is (left- and right-) conformally invariant, i.e. W (AF B) = W (F ) for all A,B ∈ CSO(2), where

CSO(2) = R
+ · SO(2) = {aQ ∈ GL+(2) | a ∈ R

+ , Q ∈ SO(2)}

denotes the conformal special orthogonal group. In the literature, one also encounters the concept of
conformal energies [78], which are functions W such that W (F ) vanishes if and only if F ∈ CSO(2),
e.g. W (F ) = ‖F‖2 − 2 detF . However, as this example shows, such energies are generally not
isochoric (or conformally invariant).

The idea of finding new isochoric functions which are rank-one convex has arisen from the search
for a function of the isotropic invariants ‖ dev2 logU‖2 and [tr(logU)]2 of the logarithmic strain tensor
logU which is rank-one convex or polyconvex (see [54, 54, 53, 55, 25, 69]), since the commonly used
quadratic Hencky energy

W
H
(F ) = W iso

H

(
F

(detF )1/2

)
+W vol

H
(detF ) = µ ‖ dev2 logU‖2 + κ

2
[tr(logU)]2

is not rank-one convex even in SL(2) := {X ∈ GL+(2) | detX = 1}, see [57]. Here, µ > 0 is the
infinitesimal shear modulus, κ = 2µ+3λ

3 > 0 is the infinitesimal bulk modulus, λ is the first Lamé
constant, F = ∇ϕ is the gradient of deformation, U =

√
FTF is the right stretch tensor and logU

denotes the principal matrix logarithm of U . For X ∈ R
2×2, we denote by ‖X‖ the Frobenius tensor

norm, tr (X) is the trace of X , dev2 X = X − 1
2 tr(X) ·1 is the deviatoric part of X and 1 denotes

the identity tensor on R
2×2.

Promising candidates for a polyconvex formulation in terms of ‖ dev2 logU‖2 and [tr(logU)]2 are
the exponentiated Hencky energies previously considered in a series of papers [57, 58, 56, 37]:

W
eH
(F ) = W iso

eH

(
F

(detF )1/2

)
+W vol

eH
(detF ) =

µ

k
ek ‖ dev2 logU‖2

+
κ

2 k̂
ek̂ [(log detU)]2 , (1.3)

where k, k̂ are additional dimensionless parameters.

2 Preliminaries

In order to establish our main result, i.e. that rank-one convexity and polyconvexity are equivalent
for isochoric energy functions, we first need to recall some conditions for these convexity properties.
In the following, we will assume W : GL+(2) → R, F 7→ W (F ) to be an objective, isotropic function.
It is well known that such a function can be expressed in terms of the singular values of F : there
exists a uniquely determined function g : R+ × R

+ → R such that

W (F ) = g(λ1, λ2) (2.1)

for all F ∈ GL+(2) with singular values λ1, λ2. Note that the isotropy of W also implies the symmetry
condition g(λ1, λ2) = g(λ2, λ1).

4If functions on R
2×2 are considered, then the isotropy requirement is oftentimes assumed to be right-O(2)-

invariance, whereas right-SO(2)-invariance is the natural isotropy condition for functions on GL+(2).
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2.1 A sufficient condition for polyconvexity

A proof of the following lemmas can be found in [37].

Lemma 2.1. If Y : [1,∞) → R is non-decreasing and convex and Z : GL+(2) → [1,∞) is polycon-
vex, then Y ◦ Z is polyconvex.

Lemma 2.2. The function Z : GL+(2) → [1,∞) with Z(F ) =
‖F‖2

op

detF , where ‖F‖op = max{λ1, λ2}
denotes the spectral norm of F ∈ GL+(2) with singular values λ1, λ2, is polyconvex on GL+(2). Note

that the function Z can be expressed as Z(F ) = g(λ1, λ2) with g(λ1 λ2) =
max{λ2

1,λ
2
2}

λ1 λ2
.

These two lemmas immediately imply the next proposition [37], which will play a key role in
showing that isochoric, rank-one convex energies are already polyconvex.

Proposition 2.3. If, for given W : GL+(2) → R, there exists a non-decreasing and convex function

h : [1,∞) → R such that W = h ◦ Z, where Z(F ) =
‖F‖2

op

detF , then W is polyconvex.

2.2 A necessary condition for rank-one convexity

We prove the following well-known necessary condition for rank-one convexity:

Lemma 2.4. Let W : GL+(2) → R be objective, isotropic and rank-one convex, and let g : R+ ×
R

+ → R denote the representation of W in terms of singular values. Then g is separately convex,
i.e. the mapping λ1 7→ g(λ1, λ2) is convex for fixed λ2 ∈ R

+ and the mapping λ2 7→ g(λ1, λ2) is
convex for fixed λ1 ∈ R

+.

Proof. For a, b ∈ R, we define

diag(a, b) :=

(
a 0
0 b

)
.

Let λ2 ∈ R
+ be fixed. Since the matrix diag(1, 0) has rank one, the rank-one convexity of W implies

that the mapping

t 7→ W (diag(1, λ2) + t · diag(1, 0)) = W (diag(1 + t, λ2)) = g(1 + t, λ2) , t ∈ (−1,∞) ,

is convex. Therefore, the function g is convex in the first component and, for symmetry reasons,
convex in the second component.

Note that for an energy function W of class C2, the separate convexity of g is equivalent to the
tension-extension inequalities (TE-inequalities)

∂2g

∂λ2
1

≥ 0 and
∂2g

∂λ2
2

≥ 0 for λ1, λ2 ∈ R
+ .

3 The equivalence of rank-one convexity and polyconvexity

for isochoric energy functions

3.1 The main result

We now focus on isochoric functions W on GL+(2), i.e. functions which satisfy W (aF ) = W (F ) for
all F ∈ GL+(2) and all a > 0. These functions can be uniquely represented in terms of the ratio λ1

λ2

of the singular values of F .

Lemma 3.1. Let W : GL+(2) → R, F 7→ W (F ) be an objective, isotropic function which is
additionally isochoric, i.e. satisfies W (aF ) = W (F ) for all F ∈ GL+(2) and all a > 0. Then there
exists a unique function h : R+ → R with h(t) = h(1t ) such that W (F ) = h

(
λ1

λ2

)
for all F ∈ GL+(2)

with singular values λ1, λ2 ∈ R
+.
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Remark 3.2. Note that Lemma 3.1 explicitly requires W to be defined on GL+(2) only: for functions
on all of GL(2), the isotropy requirement must be extended from right-SO(2)-invariance to right-O(2)-
invariance in order to ensure a representation in terms of the singular values; if singular matrices
are included in the domain of W , then h is not well defined in the form stated in the lemma.

Proof. Since W is objective and isotropic, there exists a function g : R+ × R
+ → R with W (F ) =

g(λ1, λ2) = g(λ2, λ1) for all F ∈ GL+(2), where λ1, λ2 are the singular values of F . Then

W (F ) = W

(
F√
detF

)
= g

(
λ1√
λ1 λ2

,
λ2√
λ1 λ2

)
= g

(√
λ1

λ2
,

√
λ2

λ1

)
,

hence for h : R+ → R with h(t) := g
(√

t, 1√
t

)
we find

h

(
λ1

λ2

)
= g



√

λ1

λ2
,

1√
λ1

λ2


 = g

(√
λ1

λ2
,

√
λ2

λ1

)
= W (F ) ,

and the symmetry of g (which follows from the isotropy of W ) implies

h(t) = g

(√
t,

1√
t

)
= g

(
1√
t
,
√
t

)
= g

(√
1

t
,

√
1
1
t

)
= h

(
1

t

)
.

Finally, the uniqueness of h follows directly from the equality h(t) = W (diag(t, 1)).

We are now ready to prove our main result.

Theorem 3.3. Let W : GL+(2) → R, F 7→ W (F ) be an objective, isotropic and isochoric function,
and let h : R+ → R, g : R+ × R

+ → R denote the uniquely determined functions with

W (F ) = g(λ1, λ2) = h

(
λ1

λ2

)
= h

(
λ2

λ1

)

for all F ∈ GL+(2) with singular values λ1, λ2. Then the following are equivalent:

i) W is polyconvex.

ii) W is rank-one convex,

iii) g is separately convex,

iv) h is convex on R
+,

v) h is convex and non-decreasing on [1,∞).

Proof. The implication i) ⇒ ii) is well-known to hold in general, whereas the implication ii) ⇒ iii)
is stated in Lemma 2.4.
iii) ⇒ iv): If g is separately convex, then the mapping

λ1 7→ g(λ1, 1) = h(λ1)

is convex, thus h is convex on R
+.

iv) ⇒ v): Assume that h is convex on R
+. Then, of course, h is also convex on [1,∞), and it remains

to show the monotonicity of h. Let 1 ≤ t1 < t2. Then 1
t2

< 1 ≤ t1 < t2, i.e. t1 lies in the convex hull
of 1

t2
and t2. But then t1 = s 1

t2
+ (1 − s) t2 for some s ∈ (0, 1), and thus the convexity of h on R

+

implies that

h(t1) = h

(
s
1

t2
+ (1− s) t2

)
≤ s h

(
1

t2

)
+ (1− s)h(t2) = s h(t2) + (1 − s)h(t2) = h(t2) ,

6



hence h is non-decreasing on [1,∞).
iv) ⇒ v): Assume that h is convex and non-decreasing on [1,∞). Then we can apply Proposition
2.3: since the mapping

F 7→
‖F‖2op
detF

=
max{λ2

1, λ
2
2}

λ1 λ2
∈ [1,∞)

is polyconvex [37] and h is convex and non-decreasing on [1,∞), the mapping

F 7→ h

(
max{λ2

1, λ
2
2}

λ1 λ2

)
= h

(
λ1

λ2

)
= W (F )

is polyconvex as well.

If the function h is continuously differentiable, then the criteria in Theorem 3.3 can be simplified
even further.

Corollary 3.4. Let W : GL+(2) → R be an objective, isotropic and isochoric function, and let
h : R+ → R denote the uniquely determined function with W (F ) = h

(
λ1

λ2

)
for all F ∈ GL+(2) with

singular values λ1, λ2. If h ∈ C1(R+), then W is polyconvex if and only if h is convex on [1,∞).

Proof. We only need to show that the stated criterion is sufficient for the polyconvexity of W .
Assume therefore that h is convex on [1,∞). Taking the derivative on both sides of the equality
h(t) = h

(
1
t

)
, which holds for all t ∈ R

+, yields

h′(t) = − 1

t2
· h′
(
1

t

)
.

In particular, h′(1) = −h′(1) and thus h′(1) = 0. Since the convexity of h implies the monotonicity
of h′ on [1,∞), we find h′(t) ≥ 0 for all t ∈ [1,∞). This means that h is non-decreasing on [1,∞),
and applying criterion v) in Theorem 3.3 yields the polyconvexity of W .

4 Criteria for rank-one convexity and polyconvexity in terms

of different energy representations

4.1 Energy functions in terms of the logarithmic strain

We will now assume that the function W is of class C2. While the criterion h′′(t) ≥ 0 for all t ∈
[1,∞) in Corollary 3.4 is easy to state, isochoric elastic energy functions in nonlinear hyperelasticity
are typically not immediately given in terms of the quantity λ1

λ2
. We therefore consider different

representations of such functions in our search for easily verifiable polyconvexity criteria.

Lemma 4.1. Let W : GL+(2) → R be objective, isotropic and isochoric. Then there exist unique

functions f, f̃ : [0,∞) → R such that

i) W (F ) = f

(
log2

λ1

λ2

)
,

ii) W (F ) = f̃(‖ dev2 logU‖2)

for all F ∈ GL+(2), where λ1, λ2 denote the singular values of F , U =
√
FTF is the positive definite

symmetric polar factor in the right polar decomposition of F , dev2 X = X− tr(X)
2 ·1 is the deviatoric

part of X ∈ R
2×2, log denotes the principal matrix logarithm on PSym(2) and ‖ . ‖ is the Frobenius

matrix norm.
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Proof. i): Let us first recall that from Lemma 3.1 that there exists a unique function h : R+ → R
+

such that W (F ) = h
(
λ1

λ2

)
for all F ∈ GL+(2) with singular values λ1, λ2. Let f(θ) = h(e

√
θ) for

θ > 0. Since √
log2

λ1

λ2
=

∣∣∣∣log
λ1

λ2

∣∣∣∣ = log
max{λ1, λ2}
min{λ1, λ2}

,

we find

f

(
log2

λ1

λ2

)
= h

(
e

√
log2 λ1

λ2

)
= h

(
e
log

max{λ1,λ2}

min{λ1,λ2}

)
= h

(
max{λ1, λ2}
min{λ1, λ2}

)
= h

(
λ1

λ2

)
= W (F )

for all F ∈ GL+(2) with singular values λ1, λ2. To show the uniqueness of f , we simply note that

f(θ) = f

(
log2

(
e
√
θ

1

))
= W (diag(e

√
θ, 1))

for all θ > 0.
ii): It has been previously shown [57] that

‖ dev2 logU‖2 =
1

2
log2

λ1

λ2
.

The equality W (F ) = f̃(‖ dev2 logU‖2) is therefore satisfied for all F ∈ GL+(2) if and only if
f̃(t) = f(2 t), where f is given by i).

Note carefully that for n > 2, not every objective, isotropic and isochoric energy W : GL+(n) → R

can be written in terms of ‖ devn logU‖2 in the way Lemma 4.1 states for n = 2. However, there
always exists a function Ŵ : Sym(n) → R such that W (F ) = Ŵ (devn logU) for all F ∈ GL+(n)

with U =
√
FTF .

We can now state Theorem 3.3 in terms of the functions f, f̃ as defined in Lemma 4.1.

Proposition 4.2. Let W : GL+(2) → R, F 7→ W (F ) be an objective, isotropic and isochoric

function and let f, f̃ : [0,∞) → R denote the uniquely determined functions with

W (F ) = f̃(‖ dev2 logU‖2) = f

(
log2

λ1

λ2

)

for all F ∈ GL+(2) with singular values λ1, λ2. If f, f̃ ∈ C2([0,∞)), then the following are equivalent:

i) W is polyconvex,

ii) W is rank-one convex,

iii) 2 θ f ′′(θ) + (1 −
√
θ) f ′(θ) ≥ 0 for all θ ∈ (0,∞),

iv) 2 η f̃ ′′(η) + (1−√
2 η) f̃ ′(η) ≥ 0 for all η ∈ (0,∞).

Proof. For h : R+ → R with h(t) = f(log2 t) we find

h

(
λ1

λ2

)
= f

(
log2

λ1

λ2

)
= W (F )

for all F ∈ GL+(2) with singular values λ1, λ2. If f ∈ C2([0,∞)), then h ∈ C2(R+), thus we can
apply Corollary 3.4 to find that W is polyconvex (and, equivalently, rank-one convex) if and only if

8



h is convex on [1,∞). Since h′′ is continuous on R
+, this convexity of h is equivalent to h′′(t) ≥ 0

for all t ∈ (1,∞). We compute

h′(t) = 2 f ′(log2 t) · log t
t

(4.2)

as well as

h′′(t) = 4 f ′′(log2 t) · log
2 t

t2
− 2 f ′(log2 t) · log t

t2
+ 2 f ′(log2 t) · 1

t2

=
2

t2

(
2 (log2 t) f ′′( log2 t

)
+ (1 − log t) f ′( log2 t

))
.

Writing t > 1 as t = e
√
θ with θ > 0 we find

h′′(t) =
2

e2
√
θ

(
2 θ f ′′(θ) + (1−

√
θ) f ′(θ)

)
.

Since the mapping θ → e
√
θ is bijective from (0,∞) to (1,∞), the condition

h′′(t) ≥ 0 for all t ∈ (1,∞) (4.3)

is therefore equivalent to

2 θ f ′′(θ) + (1−
√
θ) f ′(θ) ≥ 0 for all θ ∈ (0,∞) , (4.4)

which is exactly criterion iii).
It remains to show that iii) and iv) are equivalent. Since f̃(η) = f(2 η) (see Lemma 4.1), we find

2 η f̃ ′′(η) +
(
1−

√
2 η f̃ ′(η)

)
= 2

[
2 (2 η) f ′′(2 η) +

(
1−

√
(2 η)

)
f ′(2 η)

]
.

Thus iv) is satisfied for all η ∈ R
+ if and only if iii) is satisfied for all θ = 2 η ∈ R

+.

In addition to criterion iii) in Proposition 4.2, the polyconvexity of W also implies the monotonicity
of f :

Corollary 4.3. Under the assumptions of Proposition 4.2, if W is polyconvex (or, equivalently,
rank-one convex), then f ′(θ) ≥ 0 for all θ > 0.

Proof. According to Theorem 3.3, the polyconvexity of W implies that h = f ◦ log2 is non-decreasing
on [1,∞). Then

0 ≤ h′(t) = 2 f ′(log2 t) · log t
t

for all t > 1 and thus 0 ≤ f ′(log2 t) for all t > 1, which immediately implies f ′(θ) ≥ 0 for all
θ > 0.

4.2 Energy functions in terms of the distortion function

We now consider the representation of an isochoric energy W (F ) in terms of K(F ) = 1
2

‖F‖2

detF , where
‖ . ‖ denotes the Frobenius matrix norm; the mapping K is also known as the (planar) distortion
function [40] or outer distortion [41, eq. (14)]. Note that K ≥ 1 and that, for F ∈ GL+(2), K(F ) = 1
if and only if F is conformal, i.e. if F = a · R with a ∈ R

+ and R ∈ SO(2). In the two-dimensional
case, every objective, isotropic and isochoric (i.e. conformally invariant) energy can be written in
terms of K.
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Lemma 4.4. Let W : GL+(2) → R be objective, isotropic and isochoric. Then there exists a unique
function z : [1,∞) → R with

W (F ) = z (K(F )) = z

(
1

2

‖F‖2
detF

)

for all F ∈ GL+(2).

Proof. It can easily be seen that the function p : [1,∞) → [1,∞) with p(t) = 1
2 (t +

1
t ) is bijective,

and that its inverse is given by

q(s) = p−1(s) = y +
√
y2 − 1 .

Then q(12 (t+
1
t )) = t for all t ∈ [1,∞), while for t ∈ (0, 1) we find

q
(1
2

(
t+

1

t

))
= q
( 1

2

( >1︷︸︸︷
1

t
+

1
1
t

) )
=

1

t
.

Therefore q(12 (t+
1
t )) = max{t, 1

t } for all t ∈ R
+ = (0,∞).

According to Lemma 3.1, there exists a unique function h : R+ → R
+ such that W (F ) = h

(
λ1

λ2

)
=

h
(
λ2

λ1

)
for all F ∈ GL+(2) with singular values λ1, λ2. Then the function z := h ◦ q has the desired

property: since
1

2

‖F‖2
detF

=
1

2

λ2
1 + λ2

2

λ1 λ2
=

1

2

(
λ1

λ2
+

λ2

λ1

)
,

we find

z

(
1

2

‖F‖2
detF

)
= h

(
q

(
1

2

‖F‖2
detF

))
= h

(
q

(
1

2

(
λ1

λ2
+

1
λ1

λ2

)))
= h

(
max

{
λ1

λ2
,
λ2

λ1

})
= W (F ) .

The uniqueness follows directly from the observation that

z(r) = W
(
diag

(
r +

√
r2 − 1, 1

))

for all r ∈ [1,∞).

By means of this representation formula, we can easily show that every objective, isotropic
and isochoric function on GL+(2) satisfies the tension-compression symmetry condition W (F−1) =
W (F ): since

F−1 =
1

detF

(
F22 −F12

−F21 F11

)
for F =

(
F11 F12

F21 F22

)
,

we find

K(F−1) =
1

2

‖F−1‖2
det(F−1)

=
detF

2

∥∥∥∥
1

detF

(
F22 −F12

−F21 F11

)∥∥∥∥
2

=
1

2 detF

∥∥∥∥
(

F22 −F12

−F21 F11

)∥∥∥∥
2

=
1

2

‖F‖2
detF

= K(F )

and thus W (F ) = z(K(F )) = z(K(F−1)) = W (F−1) for all F ∈ GL+(2). Note that this implication
is restricted to the two-dimensional case: isochoric energy functions on GL+(n) are generally not
tension-compression symmetric for n > 2.

Criteria for the polyconvexity of W can now be established in terms of the function z corresponding
to W .
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Proposition 4.5. Let W : GL+(2) → R, F 7→ W (F ) be an objective, isotropic and isochoric
function and let z : [1,∞) → R denote the uniquely determined function with

W (F ) = z (K(F )) = z

(
1

2

‖F‖2
detF

)

for all F ∈ GL+(2). If z ∈ C2([0,∞)), then the following are equivalent:

i) W is polyconvex,

ii) W is rank-one convex,

iii) (r2 − 1) (r +
√
r2 − 1) z′′(r) + z′(r) ≥ 0 for all r ∈ (1,∞).

Proof. As indicated in the proof of Lemma 4.4, the unique function h with W (F ) = h
(
λ1

λ2

)
= h

(
λ2

λ1

)

for all F ∈ GL+(2) with singular values λ1, λ2 is given by h(t) = z
(
t
2 +

1
2 t

)
for all t ≥ 1. By Corollary

3.4, we only need to show that condition iii) is equivalent to the convexity of h on [1,∞), i.e. to
h′′(t) ≥ 0 for all t > 1. For t > 1, we find h′(t) = 1

2

(
1− 1

t2

)
· z′
(
t
2 + 1

2 t

)
and

h′′(t) =
1

4

(
1− 1

t2

)2
· z′′
( t
2
+

1

2 t

)
+

1

t3
· z′
( t
2
+

1

2 t

)

=
1

t3

[
t

4

(
t− 1

t

)2
· z′′
( t
2
+

1

2 t

)
+ z′

( t
2
+

1

2 t

)]

=
1

t3

[
t

(( t
2
+

1

2 t

)2
− 1

)
· z′′
( t
2
+

1

2 t

)
+ z′

( t
2
+

1

2 t

)]
,

thus

h′′(t) ≥ 0 ⇐⇒ 0 ≤ t ·
(( t

2
+

1

2 t

)2
− 1

)
· z′′
( t
2
+

1

2 t

)
+ z′

( t
2
+

1

2 t

)
.

Recall from the proof of Lemma 4.4 that the mapping r 7→ q(r) = r +
√
r2 − 1 bijectively maps

(1,∞) onto itself and that q(r)
2 + 1

2 q(r) = r for all r > 1. Therefore, by writing t = q(r), we find that
the inequality h′′(t) ≥ 0 holds for all t > 1 if and only if

0 ≤ q(r) ·
((

q(r)

2
+

1

2 q(r)

)2

− 1

)
· z′′
(
q(r)

2
+

1

2 q(r)

)
+ z′

(
q(r)

2
+

1

2 q(r)

)

= q(r) · (r2 − 1) · z′′(r) + z′(r) = (r +
√
r2 − 1) · (r2 − 1) · z′′(r) + z′(r) for all r > 1 .

An example for the application of Proposition 4.5 can be found in Appendix A.2.

5 Applications

5.1 The quadratic and the exponentiated isochoric Hencky energy

Proposition 4.2 can directly be applied to isochoric energy functions given in terms of ‖ dev2 logU‖2.

Corollary 5.1.

i) The isochoric Hencky energy ‖ dev2 logU‖2 = 1
2 log

2 λ1

λ2
is not polyconvex and not rank-one

convex on GL+(2).

ii) The exponentiated isochoric Hencky energy ek‖ dev2 logU‖2

= e
k ‖ log U

det U1/2
‖2

= e
k
2 log2

λ1
λ2 is

rank-one convex (and therefore polyconvex) on GL+(2) if and only if k ≥ 1
4 .

11



Proof. i) In the case of the isochoric Hencky energy W (F ) = ‖ dev2 logU‖2 = 1
2 log

2 λ1

λ2
, the function

f̃ is defined by f̃(η) = η. This function does not satisfy condition iv) in Proposition 4.2: since

2 η f̃ ′′(η) + (1 −
√
2 η) f̃ ′(η) = 1−

√
2 η , (5.5)

the inequality is not satisfied for η > 1
2 .

ii) For the exponentiated isochoric Hencky energy W (F ) = ek‖ dev2 logU‖2

= e
k ‖ log U

det U1/2
‖2

=

e
k
2 log2 λ1

λ2 , the functions f, f̃ : [0,∞) → R are defined by f(θ) = e
k
2 θ and f̃(η) = ekη. We find

2 η f̃ ′′(η) + (1−
√
2 η) f̃ ′(η) = 2 η k2 ekη + (1−

√
2 η) k ekη ,

thus condition iv) in Proposition 4.2 is equivalent to

k ≥
√
2 η − 1

2 η
for all η > 0 .

This inequality is satisfied if and only if k ≥ 1
4 . Therefore the requirement k ≥ 1

4 is necessary and
sufficient for the rank-one convexity as well as for the polyconvexity of the isochoric exponentiated
Hencky energy ek‖ dev2 logU‖2

.

Our results can also be applied to non-isochoric energy functions possessing an additive isochoric-
volumetric split5, i.e. energy functions W of the form

W : GL+(2) → R , W (F ) = W iso(F ) +W vol(detF ) = W iso

(
F

(detF )1/2

)
+W vol(detF )

with an isochoric function W iso : GL+(2) → R and a function W vol : R+ → R. In this case, Theorem
3.3 and Propositions 4.2 and 4.5 provide sufficient criteria for the polyconvexity of W : if W vol is
convex on R

+, then the polyconvexity of W iso is sufficient for W to be polyconvex as well. For
example, since the mapping t 7→ κ

2 k̂
ek̂ [(log t)]2 is convex on R

+ for k̂ ≥ 1
8 , it follows from Corollary

5.1 that the exponentiated Hencky energy WeH : GL+(2) → R with

WeH(F ) = W iso
eH

(F ) +W vol
eH

(detF ) =
µ

k
ek ‖ dev2 logU‖2

+
κ

2 k̂
ek̂ [(log detU)]2

is polyconvex for k ≥ 1
4 and k̂ ≥ 1

8 , as indicated in Section 1.

5.2 Growth conditions for polyconvex isochoric energies

By integrating the polyconvexity criteria given in Proposition 4.2, we obtain an exponential growth
condition for the function f which is necessarily satisfied if W is rank-one convex (i.e. polyconvex).

Corollary 5.2. Let W : GL+(2) → R with W (F ) = f̃(‖ dev2 logU‖2) = f
(
log2 λ1

λ2

)
be a polyconvex

energy function with f ∈ C2([0,∞)). If f ′(θ) 6= 0 for all θ > 0, then the function f satisfies the
inequality

f(θ) ≥ (e
√
θ − 1)

√
ε

e
√
ε
f ′(ε) + f(0) for all θ, ε > 0 . (5.1)

5In nonlinear elasticity theory, the assumption that an elastic energy function takes on this specific form is due to
the physically plausible requirement that the mean pressure should depend only on the determinant of the deformation
gradient F , i.e. that there exists a function F : R+ → R such that 1

n
tr σ = F(detF ), where σ denotes the Cauchy

stress tensor; cf. [66, 67, 16].
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Proof. According to Proposition 4.2 and Corollary 4.3, if the energy W is polyconvex, then

2 θ f ′′(θ) + (1 −
√
θ) f ′(θ) ≥ 0 and f ′(θ) ≥ 0 for all θ > 0 . (5.2)

Under our assumption f ′(θ) 6= 0, we therefore find f ′(θ) > 0 for all θ > 0 and deduce

f ′′(θ)

f ′(θ)
≥

√
θ − 1

2 θ
for all θ > 0 . (5.3)

By integration from ε > 0 to θ, it follows that

log f ′(θ) ≥ log f ′(ε) +
1

2

(
2
√
θ − log θ

)
− 1

2

(
2
√
ε− log ε

)
for all θ, ε > 0 , (5.4)

thus we obtain

f ′(θ) ≥ elog f ′(ε)+ 1
2 (2

√
θ−log θ)− 1

2 (2
√
ε−log ε) = f ′(ε) e−

√
ε+ 1

2 log ε e
√
θ− 1

2 log θ = f ′(ε)

√
ε

e
√
ε

e
√
θ

√
θ

(5.5)

for all θ, ε > 0. By another integration on the interval [δ, θ], δ > 0, we obtain

f(θ) ≥ f ′(ε)

√
ε

e
√
ε
e
√
θ + f(δ)− f ′(ε)

√
ε

e
√
ε
e
√
δ (5.6)

for all θ, ε, δ > 0. Taking the limit case δ → 0 and using the continuity of the function f , we finally
obtain

f(θ) ≥ f ′(ε)

√
ε

e
√
ε
e
√
θ + f(0)− f ′(ε)

√
ε

e
√
ε

for all θ, ε > 0, (5.7)

and the proof is complete.

Remark 5.3. Since f ′(θ) ≥ 0 for all θ ≥ 0, a necessary condition is that

f(θ) ≥ C1 e
√
θ + C2 for all θ > 0 , (5.8)

for C1 = 1
e f

′(1) > 0 and C2 = f(0)− 1
e f

′(1) ∈ R. In terms of the function h with W (F ) = h
(
λ1

λ2

)
,

inequality (5.8) also implies
h(t) ≥ C1 t+ C2 for all t > 1 ,

since h(t) = f(log2 t).

Sendova and Walton [69] derive similar necessary growth conditions for the three-dimensional
case. Growth conditions for polyconvex functions have also been considered by Yan [78], who showed
that non-constant polyconvex conformal energy functions defined on all of Rn×n must grow at least
with power n.
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A Appendix

A.1 Additional examples and applications

The criteria given in Sections 3 and 4 can be applied to a number of isochoric energy functions in
order to determine whether or not they are polyconvex or, equivalently, rank-one convex.

Corollary A.1.

The following functions W : GL+(2) → R are rank-one convex and polyconvex:

i) W (F ) =

∥∥∥∥
U

(detU)1/2
−
(

U

(detU)1/2

)−1 ∥∥∥∥
2

,

ii) W (F ) = e‖ dev2 logU‖2 · ‖F‖2
detF

,

iii) W (F ) = cosh(‖ dev logU‖2) = cosh(‖ dev log
√
FTF‖2) ,

The following functions W : GL+(2) → R are neither rank-one convex nor polyconvex:

iv) W (F ) = ‖ dev2 logU‖β for β > 0 ,

v) W (F ) = e‖ dev2 logU‖2+sin(‖ dev2 logU‖2) .

Proof. i) Since the squared Frobenius-norm of a symmetric matrix X is the squared sum of its
eigenvalues, we find for F ∈ GL+(2) with singular values λ1, λ2:

W (F ) =


 λ1√

λ1 λ2

− λ−1
1√

λ−1
1 λ−1

2




2

+


 λ2√

λ1 λ2

− λ−1
2√

λ−1
1 λ−1

2




2

= 2

(√
λ1

λ2
−
√

λ2

λ1

)2

Thus the function h : R+ → R
+ with h(t) = h(1t ) with W (F ) = h

(
λ1

λ2

)
for all F ∈ GL+(2)

with singular values λ1, λ2 is given by

h(t) = 2

(√
t− 1√

t

)2

= 2

(
t+

1

t

)
− 4 ,

and we find

h′(t) = 2

(
1− 1

t2

)
as well as h′′(t) =

4

t3
≥ 0

for all t ∈ R
+. Thus, according to Theorem 3.3, W is polyconvex.

ii) Again, we write W (F ) in terms of the singular values λ1, λ2 of F :

W (F ) = e‖ dev2 logU‖2 · ‖F‖2
detF

= e
1
2 log2 λ1

λ2 · λ
2
1 + λ2

2

λ1 λ2
= e

1
2 log2 λ1

λ2 ·
(
λ1

λ2
+

λ2

λ1

)
.

Then W (F ) = h
(
λ1

λ2

)
, where

h(t) = e
1
2 log2 t ·

(
t+

1

t

)
,

and we compute

h′(t) = e
1
2 log2 t ·

[
1− 1

t2
+

log t

t

(
t+

1

t

)]
= e

1
2 log2 t ·

[
1− 1

t2
+ log t ·

(
1 +

1

t2

)]

17



as well as

h′′(t) = e
1
2 log2 t ·

[
log t

t

(
1− 1

t2
+ log t ·

(
1 +

1

t2

))
+

(
2

t3
+

1

t

(
1 +

1

t2

)
− 2 log t

t3

)]

= e
1
2 log2 t ·

[
log t

t
− log t

t3
+

(
1

t
+

1

t3

)
log2 t+

2

t3
+

1

t
+

1

t3
− 2 log t

t3

]

= e
1
2 log2 t ·

[
1

t
+

3

t3
+

(
1

t
− 3

t3

)
log t+

(
1

t
+

1

t3

)
log2(t)

]
.

Therefore, Theorem 3.3 states that W is polyconvex if and only if
(

3

t2
− 1

)
log t ≤ 1 +

3

t2
+

(
1 +

1

t2

)
log2 t (A.9)

for all t > 0. For t < 1 or t <
√
3, the left-hand side is negative and the inequality is therefore

satisfied. If 1 ≤ t ≤
√
3, then 0 ≤ log t < 1 and 3

t2 − 1 ≥ 0; thus
(

3

t2
− 1

)
log t ≤ 3

t2
− 1 < 1 +

3

t2
+

(
1 +

1

t2

)
log2 t ,

hence inequality (A.9) is satisfied in this case as well.

iii) The function f̃ : [0,∞) → R with W (F ) = f̃(‖ dev2 logU‖2) for all F ∈ GL+(2) is given by
f̃(η) = cosh(η). For η ∈ R

+ we find

2 η f̃ ′′(η)+(1−
√
2 η) f̃ ′(η) = 2 η cosh(η)+(1−

√
2 η) sinh(η) ≥ (2 η+1−

√
2 η) sinh(η) ≥ 0 ,

thus W is polyconvex according to Proposition 4.2.

iv) Let α := β
2 . Then W (F ) = f̃(‖ dev2 logU‖2) for f̃(η) = ηα. Since

2 η f̃ ′′(η)+(1−
√
2 η) f̃ ′(η) = 2 η α (α−1) ηα−2+(1−

√
2η)αηα−1 = αηα−1

[
2α− 1−

√
2 η
]
,

we use Proposition 4.2 to find that W is polyconvex if and only if

0 ≤ 2α− 1−
√
2 η for all η ∈ R

+ ,

which is obviously not the case for any β = 2α > 0. This result was also hinted at by
Hutchinson and Neale [39].

v) We apply Proposition 4.2 to the function f̃ with f̃(η) = eη+sin η. Since

f̃ ′(η) = eη+sin η · (1 + cos η) and f̃ ′′(η) = eη+sin η ·
(
(1 + cos η)2 − sin η

)
,

we find

2 η f̃ ′′(η)+ (1−
√
2 η) f̃ ′(η) = 2 η eη+sin η ·

(
(1+ cosη)2 − sin η

)
+(1−

√
2 η) eη+sin η · (1+ cosη)

Thus W is polyconvex if and only if

2 η
(
(1 + cos η)2 − sin η

)
+ (1−

√
2 η) (1 + cos η) ≥ 0 for all η ∈ (0,∞) .

This inequality is not satisfied for η = π
2 . Note that f̃ is monotone on R

+ with exponential
growth, but is not convex.
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A.2 On dist2
(

F

(detF )1/2
, SO(2)

)

For F ∈ GL+(2), we consider the squared distance from F
(detF )1/2

∈ SL(2) to the special orthogonal
group SO(2) with respect to different distance measures. Such distances are closely connected to a
number of elastic energy functions, including the isochoric quadratic Hencky energy [53], and they
provide an important class of examples for isochoric energy functions on GL+(2). In this appendix,
we collect some related results which are scattered throughout the literature.

A.2.1 The Euclidean distance of F ∈ R
2×2 to SO(2)

We first consider the Euclidean distance

dist2Euclid (F, SO(2)) := inf
R∈SO(2)

‖F −R‖2

of F ∈ R
2×2 to SO(2), where ‖ . ‖ denotes the Frobenius matrix norm. In the two-dimensional case,

this distance can be explicitly calculated: since

dist2Euclid (F, SO(2)) = inf
R∈SO(2)

‖F −R‖2 = inf
α∈[−π,π]

∥∥∥F −
(

cosα sinα
− sinα cosα

)∥∥∥
2

,

we find
∥∥∥
(

F11 − cosα F12 − sinα
F21 + sinα F22 − cosα

)∥∥∥
2

= (F11 − cosα)2 + (F12 − sinα)2 + (F21 + sinα)2 + (F22 − cosα)2 .

Taking the derivative with respect to α yields the stationarity condition

(F11 + F22) sinα+ (F21 − F12) cosα = 0 ⇐⇒ 〈
(

sinα
cosα

)
,

(
F11 + F22

F21 − F12

)
〉 = 0 ,

which implies
(

sinα
cosα

)
= ± 1√

‖F‖2 + 2 detF

(
−(F21 − F12)
F11 + F22

)
.

The minimum is easily seen to be realized by
(

sinα
cosα

)
=

1√
‖F‖2 + 2 detF

(
−(F21 − F12)
F11 + F22

)
,

and reinserting yields

dist2Euclid (F, SO(2)) = inf
R∈SO(2)

‖F −R‖2 = ‖F‖2 − 2
√
‖F‖2 + 2 detF + 2

for arbitrary F ∈ R
2×2. Let us recall the Biot energy term

WBiot(F ) = ‖U − 1‖2 = ‖U‖2 − 2 tr(U) + 2.

For F ∈ GL+(2), the Caley-Hamilton formula implies that

‖U‖2 − [tr(U)]2 + 2 detU = 0 =⇒ tr(U) =
√
‖U‖2 + 2 detU

F∈GL+(2)
=

√
‖F‖2 + 2 detF ,

hence

WBiot(F ) = ‖F‖2 − 2
√
‖F‖2 + 2 detF + 2 =

(√
‖F‖2 + 2 detF − 1

)2
+ 1− 2 detF

F∈GL+(2)
= ‖U‖2 − 2

√
‖U‖2 + 2 detU + 2

and we note that

dist2Euclid(F, SO(2)) = ‖U − 1‖2 = WBiot(F ) for all F ∈ GL+(2) , (A.1)

while in general dist2Euclid(F, SO(2)) ≥ WBiot(F ) for F ∈ R
2×2. Note that WBiot is not rank-one

convex [13].
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A.2.2 The polyconvexity of F 7→ dist2Euclid

(
F

(detF )1/2
, SO(2)

)

In order to show that the mapping F 7→ dist2Euclid

(
F

(detF )1/2
, SO(2)

)
is polyconvex on GL+(2), we

apply (A.1) to F
(detF )1/2

and find

dist2Euclid

(
F

(detF )1/2
, SO(2)

)
=

(√∥∥∥ F

(detF )1/2

∥∥∥
2

+ 2 det
( F

(detF )1/2

)
− 1

)2

+ 1− 2 det
( F

(detF )1/2

)

=

(√
‖F‖2
detF

+ 2− 1

)2

− 1.

Since the function

t 7→
(√

t+ 2− 1
)2 − 1.

is convex and monotone, we only need to prove that the mapping F 7→ ‖F‖2

detF is polyconvex. This
is shown (in a slightly generalized version) in the following lemma, using the criteria developed in
Section 4.

Lemma A.2. Let β > 0. Then the function

W : GL+(2) → R , W (F ) =

( ‖F‖2
detF

)
β

is polyconvex (and, equivalently, rank-one convex) if and only if β ≥ 1.

Proof. The unique function z : [1,→ ∞) → R with W (F ) = z
(

1
2

‖F‖2

detF

)
for all F ∈ GL+(2) is given

by z(r) = 2β rβ . Then

z′(r) = 2β β rβ−1 and z′′(r) = 2β β (β − 1) rβ−2 ,

thus according to Proposition 4.5, the function W is polyconvex if and only if

0 ≤ (r2 − 1) (r +
√
r2 − 1) z′′(r) + z′(r)

= 2β β rβ−2
[
(β − 1) (r2 − 1) (r +

√
r2 − 1) + r

]
for all r > 1 .

Since 2β β rβ−2 > 0 for all β > 0 and r > 1, this inequality is equivalent to

0 ≤ (β − 1) (r2 − 1) (r +
√
r2 − 1) + r

⇐⇒ β − 1 ≥ − r

(r2 − 1) (r +
√
r2 − 1)

for all r > 1 .

The right hand side in the last equality is always negative, so the polyconvexity condition is satisfied
for all β ≥ 1. Furthermore, the right hand expression tends to 0 as r tends to ∞, hence the condition
cannot be satisfied for β < 1.

Note that, in the three-dimensional case, the mapping F 7→
(

‖F‖3

detF

)β
is polyconvex if and only if

β ≥ 1
2 , as shown in [16, Proposition 6].
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A.2.3 The quasiconvex hull of dist2Euclid (F, SO(2))

In contrast to the isochoric function F 7→ dist2Euclid

(
F

(detF )1/2
, SO(2)

)
, the squared Euclidean distance

of F to SO(2) is not polyconvex and not even rank-one convex. However, the quasiconvex hull of
the function can be computed explicitly using the Brighi–Theorem, adapted to the two-dimensional
case:

Theorem A.3. [14, Theorem 3.2, page 310] Let q : R2×2 → R+ be a non-negative quadratic form.
For a function ϕ : R+ → [0,∞), define W : R2×2 → R by

W (F ) = ϕ(q(F )) .

Let µ∗, α ∈ R be such that
µ∗ = inf

t∈R+

ϕ(t) = ϕ(α) .

Then

R[W (F )] = Q[W (F )] = P [W (F )] = C[W (F )] = µ∗ for all F ∈ R
2×2 with q(F ) ≤ α ,

where R[W (F )], Q[W (F )], P [W (F )] and C[W (F )] denote the rank-one convex hull, the quasiconvex
hull, the polyconvex hull and the convex hull of W , respectively.

We apply this theorem to q : R2×2 → R+ with

q(F ) = ‖F‖2 + 2 detF .

Note that q is indeed a non-negative quadratic form due to the arithmetic-geometric mean inequality.
Consider the function ϕ : R+ → R+ with

ϕ(t) = (
√
t− 1)2 ⇒ inf

t∈R+

= 0 = ϕ(1) ⇒ µ∗ = 0 , α = 1 ,

and let
W (F ) = ϕ(q(F )) = (

√
‖F‖2 + 2detF − 1)2 .

From Theorem A.3 we conclude that

R[W (F )] = Q[W (F )] = P [W (F )] = C[W (F )] = 0 for all F ∈ R
2×2 with q(F ) ≤ 1 .

Now set

Ŵ (F ) :=

{
0 : q(F ) ≤ 1

(
√
q(F )− 1)2 : q(F ) ≥ 1

=

{
0 : ‖F‖2 + 2 detF ≤ 1

(
√
‖F‖2 + 2 detF − 1)2 : ‖F‖2 + 2 detF ≥ 1

.

Then Ŵ is convex (and therefore quasiconvex) as the composition Ŵ = ϕ̂◦q of the (convex) quadratic
form q and the non-decreasing convex function ϕ̂ : R+ → R with

ϕ̂(t) :=

{
0 : t ≤ 1

(
√
t− 1)2 : t ≥ 1

.

We observe that Ŵ (F ) = 0 = Q[W (F )] for all F ∈ R
2×2 with q(F ) ≤ 1 and that Ŵ (F ) = W (F ) ≥

Q[W (F )] for all F ∈ R
2×2 with q(F ) > 1. Thus Ŵ is a quasiconvex function with Ŵ (F ) ≥ Q[W (F )]

and Ŵ (F ) ≤ W (F ) for all F ∈ R
2×2, hence Ŵ is the quasiconvex hull of W :

Q[W (F )] = Ŵ (F ) =

{
0 : ‖F‖2 + 2 detF ≤ 1

(
√
‖F‖2 + 2 detF − 1)2 : ‖F‖2 + 2 detF ≥ 1

.
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Taking the representation

dist2Euclid(F, SO(2)) =
(√

‖F‖2 + 2 detF − 1
)2

+ 1− 2 detF = W (F ) + 1− 2 detF ,

it is easy to see that

Q[dist2Euclid(F, SO(2))] = Q[W (F )] + 1− 2 detF = Ŵ (F ) + 1− 2 detF ,

since F 7→ 1− 2 detF is a Null-Lagrangian. We therefore find

Q[dist2Euclid(F, SO(2))] =

{
1− 2 detF : ‖F‖2 + 2 detF ≤ 1

(
√
‖F‖2 + 2 detF − 1)2 + 1− 2 detF : ‖F‖2 + 2 detF ≥ 1

=

{
1− 2 detF : ‖F‖2 + 2 detF ≤ 1

dist2Euclid(F, SO(2)) : ‖F‖2 + 2 detF ≥ 1

for F ∈ R
2×2. The same result has been given by Dolzmann [30, 31] with an alternative proof. The

quasiconvex hull of the mapping F 7→ dist2Euclid(F, SO(3)) is not yet known.

A.2.4 A comparison of distance functions on GL+(2)

Let distgeod(F, SO(2)) = ‖ logU‖2 denote the geodesic distance [54, 53, 55] of F to SO(2). Then we
can list the following convexity properties of (modified) distance functions to SO(2):

• dist2Euclid (F, SO(2)) = ‖U − 1‖2 is not rank-one convex [13],

• dist2Euclid

(
F

(detF )1/2
, SO(2)

)
=
∥∥∥ U
(detU)1/2

− 1

∥∥∥
2

is polyconvex (Section A.2.2),

• dist2geod (F, SO(2)) = ‖ logU‖2 is not rank-one convex [15, 51],

• dist2geod

(
F

(detF )1/2
, SO(2)

)
= ‖ dev2 logU‖2 is not rank-one convex [51],

• edist
2
geod(F,SO(2)) = e‖ logU‖2

is not rank-one convex [57],

• e
dist2geod

(
F

(det F )1/2
,SO(2)

)

= e‖ dev2 logU‖2

is polyconvex [37].
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