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Abstract. From a conceptual point of view, two-stage stochastic programs and bilevel problems
under stochastic uncertainty are closely related. However, the step from the first to the latter mirrors
the step from optimal values to optimal solutions and entails a loss of desirable analytical properties.
This work focuses on mean risk formulations of stochastic bilevel programs. Weak continuity of the
objective function with respect to perturbations of the underlying measure is derived based on a
growth condition. Implications regarding stability for a comprehensive class of risk averse models
are pointed out.
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1. Introduction. Bilevel problems arise from the interplay between two decision
makers on different levels of a hierarchy. The leader decides first and passes the upper
level decision on to the follower. Incorporating the leaders decision as a parameter,
the follower then solves the lower level problem that reflects his or her own goals and
returns an optimal solution back to the leader. The leaders own objective function
depends on both his or her decision and the solution that is fed back from the lower
level. In bilevel optimization, it is assumed that the leader has full information about
the influence of his or her decision on the lower level problem. As the latter may have
more than one solution, one typically assumes that the follower returns either the
best (optimistic approach) or the worst (pessimistic approach) solution with respect
to the leaders objective. The bilevel optimizaion problem is to find an optimal upper
level decision. Such problems have first been discussed in economics ([27]).

The present work is on stochastic bilevel problems. In this setting, the realization of
some random vector whose distribution does not depend on the upper level decision
enters the lower level problem as an additional parameter. It is assumed that the
leader has to make his or her decision without knowing the random parameter, while
the follower decides under full information. Stochastic bilevel problems can be seen
as an extension of classical two-stage stochastic programs, where upper and lower
level mirror first and second stage, respectively. As in those problems, the upper level
objective function gives rise to a random variable. However, this random variable now
depends on an optimal solution rather than just on the optimal value of the lower
level (or second stage) problem. This is a crucial difference that results in weaker
analytical properties and a less stable behavior.

Nevertheless, stochastic bilevel problems are of great relevance for practical applica-
tions and have been discussed in the context of transportation ([1], [21]), the pric-
ing of electricity swing options ([18]), economics ([7]), supply chain planning ([25]),
telecommunications ([28]), structural optimization ([8]) and general agency problems
([11]). Other works focus on solution methods ([4]), stochastic bilevel problems with
Knapsack constraints ([17]), nonlinear bilevel programming under uncertainty ([22])
or stochastic equilibrium problems ([19]) and their stability ([20], [23]).
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The recent work [12] has addressed stability of stochastic bilevel problems based on
a so called quantile criterion. Using the optimistic approach and assumptions on the
linearity of the upper and lower level problems, stability with respect to perturbations
of the underlying probability measure have been examined. The focus in the present
work is on stability of mean risk formulations of stochastic bilevel problems. While
the goals are similar to the case of quantile criteria, the model and the methodology
to be employed differ greatly.

Mean risk formulations arise if the random variables in question are ranked by apply-
ing a weighted sum of the expectation and some quantification of risk. In a recent work
on stability of two-stage stochastic programs, it has been shown that for a compre-
hensive class of risk measures including all coherent ones, continuity of the resulting
objective function can be derived from a growth condition imposed on the underlying
models (see [9]). This paper extends the approach to stochastic bilevel problems.

The paper is organized as follows: After introducing the general setting of stochastic
bilevel programming and basic assumptions on the models (Section 2), the relevant
risk functionals are discussed (Section 3). In the resulting setting, stability of the mean
risk bilevel program is entirely governed by properties of the underlying deterministic
problem. The crucial growth condition is verified for uniquely solvable quadratic lower
level problems in Section 4. Section 5 is devoted to problems where the uncertainty
only affects the upper level objective function and the feasible set of the lower level.
The implications of the resulting continuity of the objective function for stability are
pointed out in Section 6.

2. Setting. Consider the parametric bilevel optimization problem

”min
x

”{c(x, z) + q(y) | x ∈ X, y ∈ C(x, z)}, (1)

where the leader variable x is to be chosen from a fixed nonempty set X ⊆ Rn, the
upper level objective function is given as the sum of the mappings c : Rn × Rs → R
and q : Rm → R and the lower level problem is described by the multifunction
C : Rn × Rs → 2R

m

,

C(x, z) = argminy{y⊤Dy + j(x, z)⊤y | Ay ≤ h(x, z)}, (2)

involving the parameter z ∈ Rs, matrices A ∈ Rk×m and D ∈ Rm×m and mappings
j : Rn × Rs → Rm and h : Rn × Rs → Rk. Without loss of generality, D is assumed
to be symmetric. Furthermore, assume that

(B1) there is a constant γc > 0 and a locally bounded mapping κ : Rn → R, i.e.
for every converging sequence {xn}, the sequence {κ(xn)} is bounded, such
that |c(x, z)| ≤ κ(x)(∥z∥γc + 1) for all (x, z) ∈ Rn × Rs and

(B2) there exist an exponent γq > 0 and constants C, q, Lq > 0 such that
|q(y)− q(y′)| ≤ Lq∥y − y′∥γq + Cq for all y, y′ ∈ Rm.

Remark 1. (B1) especially holds true if c is locally bounded and does not depend on
z.

Impose an additional information constraint on the problem by assuming that only
the follower has full information, while the leader’s decision has to be made without
knowledge of the parameter z. Furthermore, assume that z = z(ω) is the realization
of some random vector whose distribution does not depend on the upper level decision
x. This leads to the following pattern of decision:
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decide x → observe z = z(ω) → decide y.
In an optimistic setting, the problem can be reformulated as

min
x

{c(x, z) + min
y

{q(y) | y ∈ C(x, z(ω))}︸ ︷︷ ︸
=:fopt(x,z(ω))

| x ∈ X},

while a pessimistic approach leads to

min
x

{c(x, z) + max
y

{q(y) | y ∈ C(x, z(ω))}︸ ︷︷ ︸
=:fpes(x,z(ω))

| x ∈ X}.

Remark 2. This is exactly the setting of two-stage stochastic programming if an op-
timistic approach is taken and the upper and lower level objective functions coincide.

Throughout the paper, assume f = fopt or f = fpes, depending on which approach
is considered. Mean risk models are obtained by ranking the random variables in
the family {f(x, z(ω)) | x ∈ X} via a weighted sum of the expectation and some
quantification of risk.

The resulting objective can be seen as a function of both the leader’s variable x and
the Borel probability measure µ = P ◦ z−1 induced by the entering random vector
z. This allows to investigate the behavior of the objective under perturbations of the
underlying probability measure and is motivated by the fact that in applications, the
exact distribution of z might not be known. Let P(Rs) denote the space of Borel
probability measures on Rs. Equipping this space with the topology induced by weak
convergence of probability measures has proven to be instrumental in the context of
stability analysis for stochastic programming models and was first done in [13]. A
sequence {νn} ⊂ P(Rs) converges weakly to ν ∈ P(Rs) if limn→∞

∫
Rs l(t)νn(dt) =∫

Rs l(t)ν(dt) for any bounded continuous function l : Rs → R (see [3]).

The present paper investigates under which conditions the objective function is con-
tinuous with respect to the product topology of the Euclidean topology on Rn and
the topology of weak convergence on P(Rs).

3. Mean risk objective functions. Following the approach provided in [9],
consider the class of risk quantifiers defined in the following way: Let (Ω,F ,P) be an
atomless probability space, i.e. A ∈ F and P(A) > 0 imply that there exists B ∈ F
such that B ( A and P(B) > 0. Such a probability space supports a random variable
U that is uniformly distributed on the open unit interval. Fix p ≥ 1 and consider
a mapping ρ : Lp(Ω,F ,P) → R that is convex, nondecreasing with respect to the
P-almost sure partial order and law-invariant, i.e. ρ(X) = ρ(Y ) whenever X and Y
have the same law under P.

Note that every law-invariant convex or coherent risk measure in the sense of [2] has
the desired properties, so the approach especially covers the Expected Exceedance of
a given target level, the Conditional Value-at-Risk and the Upper Semideviation. In
view of the mean risk models it is important to mention that the expectation and
every weighted sum of covered risk measures with nonnegative weights also yield a
feasible choice for ρ.

ρ gives rise to a function Rρ : Mp
1 := {ν ∈ P(R) |

∫
R |t|pν(dt) < ∞} → R via

Rρ(ν) := ρ(F←µ (U)), where F←ν denotes the left-continuous quantile function of the
distribution function of ν.
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Assuming that the mapping f : Rn×Rs → R̄ := R∪{−∞,∞} is real-valued and Borel
measurable, the mean risk objective function in the above setting can be written as

Q(x, ν) := Rρ

(
(δx ⊗ ν) ◦ f−1

)
,

where (δx ⊗ µ) ◦ f−1 denotes the image measure of the product probability measure
of the Dirac measure at x ∈ Rn and ν ∈ P(Rs) under f . Q is well-defined under
conditions guaranteeing that the image measure is in Mp

1.

By Theorem 2.2 in [9], continuity of Q with respect to the product topology of the
standard topology on Rn and the relative topology of weak convergence on M can be
derived whenever the following growth condition is fulfilled:

(G) There is a constant γ > 0 and a locally bounded mapping σ̄ : Rn → R such
that |f(x, z)| ≤ σ̄(x)(∥z∥γ + 1) for all (x, z) ∈ Rn × Rs.

Note that the growth condition only depends on the underlying deterministic bilevel
program and does not involve the quantification of risk.

4. Quadratic lower level problem with unique solutions. Assume that

(U1) the problem miny{y⊤Dy + t⊤1 y | Ay ≤ t2} has a unique optimal solution
whenever (t1, t2) ∈ conv{(j(x, z), h(x, z)) | (x, z) ∈ X × Rs} and

(U2) there is a constant γj,h > 0 and a locally bounded mapping σ : Rn → R such
that ∥j(x, z)∥+ ∥h(x, z)∥ ≤ σ(x)(∥z∥γj,h + 1) for all (x, z) ∈ Rn × Rs.

Remark 3. Since (U1) implies fopt = fpes, it is not necessary to distinguish between
the optimistic and the pessimistic setting.

Remark 4. Note that the uniqueness of solutions in (U1) is especially given, if D is
positive definite. In that case, (U1) can weakened to

(U1*) {y ∈ Rm | Ay ≤ h(x, z)} ≠ ∅ for any (x, z) ∈ Rn × Rs.

For details, refer to [5].

For any γ > 0, a subset M of Mγp
s := {ν ∈ P(Rs) |

∫
Rs ∥t∥γpν(dt) < ∞} is

called locally uniformly ∥ · ∥γp−integrating, if for any ν ∈ M there exists some open
neighborhood N of ν with respect to the topology of weak convergence such that

lim
a→∞

sup
µ∈N∩M

∫
Rs

∥z∥γp · 1]a,∞[(∥z∥γp) µ(dz) = 0.

The recent work [16] establishes several equivalent characterizations and gives numer-
ous examples of locally uniformly ∥ · ∥γp−integrating subsets. Note that such sets
are known to be useful when examining stability of stochastic programming problems
(see e.g. [24]).

Theorem 1. Set γ := max{γj,h ∗ γq, γc} and let M ⊆ Mγp
s be locally uniformly

∥ · ∥γp−integrating. Assume that (B1), (B2), (U1) and (U2) are fulfilled and x0 ∈ X
and µ ∈ M are such that δx0 ⊗ µ(Df ) = 0, where Df ⊆ Rn × Rs denotes the set of
discontinuities of f . Then the mapping Q|X×M is continuous at (x0, µ) with respect
to the product topology of the standard topology on Rn and the relative topology of
weak convergence on M.

Proof 1. For any (x, z) ∈ dom C, set C(x, z) = {y(x, z)}. By assumption (U1) and
Corollary 5.1 in [14] there exists a constant LC such that

∥y(x, z)− y(x′, z′)∥ ≤ LC(∥j(x, z)− j(x′, z′)∥+ ∥h(x, z)− h(x′, z′)∥)
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for all (x, z), (x′, z′) ∈ X × Rs ⊆ dom C. Consequently,

|f(x, z)− c(x, z)| = |q(y(x, z))| ≤ |q(y(0, 0))|︸ ︷︷ ︸
=:C0

+|q(y(x, z))− q(y(0, 0))|

≤ C0 + Cq + Lq∥y(x, z)− y(0, 0)∥γq

≤ C0 + Cq + LqL
γq

C (∥j(x, z)− j(0, 0)∥+ ∥h(x, z)− h(0, 0)∥)γq

≤ C0 + Cq + 2γqLqL
γq

C (∥j(0, 0)∥+ ∥h(0, 0)∥)γq︸ ︷︷ ︸
=:C′

+ 2γqLqL
γq

C (∥j(x, z)∥+ ∥h(x, z)∥)γq

≤ C ′ + 2γqLqL
γq

C σ(x)
γq (∥z∥γ + 1)γq ≤ σ̄(x)(∥z∥γj,h∗γq + 1),

where σ̄(x) := C ′ + 4γqLqL
γq

C max{1, σ(x)γq} is locally bounded. (B1) therefore yields

|f(x, z)| ≤ (σ̄(x) + κ(x))(∥z∥γj,h∗γq + ∥z∥γc + 1) ≤ η(x)(∥z∥max{γj,h∗γq,γc} + 1),

where η(x) := 2(σ̄(x) + κ(x)) is locally bounded. Hence, the growth condition (G)
holds and the application of Theorem 2.2 in [9] completes the proof.

Corollary 1. Let M ⊆ Mγp
s be locally uniformly ∥ · ∥γp−integrating, assume that

(B1), (B2), (U1) and (U2) are fulfilled and that the mappings c, q, j and h are contin-
uous. Then the mapping Q|X×M is continuous on X ×M with respect to the product
topology of the standard topology on Rn and the relative topology of weak convergence
on M.

Proof 2. The continuity of c, q, j and h yields that Df = ∅.

5. Quadratic lower level problem with right-hand side uncertainty.
Consider the special case of (2), where j(x, z) = j ∈ Rm for all (x, z) ∈ Rn×Rs and D
is positive semidefinite. Note that this setting covers the linear case D = 0 ∈ Rm×m.
Assume that

(R1) the feasible set of the lower level problem is always nonempty, i.e.
{y ∈ Rm | Ay ≤ h(x, z)} ≠ ∅ for all (x, z) ∈ X × Rs,

(R2) there exists (x, z) ∈ X ×Rs such that the lower level problem is solvable and
(R3) there is a constant γh > 0 and a locally bounded mapping σ : Rn → R such

that ∥h(x, z)∥ ≤ σ(x)(∥z∥γh + 1) for all (x, z) ∈ Rn × Rs.

Furthermore, assume

(O1) min{q(y) | y ∈ C(x, z)} is solvable for all (x, z) ∈ X × Rs and
(O2) there exists (x0, z0) ∈ X × Rs such that sup{q(y) | y ∈ C(x0, z0)} <∞ and

in the optimistic and

(P1) max{q(y) | y ∈ C(x, z)} is solvable for all (x, z) ∈ X × Rs and
(P2) there exists (x0, z0) ∈ X × Rs such that inf{q(y) | y ∈ C(x0, z0)} > −∞

in the pessimistic setting.

Remark 5. (R1) and (R2) imply dom C = X × Rs, i.e. the solvability of the lower
level problem on the whole parameter space. Furthermore, under these conditions
there exists a finite set E ( Rm such that C(x, z) is a polyhedron having exactly the
elements of E as its extreme directions for all (x, z) ∈ X × Rs (see § 3 in [10]).

Remark 6. If q is linear, (O1) and (P1) can be weakened to
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(O1*) there exists (x, z) ∈ X ×Rs such that min{q(y) | y ∈ C(x, z)} is solvable and
(P1*) there exists (x, z) ∈ X × Rs such that max{q(y) | y ∈ C(x, z)} is solvable,

respectively.

Remark 7. If there exists a vector (x, z) ∈ Rn × Rs such that C(x, z) is bounded,
(O1), (O2), (P1) and (P2) can be dropped completely (see the proof of Theorem 2).

Theorem 2. Set γ := max{γh ∗ γq, γc} and let M ⊆ Mγp
s be locally uniformly

∥ · ∥γp−integrating. If (B1), (B2), (R1)-(R3) as well as (O1) and (O2) in the opti-
mistic or (P1) and (P2) in the pessimistic setting are fulfilled and x0 ∈ X and µ ∈ M
are such that δx0 ⊗ µ(Df ) = 0, the mapping Q|X×M is continuous at (x0, µ) with re-
spect to the product topology of the standard topology on Rn and the relative topology
of weak convergence on M.

Proof 3. By Theorem 4.2 in [15] there exists a constant L > 0 such that

d∞(C(x, z), C(x′, z′)) ≤ L∥h(x, z)− h(x′, z′)∥ for all (x, z), (x′, z′) ∈ X × Rs,

where d∞ denotes the Hausdorff distance. Consider (x, z) ∈ X × Rs and y ∈ C(x, z)
satisfying f(x, z) = c(x, z) + q(y). Then there exists a vector y0 ∈ C(x0, z0) such that
∥y − y0∥ ≤ L∥h(x, z)− h(x0, z0)∥ and the following holds

|f(x, z)− c(x, z)| = |q(y)| ≤ |q(y0)− q(y)|+ |q(y0)|
≤ Lq∥y0 − y∥γq + Cq + sup{|q(y′)| | y′ ∈ C(x0, z0)}︸ ︷︷ ︸

=:q̄

≤ q̄ + LqL
γq∥h(x, z)− h(x0, z0)∥γq

≤ q̄ + 2γqLqL
γq∥h(x0, z0)∥γq︸ ︷︷ ︸
=:q′

+2γqLqL
γq∥h(x, z)∥γq

≤ q′ + 2γqLqL
γqσ(x)γq (∥z∥γh + 1)γq ≤ σ̄(x)(∥z∥γh∗γq + 1),

where σ̄(x) := q′ + 4γqLqL
γq max{1, σ(x)γq} is locally bounded. By (B1),

|f(x, z)| ≤ η(x)(∥z∥max{γh∗γq,γc} + 1),

where η(x) := 2(σ̄(x) + κ(x)) is locally bounded. Hence, (G) holds and Theorem 2.2
from [9] completes the proof.

Corollary 2. Let M ⊆ Mγp
s be locally uniformly ∥ · ∥γp−integrating, assume that

(B1), (B2), (R1)-(R3) as well as (O1) and (O2) in the optimistic or (P1) and (P2)
in the pessimistic setting are fulfilled and that the mappings c, q and h are continuous.
Then the mapping Q|X×M is continuous on X×M with respect to the product topology
of the standard topology on Rn and the relative topology of weak convergence on M.

6. Implications. Let φ : Mγp
s → R̄, φ(µ) := inf{Q(x, µ) | x ∈ X} denote the

optimal value function of the mean risk stochastic bilevel program.

Corollary 3. Let the assumptions of Corollary 1 or Corollary 2 be fulfilled. Then
φ|M is upper semicontinuous on M with respect to the relative topology of weak con-
vergence.

Proof 4. Under the given assumptions, Q|X×M is continuous on X×M. Since the
feasible set X is fixed, that yields the upper semicontinuity of φ|M (see section 4.1 in
[6]).
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Corollary 4. Let the assumptions of Corollary 1 or Corollary 2 be fulfilled and
assume that X is compact. Then φ|M is continuous on M and the restricted optimal
solution set mapping ψ|M : M → 2R

n

, ψ|M(µ) = argmin {Q(x, µ) | x ∈ X} is upper
semicontinuous on M with respect to the relative topology of weak convergence, i.e.
for any µ0 ∈ M and any open set O ⊆ Rn such that ψ|M(µ0) ⊆ O there exists
a neighborhood N of µ0 with respect to the topology of weak convergence such that
ψ|M(µ) ⊆ O for all µ ∈ N .

Proof 5. See Proposition 1.1 in [26].
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