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Abstract Introduced by Chen and Fukushima in 2005, expected residual minimization (ERM)
has become an established approach to complementarity problems under stochastic uncertainty.
NCP and merit functions allow to recast deterministic complementarity problems as optimization
problems, where the objective function is the total residual. Based on this reformulation, the risk
neutral ERM formulation aims to minimize the expectation of the total residual. In the present
work, we propose an extension of the ERM formulation by replacing the expectation with a more
general convex, nondecreasing and law-invariant risk functional. Our model allows to take risk aver-
sion into account. We examine joint continuity of the objective function with respect to both, the
decision and the probability measure induced by the entering random vector. The latter allows to
investigate the problem’s behavior when working with approximations of the original distribution.
We consider perturbations of the underlying probability measure with respect to the weak topology
and derive a stability of the optimal value function and the optimal solution set mapping. The
paper concludes with demonstrating that our assumptions hold for almost all practically relevant
NCP functions.

Keywords stochastic complementarity problem · NCP function · expected residual minimization ·
risk aversion · stability
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1 Introduction

Fix a continuous self-map F of the n dimensional Euclidian space. The general complementarity
problem is to decide whether there exists a nonnegative vector x that is orthogonal to its nonneg-
ative image F (x). Such problems arise in the context of classical KKT conditions, special cases of
equilibrium problems or reformulations of different optimization problems and have wide-spread
applications in the fields of engineering, economy, game theory and various other mathematical
domains (see e.g. section 1 in [1], section 1.5 in [2], [3]).

Many real-world applications have to cope with unknown data. A special case arises if the data
uncertainty is stochastic and purely exogenous. The latter means that the random data does not
depend on any of the decisions to be made. A stochastic complementarity problem arises, when
the function F also depends on a random parameter z(ω). Applications of these problems include
Wardrop’s user equilibrium, traffic equilibrium problems and the pricing of American options (see
e.g. [4,5,6]). One approach for handling such problems proceeds by replacing the random function
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F with its expectation and is referred to as expected value (EV) formulation (see e.g. [7,8], section
3.1.1 in [5], section 2.2 in [6]).

In the present work we take a different route. Although complementarity problems are feasibility
problems by nature, so called NCP functions allow to reformulate them as minimization problems.
Involving stochastic data uncertainty, this approach has lead to the expected residual minimization
(ERM) formulation min E[Φ(x, ω)] introduced by Chen and Fukushima (2005) [9]. Inspired by
structural similarities to one-stage stochastic optimization we propose a model allowing to take
into account risk aversion by adding a quantification of risk to the objective function of the ERM
model. The issue of stability arises from perturbations of the underlying distribution (or the induced
Borel probability measure), e.g. originating from approximation. For this purpose, we consider the
dependence of the objective function Q on both x and the entering measure. To our knowledge,
the stability of these models has not been examined in the context of stochastic complementarity
programming.

In this paper we endow the space of Borel probability measures with the topology of weak con-
vergence and derive weak continuity of a restriction of Q to an appropriate subset. This result is
based on [10] under a growth condition imposed on function F as well as the entering NCP function
and the assumption that the considered risk measure is convex, nondecreasing and law-invariant.
In particular, we cover all convex (and hence all coherent) risk measures including the expected
exceedance of a given target level, the semideviation and the conditional value-at-risk. Stability of
optimal values and solution sets then follows from standard results.

This paper is organized as follows: In section 2, we describe the structure of the underlying deter-
ministic model to be used. Stability analysis is carried out in section 3. Finally, we show that our
assumptions are fulfilled for a large number of well known NCP functions.

2 Complementarity Problems under Stochastic Uncertainty

Our starting point is a parametric version of the standard complementarity problem (e.g. on p. 4
in [2]): The parametric complementarity problem on X ⊆ Rn is to find a vector x ∈ X (or to prove
its nonexistence) such that

CP(X,F (·, z)) x ≥ 0, F (x, z) ≥ 0, x>F (x, z) = 0, (1)

where F : X × Rs → Rn is a continuous function. Since x ≥ 0 is part of (1), we may assume
X ⊆ Rn+ without loss of generality. Throughout the paper, we fix X and F and we can write CP(z)
instead of CP(X,F (·, z)).

The complementarity problem CP(z) consists of a system of inequalities and an equation. The
properties of so called NCP functions (e.g. in section 1.5.1 in [2]) can be used to reformulate this
system into a system of equations:

Definition 2.1 (NCP function)
A function φ : R2 → R is called a NCP function (or a C-function), if for any pair (a, b)> ∈ R2

φ(a, b) = 0⇔ (a ≥ 0, b ≥ 0, ab = 0)

is fulfilled.

Among the most established examples of NCP functions are the Fischer-Burmeister function and
the minimum function (or natural residual). For details and a comprehensive overview of other
NCP functions we refer to section 1.5.1 in [2] or the appendix of [11]. Certain properties of specific
NCP functions shall be addressed in section 4. Throughout section 2 and 3 of the present work,
we fix an arbitrary NCP function φ.

Let Fj denote the j−th component function of F . The complementarity problem CP(z) can be
transformed to a system of n nonlinear equations:

φ(Fj(x, z), xj) = 0 for all j ∈ {1, . . . , n} and x ∈ X. (2)
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We proceed by summarizing the n equations in (2) to a single expression by means of a suitably
chosen merit function (see e.g. section 1.5.3 in [2], on p. 806 in [11]). For the present analysis, we
use a vectorvalued function to rewrite (2) as

Φ(x, z) := (φ(F1(x, z), x1), . . . , φ(Fn(x, z), xn)
>

= 0 and x ∈ X. (3)

and employ the so called naturally associated merit function: the squared Euclidean norm θ(x) :=
‖Φ(x, z)‖2. The complementarity problem CP(z) or the problems (2) and (3), respectively, are
equivalent to the following minimization problem (e.g. on p.52 in [7]):

min
x∈X

‖Φ(x, z)‖2. (4)

Like every merit function, θ is bounded from below by zero. Hence, x is a solution of CP(z) iff x
is an optimal solution to (4) that yields the value 0.

Based on these considerations, we now turn our attention to the aspect of uncertainty in comple-
mentarity problems. Let z(·) : Ω → Rs be a random vector on some probability space (Ω,A,P).
The stochastic complementarity problem arsises from considering the problems C(z(ω)), ω ∈ Ω:

The stochastic complementarity problem is to find a vector x ∈ X (or to prove its nonexistence)
such that

SCP(F ) x ≥ 0, F (x, z(ω)) ≥ 0, x>F (x, z(ω)) = 0 P-almost surely,

where F : X × Rs → Rn is a continuous function.

The vector x ∈ X must be selected under uncertainty, i.e. the outcome of the random variable z(ω)
is not known before the decision of x. This restriction is an information or nonanticipativity con-
straint. In addition, the choice of x may not influence the distribution of z(·), i.e. the stochasticity
is assumed to be purely exogenous.

Remark 2.1 The above problem is robust in the sense that a solution x of SCP(F ) has to be feasible
for CP(z(ω)) for all possible realizations of the unknown parameter. Hence, it can be understood
as deciding the feasibility of a possibly infinite system of complementarity problems. Note that
a SCP(F ) may be infeasible even if each of the individual deterministic problems is solvable.
Furthermore, a SCP(F ) does scarcely depend on the probability of the individual realizations,
which may lead to a highly unlikely scenario causing its infeasibility.

Remark 2.2 If z(ω) = z ∈ Rs is constant almost surely, the SCP(F ) reduces to the standard CP(z).
This is not the case in general, i.e. F is a random vector F (x, z(ω)).

Building on these observations, we aim to select an ‘optimal’ vector x ∈ X using a deterministic
model employing risk measures. The model relates to the equivalent reformulation in (4) of CP(z)
and is based on the expected residual minimization (ERM) method (see e.g. [7,8,9]):

(ERM) min
x∈X

E[‖Φ(x, z(ω))‖2],

where E denotes the expectation with respect to ω. This model was first proposed by Chen
and Fukushima in 2005 in [9] and a well-posed optimization problem that is not convex in gen-
eral. In contradistinction to the stochastic complementarity problem SCP(F ), the decision on x
is now entirely based on minimizing the expected values of the random variables in the family
{‖Φ(x, z(ω))‖2 : x ∈ X}.

A more general model is formed by replacing the expected value E with a mapping R from the
space of random variables on (Ω,A,P) to the extended reals R̄ = R ∪ {±∞}. Chosing R as a
weighted sum of the expectation and some quantification of risk now allows to take into account
risk aversion:

min
x∈X

R[‖Φ(x, z(ω)‖2]. (5)

Remark 2.3 If R[Y] = 0 is equivalent to P{Y(ω) = 0} = 1, problem (5) yields the optimal value
zero iff each of its optimal solutions solves SCP(F ).
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3 On Stability of Mean Risk Formulations

In this section, we examine stability of problem (5) under perturbations of the underlying Borel
probability measure µ induced by the random parameter z(ω). Equip the space of Borel probability
measures P(Rs) with the topology of weak convergence (see e.g. [12] for a discussion). The following
example shows that problem (5) can be highly instable:

Example 3.1 Consider the case where X = R≥0, F (x, z) = z and the NCP function is defined by

φ(a, b) :=

{
0, if ab = 0, a ≥ 0, b ≥ 0

λ, else

and a real parameter λ 6= 0. Furthermore, assume that R is the expectation and the Borel prob-
ability measure µ induced by the random parameter z(ω) is the Dirac measure at 0 (denoted by
δ0). Then the optimal value of problem (5) is zero and every x ∈ X is an optimal solution.

For every neighborhood N of δ0 with respect to the topology of weak convergence there is a real
number ε 6= 0 such that δε ∈ N . However, the solution of (5) with respect to zε induced by δε
depends on the signum of ε: For ε < 0, every x ∈ X is optimal with value λ2, while ε > 0 yields the
unique optimal solution x = 0. The reason for this instability is the discontinuity of NCP function
φ.

First we derive joint continuity of the objective function with respect to the decision x and the
parameter µ. For a comprehensive class of risk measures, it has been shown that the desired
continuity is implied by a growth condition imposed on the underlying deterministic model (see
[10]). We work with the following assumptions:

(BΦ) The function Φ is Borel measurable.
(GΦ) There exist a constant γΦ ≥ 0 and a locally bounded mapping ηΦ : Rn → R≥0, i.e. conver-

gence of {xn}n∈N implies boundedness of {ηΦ(xn)}n∈N, such that

‖Φ(x, z)‖ ≤ ηΦ(x)(‖z‖γΦ + 1) for all (x, z) ∈ Rn × Rs.

Lemma 3.1 (Sufficient conditions for (BΦ) and (GΦ))
Assume that the following statements hold true:

(BF ) The function F is Borel measurable.
(GF ) There exist a constant γF ≥ 0 and a locally bounded mapping ηF : Rn → R≥0 such that

‖F (x, z)‖ ≤ ηF (x)(‖z‖γF + 1) for all (x, z) ∈ Rn × Rs.

(Bφ) The NCP function φ is Borel measurable.
(Gφ) There exist a constant γφ ≥ 0 and a locally bounded mapping ηφ : R→ R≥0 such that

‖φ(a, b)‖ ≤ ηφ(b)(|a|γφ + 1) for all (a, b) ∈ R2.

Then (BΦ) and (GΦ) hold with γΦ = γF γφ.

Proof By (BF ) and (Bφ), function Φ is Borel measurable as a composition of Borel measurable
functions. Furthermore, for arbitrary (x, z) ∈ Rn × Rs we have

‖Φ(x, z)‖ ≤ n max
j=1,...,n

|φ(e>j F (x, z), e>j x)|

≤
(Gφ)

n max
j=1,...,n

ηφ(e>j x)(|e>j F (x, z)|γφ + 1)

≤ n(‖F (x, z)‖γφ + 1) max
j=1,...,n

ηφ(e>j x)

≤
(GF )

n(ηF (x)γφ(‖z‖γF + 1)γφ + 1) max
j=1,...,n

ηφ(e>j x)

≤ ηΦ(x)(‖z‖γF γφ + 1),

where ηΦ(x) := nmaxj=1,...,n ηφ(e>j x)((2ηF (x))γφ + 1) is locally bounded. Hence, (GΦ) holds with
γΦ = γF γφ. ut
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Remark 3.1 (Bφ) does not hold for every NCP function in the sense of Definition 1 in [11]: Let χC
denote the indicator function of a set C ⊂ R2 that is not Borel measurable (see [13] for examples).
Then φCEB : R2 → R defined by

φCEB(a, b) :=

{
0, if ab = 0, a ≥ 0, b ≥ 0

χC(a, b) + 1, else

is not Borel measurable.

Remark 3.2 (Gφ) does not hold for every NCP function either: The mapping φCEG : R2 → R
defined by

φCEG(a, b) :=

{
0, if ab = 0, a ≥ 0, b ≥ 0

exp(a), else

yields a counterexample.

In the following analysis we confine ourselves to a special class of risk measures that are induced
by a mapping ρ : Lp(Ω′,A′,P′) → R, where p ≥ 1 and (Ω′,A′,P′) is an atomless probability
space. We assume that ρ is convex, nondecreasing w.r.t. the P′-almost sure partial order and law
invariant. Such a mapping gives rise to a function

Rρ :Mp
1 := {ν ∈ P(R) :

∫
R
|t|pν(dt) <∞} → R

via Rρ(ν) := ρ(F←ν (U)). Here, F←ν denotes the left-continuous quantile function of the distribution
function of ν and U is uniformly distributed on the open unit interval.

Remark 3.3 Every convex or coherent risk measure (see [14] or [15] for discussions) yields a possible
choice for ρ. In particular, the approach covers the expectation, the upper semideviation and the
conditional value-at-risk as well as every conic combination of covered functionals.

Setting f(x, z) := ‖Φ(x, z)‖2 then allows to reformulate problem (5) as

(P (µ)) min
x∈X

Rρ[(δx ⊗ µ) ◦ f−1]︸ ︷︷ ︸
=:Q(x,µ)

, (6)

where δx denotes the Dirac measure at x. Assume (BΦ) and (GΦ) and set M2pγΦ
s := {ν ∈ P(Rs) :∫

R ‖t‖
2pγΦν(dt) < ∞}. A straightforward calculation then shows that Q is well defined and real-

valued on Rn ×M2pγΦ
s (see Lemma 2.1 in [10]).

A subset M of M2pγΦ
s is called locally uniformly ‖ · ‖2pγΦ−integrating, if for any ν ∈ M there

exists some open neighborhood N of ν with respect to the topology of weak convergence such that

lim
a→∞

sup
µ∈N∩M

∫
Rs
‖z‖2pγΦ · 1]a,∞[(‖z‖2pγΦ) µ(dz) = 0.

For equivalent characterizations and examples of such sets we refer to [16].

Theorem 3.1 (Weak Continuity of Q|Rn×M)
Let M ⊆ M2pγΦ

s be a locally uniformly ‖ · ‖2pγΦ−integrating set and let DΦ denote the set of
discontinuities of function Φ. Assume (BΦ), (GΦ) and that (x, µ) ∈ Rn ×M is such that (δx ⊗
µ)(DΦ) = 0 holds. Then Q|Rn×M is continuous at (x, µ) with respect to the product topology of the
standard topology on Rn and the relative topology of weak convergence on M.

Proof Let Df denote the set of discontinuities of f(x, z) = ‖Φ(x, z)‖2. We have Df ⊆ DΦ and
hence (δx ⊗ µ)(Df ) = 0. Furthermore, function f is Borel measurable by (BΦ) and (GΦ) implies

|f(x, z)| ≤ 4ηΦ(x)2(‖z‖2γF + 1) for all (x, z) ∈ Rn × Rs.

Hence, Theorem 2.2 in [10] is applicable and yields the desired continuity. ut
The following corollary points out a sufficient condition for (δx ⊗ µ)(Df ) = 0 to hold globally:

Corollary 3.1 In addition to the assumptions of Theorem 3.1, let function Φ be continuous. Then
Q|Rn×M is continuous on Rn×M with respect to the product topology of the standard topology on
Rn and the relative topology of weak convergence on M.
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Proof The continuity of function Φ implies Df = ∅. ut

Remark 3.4 In particular, function Φ is continuous if both function F and NCP function φ are
continuous.

Now we turn our attention to the stability of problem (P (µ)):
Let ϕ : P → R∪{±∞} with ϕ(µ) := infx∈X Q(x, µ) and ψ : P → 2R

n

with ψ(µ) := argminx∈XQ(x, µ)
denote the optimal value function and the optimal solution set mapping of problem (6).

Corollary 3.2 Let the assumptions of Corollary 3.1 be fulfilled. Then ϕ|M is upper semicontinuous
on M with respect to the relative topology of weak convergence.

Proof Q|X×M is continuous on X ×M and the feasible set X is fixed. By section 4.1 in [17] that
yields the upper semicontinuity of ϕ|M. ut

Corollary 3.3 (Stability of (P (µ)))
Let the assumptions of Corollary 3.1 be fulfilled and assume that X is compact. Then ϕ|M is
continuous and ψ|M is upper semicontinuous on M with respect to the relative topology of weak
convergence.

Proof See Proposition 1.1 in [18]. ut

4 Special NCP Functions

In this section, we show that the assumptions (Bφ) and (Gφ) posed on NCP function φ in Lemma
3.1 are fulfilled for the vast majority of all practically relevant NCP functions. Hence, the crucial
assumptions (BΦ) and (GΦ) hold whenever the underlying complementarity problem is such that
(BF ) and (GF ) are fulfilled.

Throughout the following analysis, we call a function g : R2 → R growing with respect to the
exponent γg ≥ 0, if there exists a locally bounded mapping ηg : R→ R≥0 such that

|g(a, b)| ≤ ηg(b)(|a|γg + 1) for all (a, b) ∈ R2.

Lemma 4.1 Let g, h : R2 → R be growing with respect to some exponents γg, γh ≥ 0, respectively.
Then the following statements hold true:

(1) |g| is growing with respect to γg.
(2) For q ≥ 0, gq is growing with respect to qγg.
(3) For real constants α and β, αg + βh is growing with respect to

max{(1− χ{0}(α))γg, (1− χ{0}(β))γh}.

(4) gh is growing with respect to γg + γh.

Proof The proof of (1) and (2) is straightforward. For (3) and (4), distinguish between the cases
|a| ≥ 1 and |a| < 1 and consider the locally bounded mappings ηαg+βh := 2(αηg + βηh) and
ηgh := 4ηgηh. ut

Remark 4.1

(a) The mappings (a, b) 7→ a, (a, b) 7→ b and all indicator functions are growing with respect to 1,
0 and 0, respectively.

(b) Furthermore, polyhedral sets are Borel measurable and Borel measurability is preserved under
the transformations of Lemma 4.1. Hence, the result allows to verify assumptions (Bφ) and
(Gφ) for all of the 31 special NCP functions given in the Appendix of [11].

(c) For NCP function proposed by Ulbrich (see [19]), the following estimate is helpful: For 0 <
|a|+ |b| ≤ κ, we have ∣∣∣∣∣∣ ab

κ(1− exp
(
|a|+|b|
κ

)
)

∣∣∣∣∣∣ ≤ |ab|
|a|+ |b|

≤ κ,

which yields the desired growth. In view of Remark 3.4, it is also important to point out that
all of these functions are continuous.
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Another important class of NCP functions is given by Mangasarians family of NCP functions (see
e.g. [20]) defined by

{φζ(a, b) = ζ(|a− b|)− ζ(b)− ζ(a) : ζ : R→ R is strictly increasing

and ζ(0) = 0}.

By the monotonicity of ζ, all elements of the above family are Borel measurable, while (Gφ) does
not hold in general: ζ(a) = exp(a) − 1 yields a counterexample. However, if there exist constants
γζ , C ≥ 0 such that |ζ(a)| ≤ |a|γζ + C holds for all a ∈ R, then the resulting NCP function φζ is
growing with respect to γζ .

5 Conclusions

In the present work, we have proposed an extension of the ERM formulation for complementarity
problems under stochastic uncertainty that works with more general objectives than the expec-
tation. Special cases of our model include objective functions based on convex risk measures like
the Expected Exceedance and the Conditional Value-at-Risk and allow to take into account risk
aversion. Our main results states that the arising objective functions are jointly continuous with
respect to both the decision variable and the underlying probability measure (with respect to the
topology of weak convergence). This result allows to derive a stable behavior of the optimal value
function and the optimal solution set mapping. Finally, we have shown that the assumptions on
the underlying deterministic model hold for almost all NCP functions of practical relevance.

Acknowledgements The authors thank Prof. R. Schultz for helpful discussion.
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