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BERNSTEIN RESULTS FOR SYMMETRIC MINIMAL SURFACES
OF CONTROLLED GROWTH

ULRICH DIERKES AND TOBIAS TENNSTÄDT

Abstract. We prove that there is no entire solution of the symmetric min-
imal surface equation which is of sublinear growth. This result is extended
to parametric and non-parametric minimizers of the corresponding variational
integral.

0. Introduction

By a well known result of Bernstein [BS] every entire classical solution u of the
minimal surface equation

div

(
Du√

1 + |Du|2

)
= 0

in R2, has to be an affine-linear function. In fact this theorem was shown to hold
up to dimension 7 by Fleming [FW], De Giorgi [DG], Almgren [AF] and J. Simons
[SJ], while there exist nonlinear entire solutions in Rn, n ≥ 8, as was first discovered
by Bombieri - De Giorgi - Giusti [BDG]. Many more non-affine examples were
constructed by L. Simon [SL2].

On the other hand Moser [MJ] proved that every entire solution u of the minimal
surface equation in Rn, n arbitrary, is affine linear, provided |Du|0,Rn is finite, and
it follows from the a-priori gradient estimate of Bombieri - De Giorgi - Miranda
[BDGM] that this is already the case if u grows at most linearly, in the sense that

u(x) ≤ C(1 + |x|) for some C > 0 and all x ∈ Rn.

Ecker and Huisken [EH] extended Moser’s result by requiring instead of bounded-
ness only sublinear growth of the gradient Du, that is

|Du(x)| = o(|x|) as |x| → ∞.

Optimal results of this type were proved by L. Simon [SL2], [SL3].
In this paper we consider entire solutions of the symmetric minimal surface

equation (in short: s.m.s.e.)

(∗) div

(
Du√

1 + |Du|2

)
=

α

u
√

1 + |Du|2
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where α > 0 denotes some positive number. (∗) is the Euler-equation of the varia-
tional integral

E(u) =

∫
uα
√

1 + |Du|2 dx,

which, for α = m ∈ N and positive u : Ω→ R+, describes, up to a constant factor,
the area of the rotated graph

Mrot =
{

(x, u(x)ω) ∈ Rn × Rm+1;x ∈ Ω ⊂ Rn and ω ∈ Sm
}

where Sm ⊂ Rm+1 denotes the unit m-sphere, see e. g. the computation in [DU7].
A different interpretation for (∗) with α = 1 in the two-dimensional case was

already given by Poisson [PS], who considered (∗) as a model equation for an ideal
“heavy surface of constant mass density” which is exposed to a vertical gravitational
field. Furthermore, architects consider (∗) as a model equation for a so called
“hanging roof”, which is of importance for the constructions of “perfect domes” or
“cupolas”, see the discussion in [OF] and the literature cited therein.

The symmetric (or “singular”) minimal surface equation (∗) is an equation of
mean curvature type, with mean curvature H given by

H(u,Du) =
α

u
√

1 + |Du|2
,

whence H is a-priori not bounded, nor can a solution u of (∗) be of class C2 in
a neighbourhood of a point x0 with u(x0) = 0. Thus we typically consider either
classical positive solutions, or weak Lipschitz solutions u ≥ 0 of the s.m.s.e. For
the existence of classical solutions of (∗) with prescribed boundary values we refer
to the papers by Dierkes - Huisken [DH] and Dierkes [DU6].

On the other hand, it is easily checked that the cones

cαn(x) :=

√
α

n− 1
(x2

1 + . . .+ x2
n)

1
2 =

√
α

n− 1
|x|

are classical solutions of (∗) on Rn − {0} and weak Lipschitz-solutions on all of
Rn, for every α > 0, n ≥ 2. For a complete classification of these cones concerning
their minimizing properties and for the construction of nonaffine entire C∞-solution
asymptotic to these cones, we refer to the papers by Dierkes [DU1], [DU2], [DU3].

In view of these remarks the following result is optimal.

Theorem 1. There is no entire nonnegative solution u ∈ C0,1(Rn) of the symmet-
ric minimal surface equation (∗) satisfying

u(x) = o(|x|) as |x| → ∞.

(Here α > 0, n ≥ 2 are arbitrary).

We also prove a version of Theorem 1 for less regular, local minimizers of the
integral E in Rn.

Theorem 2. Let α > 0 and u ∈ BV 1+α
+,loc(Rn) be a local minimizer of E in Rn

which is of sublinear growth. Then u ≡ 0.
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Here the class BV 1+α
+ (Ω), where Ω ⊂ Rn is open and α > 0 is defined by

BV 1+α
+ (Ω) :=

{
u ∈ L1+α(Ω);u ≥ 0 and u1+α ∈ BV (Ω)

}
.

It is the natural function space on which the integral

E(u) =

∫
Ω

uα
√

1 + |Du|2 dx

can be defined (as a measure) and also minimized, cp. the papers by Bemelmans and
Dierkes [BD] and [DU3]. Note that 1

2 -Hölder-continuity is the optimal regularity
for minimizers of E(·) that can be expected in general, see the examples by Dierkes
[DU1], [DU2]. Recently T.Tennstädt [TT1][TT2] proved 1

2 -Hölder-continuity for
every minimizer in dimensions n ≤ 6. Again, by the examples constructed in
[DU1], [DU2] it follows that Theorem 2 is optimal of its type.

Thirdly we prove an analogous result for Caccioppoli sets minimizing the para-
metric energy functional

E(U) =

∫
|xn+1|α |DϕU | ,

see chapters 2 and 3 for the pertinent definitions.

Theorem 3. Let α > 0 and U ⊂ Rn+1 be a Caccioppoli set which locally minimizes
the integral E(·) in Rn+1 and which is of sublinear growth. Then U is the half-space
{(x, xn+1) ∈ Rn × R ; xn+1 ≤ 0} .

Finally we consider certain types of “exterior” solutions of the s.m. s. e. (∗) which
possibly vanish on a set of positive measure.

Theorem 4. Let α > 1 and n ≥ 2 be arbitrary. There is no non-trivial non-
negative function u ∈ H1

1,loc(Rn) ∩ C0(Rn) which solves the symmetric minimal
surface equation (∗) weakly in Rn − {u = 0}, where the coincidence set {u = 0} is
supposed to be bounded and which is of sublinear growth in the sense that

u(x) = o(|x|) as |x| → ∞.

The examples constructed in [DU1], [DU2] are of classH1
p,loc(Rn)∩C0, 12 (Rn), ∀p <

2, vanish on balls BR(0) ⊂ Rn and are of linear growth at infinity. Hence Theorem 4
is optimal.

Further Bernstein type results for stable solutions of (∗) in small dimensions
were proved in [DU5].

The proofs of Theorems 1, 2, 3 and 4 follow from suitable monotonicity and area
estimates given in Sections 2 and 3. The Theorems are proved in Section 4.

1. Preliminaries

We here consider quite generally integer multiplicity n-rectifiable varifolds v =

v(M,Θ) in Rn+1 (in the sense of Allard and Simon [SL1]), briefly “integer n-
varifolds”, that is – modulo n-dimensional Hausdorff-measure zero – a countably
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n-rectifiable Hn-measurable subsetM of Rn+1 together with an integer valued pos-
itive and locally integrable function Θ on M . Associated to the varifold v is the
Radon measure µv := Hn ¬ Θ i.e. µv(A) =

∫
A

Θ dHn =
∫
A∩M Θ dHn for any Hn

measurable set A ⊂ Rn+1, where we have put Θ ≡ 0 outside of M . In particular
we have in mind varifolds (with multiplicity Θ = 1) given by the reduced boundary
∂∗E of a Caccioppoli set E ⊂ Rn+1. Recall that E ⊂ U ⊂ Rn+1, U open, is a
set of locally finite perimeter (or “Caccioppoli set”) in U , if E is Ln+1-measurable
and if the characteristic function ϕE of E has locally finite bounded variation
in U, ϕE ∈ BVloc(U). If E ⊂ Rn+1 has locally finite perimeter in U ⊂ Rn+1

there is a Radon measure µE = |DϕE | on U and a |DϕE | measurable function
ν = (ν1, . . . , νn+1) (the generalized inward unit normal) with ‖ν(x)‖ = 1 for |DϕE |
a. e. x ∈ U and such that for every g = (g1, . . . , gn+1) ∈ C1

c (U,Rn+1) we have∫
E∩U

div g dLn+1 = −
∫
U

(g · ν)|DϕE |

= −
∫
U

g ·DϕE

DϕE denoting the vector measure ν|DϕE |. Furthermore the reduced boundary
∂∗E of a Caccioppoli set E is given by

∂∗E =

{
x ∈ U ; lim

ρ→0

∫
Bρ(x)

ν|DϕE |∫
Bρ(x)

|DϕE |
exists and has length equal to 1

}
.

In particular we have |DϕE | = |DϕE |
¬
∂∗E = Hn ¬ ∂∗E, ∂∗E is countably

n-rectifiable and each point x ∈ ∂∗E has an approximate tangent space Tx with
multiplicity 1 given by

Tx =
{
y ∈ Rn+1; y · νE(x) = 0

}
, where νE(x) := lim

ρ→0

∫
Bρ(x)

ν|DϕE |∫
Bρ(x)

|DϕE |
,

see [GE] and [SL1] for more discussion and proofs.
Now let v = v(M,Θ) be a rectifiable n-varifold in U ⊂ Rn+1, U open, and

consider the functional

Eα(M) =

∫
M

|xn+1|α dµv , α > 0.

The first variation can be computed e.g. as in Simon [SL1] or [DU4]; for convenience
we sketch the proof.

To this end consider a one parameter family Φt,−1 ≤ t ≤ 1, of diffeomorphisms
of U ⊂ Rn+1 with the following properties,

i) Φt(x) = Φ(t, x) ∈ C2 ((−1, 1)× U,U)

ii) Φ0 ≡ Id|U
iii) Φt(x) = x for all t ∈ [−1, 1] and every x ∈ U −K for some compact set

K ⊂ U .

Put X(x) :=
∂Φ

∂t
(t, x)|t=0 ∈ C1

c (U,Rn+1) to denote the initial velocity vector for

Φ(t, x) and let Φt#v denote the image varifold Φt#v = v
(
Φt(M),Θ ◦ Φ−1

t

)
. The
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general area-formula ([SL1]) yields

Eα (Φt#(v
¬
K)) =

∫
M∩K

|Ψn+1
t |αJΨt ·ΘdHn

where we have put Ψt := Φt|M∩K ,K compact, K ⊂ U and JΨt denotes the Jacobian
of Ψt. By definition the first variation is given by

δEα(v,X) :=
d

dt
Eα
(
Φt#(v

¬
K)
)
|t=0

.

Proposition 1. Let v = v(M,Θ) be an integer n-rectifiable varifold, Φt(x) =

Φ(t, x) and X(x) = ∂
∂tΦ(t, x)|t=0 be as above. Suppose either M ⊂ Rn×R+,R+ :=

{t > 0}, or α > 1, then the first variation of Eα is given by

δEα(v) =

∫
M∩K

|xn+1|α
(

divM X(x) + α
Xn+1(x)

xn+1

)
dµv

where Xn+1 denotes the (n+1)-st component of the vector field X = (X1, . . . , Xn+1).

Proof. For convenience we sketch the argument and refer to [SL1] [DU4] and [DHT]
chapter 3.2 for more detailed calculations. By standard arguments one finds for the
Jacobian JΨt the development

JΨt = 1 + tdivM X +O(t2), while

|Ψn+1
t (x)|α = |xn+1|α

{
1 + α t

Xn+1(x)

xn+1
+O(t2)

}
.

The first variation formula now follows by computing the coefficient of t in the
product |Ψn+1

t (x)|α · JΨt. �

Definition 1. The varifold v = v(M,Θ) is called stationary in U ⊂ Rn+1, U open,
if

(1)
∫
M

|xn+1|α
(

divM X(x) + α
Xn+1(x)

xn+1

)
dµ = 0

holds for all vector fields X(x) =
(
X1(x), . . . , Xn+1(x)

)
∈ C1

c (U,Rn+1).

Remark. Here we either assume α > 1 or M ⊂ Rn ×R+ (or M ⊂ Rn ×R−, R− =

{t < 0}).

Proposition 2. Let M ⊂ Rn+1 be a C2-hypersurface and U ⊂ Rn+1 be an open
set, such that M ∩ U 6= ∅, ∂M ∩ U = ∅ and Hn(M ∩ K) < ∞ for each compact
set K ⊂ U . Then M is stationary in U if and only if the mean curvature H =

H(x), x ∈M∩U, with respect to the unit normal ν = (ν1, . . . , νn+1) = ν(x) satisfies
the Euler equation

(2) |xn+1|αH(x) = α|xn+1|α
νn+1

xn+1
.

Remarks.

i) Clearly, if M ⊂ Rn × R+, (2) is equivalent to H(x) = α νn+1

xn+1
, ∀x ∈ M,

and also, if M = graph(u) for some positive function u : Ω → R+, to the
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symmetric minimal surface equation

(3) div

(
Du√

1 + |Du|2

)
=

α

u
√

1 + |Du|2
.

On the other hand, given a stationary C2 hypersurface M ⊂ Rn × R and
a point y0 := (ŷ0, 0) ∈ M, ŷ0 ∈ Rn with the property that every ball
Bε(y0) ⊂ Rn+1, ε > 0, contains points yε ∈ M ∩ Bε(y0) with (yε)n+1 6= 0

then we can conclude

lim
ε→0

(
ανn+1(yε)

yn+1
ε

)
= H(y0) exists;

in particular νn+1(y0) = 0. Hence M intersects the coordinate plane
{xn+1 = 0} vertically an y0 and can be written locally at y0 as a graph
x1 = f(x2, . . . , xn+1) say (which satisfies some singular elliptic p.d.e.).

ii) The coordinate plane {xn+1 = 0} satisfies (2) (with α > 1) but is not a
solution of (3).

iii) There are Lipschitz hypersurface solutions of (2) given by the union of any
vertical half-plane and the corresponding half-plane of the coordinate plane
{xn+1 = 0}.

iv) There exist (Lipschitz-)continuous piecewise C2-hypersurfaces which are
Hn-a. e. solutions of (2) (for α > 1), namely the union of an n-ball BR(0) ⊂
Rn × {0} and a C2-hypersurface in Rn × R+ with boundary ∂BR(0) given
by the graph of a particular 1

2 -Hölder continuous function u : Rn−BR(0)→
R+ ∪ {0}. See the work of Dierkes [DU1].

Proof of Proposition 2. Suppose M ⊂ Rn+1 is stationary in U and let X(x) :=

ξ(x) · ν(x), where ξ ∈ C1
c (U,R) is arbitrary and ν is some unit normal on M . Then

divM X = ξ divM ν = −ξH and hence (2) follows from (1) and a standard device.
On the other hand, ifM ∈ C2 satisfies (2) and X ∈ C1

c (U,Rn+1) is given arbitrarily,
we decompose X = X⊥+X> into its normal part X⊥ = (X ·ν) ν and the tangential
part X> ∈ TxM respectively and compute divM X⊥ = (X ·ν) divM ν = −H(X ·ν).
Therefore we have

(4) |xn+1|α divM X⊥ = −|xn+1|αH(X · ν) = −α|xn+1|α
νn+1

xn+1
(X · ν)

by (2). Furthermore we find

|xn+1|α divM X> = divM (|xn+1|αX>)−∇M (|xn+1|α)X>

= divM{|xn+1|αX>} − α
|xn+1|α

xn+1
(∇Mxn+1 ·X>)

= divM{|xn+1|αX>} − α
|xn+1|α

xn+1
Xn+1

+ α
|xn+1|α

xn+1
νn+1 (X · ν)

(5)
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where we have used the relation

∇Mxn+1 ·X> = (en+1−(en+1 ·ν)ν) ·X>

= (en+1−(en+1 ·ν)ν) ·X

=Xn+1 − νn+1(X · ν),

denoting by en+1 the vector (0, . . . , 0, 1) ∈ Rn+1. Concluding we finally obtain from
(4) and (5) the identity

|xn+1|α
(

divM X + α
Xn+1(x)

xn+1

)
= divM{|xn+1|αX>} − α

|xn+1|α

xn+1
Xn+1 + α

|xn+1|α

xn+1
νn+1(X · ν)

− α |xn+1|α

xn+1
νn+1(X · ν) + α

|xn+1|αXn+1

xn+1

= divM{|xn+1|αX>}.

Hence (1) follows from the divergence theorem since X> has compact support on
M . �

Proposition 3. Let u ∈ C0,1(Rn) be a weak nonnegative solution of the symmetric
minimal surface equation (∗) in Rn with α > 0. Then M = graph(u) ⊂ Rn+1 is
stationary in Rn+1, i.e.∫

M

xαn+1

{
divM X(x) + α

Xn+1(x)

xn+1

}
dHn(x) = 0

holds for all vectorfields X = (X1, . . . , Xn+1) ∈ C1
c (Rn+1,Rn+1).

Remark. Note that here it is not assumed α > 1 although the level set {u = 0}
might be nonempty. In fact we show existence of the integral in this case, even if
α ∈ (0, 1].

Proof. SinceM = {(x, u(x)) ∈ Rn × R} is the Lipschitz image of Rn it is countably
n-rectifiable and by Schauder theory we have u ∈ C∞ ({u > 0}). Whence the mean
curvature of M ∩ Rn × {t > 0} is simply

H(x) = α
νn+1

xn+1
=

α

u
√

1 + |Du|2
, x = (x1, . . . , xn+1)

and by Proposition 2 it follows that M is stationary in Rn × {t > 0} that is we
have the relation

(6)
∫
M

xαn+1

{
divM X + α

Xn+1

xn+1

}
dHn(x) = 0

for all vectorfields X ∈ C1
c (Rn × {t > 0},Rn+1) (and, clearly, for all X ∈ C1

c (Rn ×
{t 6= 0},Rn+1) since u ≥ 0).

By assumption u ∈ C0,1(Rn) = H1
∞,loc(Rn) is a solution of the equation∫

Rn

{
DuDϕ√
1 + |Du|2

+
αϕ

u
√

1 + |Du|2

}
dx = 0
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for all ϕ ∈ C1
c (Rn), and |Du| ∈ L∞,loc(Rn) together with a standard test function

argument imply that

1

u
∈ L1,loc(Rn), whence also Ln ({u = 0}) = Hn ({u = 0}) = 0.

For ε > 0 consider a smooth cutoff function ηε : R → R given by the conditions
ηε(t) = 1, for |t| ≥ 3ε, ηε(t) = 0, for |t| ≤ ε and 0 ≤ ηε ≤ 1, |η′ε(t)| ≤ 1

ε for
all t, hence ηε → 1 a.e. as ε → 0. Furthermore let X ∈ C1

c (Rn+1,Rn+1) be
an arbitrary vectorfield and suppose suppX ⊂ BR(0) ⊂ Rn+1. The truncated
vectorfield Xε(x) := ηε(xn+1) ·X(x) is admissible in (6) and since

divM Xε(x) = ηε(xn+1) divM X +X(x) · η′ε(xn+1) · ∇Mxn+1

we get the relation∫
M∩BR

xαn+1

{
ηε(xn+1) divM X +X(x)η′ε(xn+1)∇Mxn+1

+ α
Xn+1(x)

xn+1
ηε(xn+1)

}
dHn(x) = 0

for every ε > 0. The second integral can be estimated as follows∣∣∣ ∫
M∩BR

xαn+1η
′
ε(xn+1)X(x) · ∇Mxn+1 dHn(x)

∣∣∣
≤ sup
M∩BR

|X|
∫
M∩BR∩{ε≤xn+1≤3ε}

xαn+1 ·
1

ε
dHn(x)

≤ 3 sup
M∩BR

|X|
∫
M∩BR∩{ε≤xn+1≤3ε}

xα−1
n+1 dHn(x)

≤ 3‖X‖0,BR
∫
BR(0)∩{0≤u≤3ε}

uα−1
√

1 + |Du|2 dx

≤ 3‖X‖0,BR
{

1 + ‖Du‖20,BR
} 1

2 ‖u−1‖1,BR · (3ε)α

→ 0, as ε→ 0,

since u−1 ∈ L1,loc(Rn).
Observe in particular that the function xα−1

n+1 is integrable w.r.t. n-dimensional
Hausdorff-measure overM ∩BR for all α ≥ 0. In addition, since ηε(xn+1)→ 1 Hn-
a.e. on M ∩ BR (recall Hn({u = 0}) = 0), we infer from Lebesgue’s dominated
convergence theorem∫

M∩BR
xαn+1ηε(xn+1) divM X(x) dHn(x)→

∫
M∩BR

xαn+1 divM X(x) dHn(x)

and ∫
M∩BR

αxα−1
n+1X

n+1(x)ηε(xn+1) dHn(x)→
∫
M∩BR

xα−1
n+1X

n+1(x) dHn(x)

both as ε→ 0. In conclusion we have∫
M∩BR

xαn+1

{
divM X(x) + α

Xn+1(x)

xn+1

}
dHn(x) = 0
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for arbitrary X ∈ C1
c (Rn+1,Rn+1) compactly supported in the ball BR(0) ⊂ Rn+1.

�

Similarly we prove for α > 1

Proposition 3′. Let α > 1 and u : Rn → R+
0 = {t ≥ 0}, u ∈ H1

1,loc(Rn)∩C0(Rn),
be a weak solution of the s.m.s.e. (∗) in Rn − {u = 0}. Then M := graph(u) is
stationary in Rn+1.

Remarks.

i) Here we have in mind exterior solutions of (3) in (Rn − Ω), where Ω ⊂ Rn

is bounded and open, which in addition satisfy u = 0 on Ω. Recall that
there are even minima u for E of this type, where Ω = BR(0) is a ball and
u ∈ C∞(Rn − BR(0) ∩ C0, 12 (Rn) ∩ H1

p,loc(Rn), ∀p < 2, cp. [DU2]. Recently,
Tennstädt [TT1][TT2] proved that every local minimizer u of E is of class
H1

1,loc ∩ C0, 12 , if n ≤ 6.
ii) It was recently shown by Tennstädt [TT1][TT3] that, for minimizing functions

u, the zero set {u = 0} has locally finite perimeter and is locally mean convex.

Proof. By assumption the set {u > 0} is open and classical regularity theory im-
plies u ∈ C2 ({u > 0}). Furthermore u ∈ H1

1,loc(Rn) ⊂ BVloc(Rn), whence the
subgraph U := {(x, t) ∈ Rn × R; t < u(x)} has locally finite perimeter given by∫ √

1 + |Du|2 dx and M = ∂∗U = graph(u) is n-rectifiable. Invoking Proposition 2
we obtain that M = graph(u) is stationary in Rn × {t 6= 0} ⊂ Rn+1 and a similar
argument as the one given in the proof of Proposition 3, using that now α > 1 is
assumed, finishes the proof. �

2. Monotonicity formulae

We here give two versions of the monotonicity formula; namely one for stationary
varifolds and – somewhat differently – another formula for minimizing boundaries.

First assume that v = v(M,Θ) is stationary in U ⊂ Rn+1, i.e. we have the
identity ∫

M

|xn+1|α
(

divM X(x) + α
Xn+1(x)

xn+1

)
dHn(x) = 0

for all differentiable vectorfields X = (X1, . . . , Xn+1) with compact support in U .
We choose the standard test function X(x) := γ(r)(x − ξ), where ξ ∈ U is fixed,
r := |x− ξ| and γ ∈ C1(R) with γ′(t) ≤ 0, ∀t ∈ R, γ(t) = 1 for t ≤ ρ

2 , γ(t) = 0 for
t ≥ ρ and Bρ(ξ) ⊂ U . Standard calculations (cf. [SL1] and [DHT]) yield

(7) divM X(x) = divM (γ(r)(x− ξ)) = γ(r) divM (x− ξ) + γ′(r)∇Mr · (x− ξ)

and since

∇Mr = ∇M |x− ξ| =
(x− ξ)>

|x− ξ|
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we have

∇Mr(x− ξ) = r
(x− ξ)>

|x− ξ|
(x− ξ)>

|x− ξ|
= r

[
1−

(
(x− ξ)⊥

|x− ξ|

)2
]

= r[1− |Dr⊥|2],

where Dr = (x−ξ)
|x−ξ| denotes the gradient of r.

Furthermore

divM (x− ξ) =

n+1∑
j=1

ej ·∇M (xj − ξj) =

n+1∑
j=1

ej e>j

=

n+1∑
j=1

ej(ej − e⊥j ) = (n+ 1)−
n+1∑
j=1

(e⊥j )2

= (n+ 1)−
n+1∑
j=1

[(ν ej) · ν]
2

= (n+ 1)− 1

= n

(8)

since ej = e>j + e⊥j and ν ej = νj = ν e⊥j , e1, . . . , en+1 denoting the standard basis
of Rn+1. By (7), (8) and the first variation formula we find

divM X = nγ(r) + γ′(r) r(1− |Dr⊥|2)

whence

n

∫
M

|xn+1|αγ(r) dµv +

∫
M

|xn+1|αγ′(r) r(1− |Dr⊥|2) dµv

+ α

∫
M

|xn+1|αx−1
n+1γ(r)(xn+1 − ξn+1) dµv = 0,

or

(9) (n+ α)

∫
M

|xn+1|αγ(r) dµv +

∫
M

|xn+1|αrγ′(r) dµv

= α

∫
M

|xn+1|αx−1
n+1γ(r)ξn+1dµv +

∫
M

|xn+1|αγ′(r) r|Dr⊥|2dµv.

Now we take γ(r) := Φ
(
r
ρ

)
with Φ ∈ C1(R) satisfying Φ(t) = 1 if t ≤ 1

2 , Φ(t) = 0

if t ≥ 1, as well as 0 ≤ Φ(t) ≤ 1 and Φ′(t) ≤ 0 for all t ∈ R. Then

rγ′(r) = rΦ′
(
r

ρ

)
1

ρ
= −ρ ∂

∂ρ
Φ

(
r

ρ

)
and (9) yields

(n+ α)

∫
M

|xn+1|αΦ

(
r

ρ

)
dµv − ρ

∫
M

|xn+1|α
∂

∂ρ
Φ

(
r

ρ

)
dµv =

α

∫
M

|xn+1|αx−1
n+1Φ

(
r

ρ

)
ξn+1dµv − ρ

∫
M

|xn+1|α
∂

∂ρ
Φ

(
r

ρ

)
|Dr⊥|2dµv.
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Putting

I(ρ) :=

∫
M

|xn+1|αΦ

(
r

ρ

)
dµv

L(ρ) :=

∫
M

|xn+1|αx−1
n+1ξn+1Φ

(
r

ρ

)
dµv and

J(ρ) :=

∫
M

|xn+1|αΦ

(
r

ρ

)
|Dr⊥|2 dµv

we infer the equation

(n+ α)I(ρ)− ρI ′(ρ) = αL(ρ)− ρJ ′(ρ)

and since
d

dρ

[
ρ−(n+α)I(ρ)

]
= −(n+ α)ρ−(n+α+1)I(ρ) + ρ−(n+α)I ′(ρ)

= −ρ−(n+α+1) [(n+ α)I − ρI ′]

this implies the differential equation

d

dρ

(
ρ−(n+α)I(ρ)

)
= ρ−(n+α)J ′(ρ)− αρ−(n+α+1)L(ρ).

Integration between 0 < σ < ρ yields

ρ−(n+α)I(ρ)− σ−(n+α)I(σ) =

∫ ρ

σ

τ−n−αJ ′(τ) dτ − α
∫ ρ

σ

τ−n−α−1L(τ) dτ

and upon partial integration of the first integral, then letting Φ tend to the charac-
teristic function of the interval (−∞, 1) and finally applying Fubini’s theorem, we
conclude the monotonicity formula

ρ−(n+α)

∫
Bρ(ξ)

|xn+1|αdµv − σ−(n+α)

∫
Bσ(ξ)

|xn+1|αdµv

=

∫
Bρ−Bσ(ξ)

|xn+1|α
|Dr⊥|2

rn+α
dµv −

αξn+1

n+ α

∫
Bρ

|xn+1|α

xn+1

[
1

rn+α
σ

− 1

ρn+α

]
dµv

(10)

where rσ := max(r, σ).
In particular, if ξn+1 = 0 we have the identity

(11) σ−(n+α)

∫
Bσ(ξ)

|xn+1|αdµv = ρ−(n+α)

∫
Bρ(ξ)

|xn+1|αdµv

−
∫
Bρ−Bσ

|xn+1|α
|Dr⊥|2

rn+α
dµv

and the inequality

σ−(n+α)

∫
Bσ(ξ)

|xn+1|αdµv ≤ ρ−(n+α)

∫
Bρ(ξ)

|xn+1|αdµv,(12)

holding true for all 0 < σ ≤ ρ with Bσ(ξ) ⊂ U .
We have thus proved
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Proposition 4. Suppose v = v(M,Θ) is stationary in U ⊂ Rn+1 and Bρ(ξ) ⊂⊂ U .
Then we have the monotonicity formula (10), and if ξ = (ξ1, . . . , ξn, 0) the formulae
(11) or (12) holding true.

Remark. In general we assume α > 1 in the definition of stationarity; however if
M = graphu, where u ≥ 0 is some Lipschitz-solution of the s.m.s.e. (∗) then,
because of Proposition 3, α > 0 is sufficient in this case. In particular we then
also have the monotonicity formulae for all α > 0 and M = graph of a Lipschitz
solution u. Similarly, if v is given by the reduced boundary of a minimizing set
E ⊂ Rn+1, then we conclude a monotonicity formula for all α > 0 directly from the
minimizing property of v, rather then differentiating the functional as in Proposition
4, see Proposition 6. To show this we consider n-rectifiable varifolds v = v(M,Θ)

given by the reduced boundary ∂∗E of a Caccioppoli set E ⊂ Rn+1 which locally
minimizes the functional

E(U) =

∫
|xn+1|α |DϕU |, α > 0,

in Rn+1, i.e. we have ∫
Ω

|xn+1|α |DϕE | ≤
∫

Ω

|xn+1|α |DϕF |

for any bounded open set Ω ⊂ Rn+1 and all sets F ⊂ Rn+1 with locally finite
perimeter such that F∆E ⊂⊂ Ω. In other words, if we introduce the quantities
N = N(E,Ω) by

N(E,Ω) := inf

{∫
Ω

|xn+1|α|DϕF |;F has finite perimeter in Ω and F∆E ⊂⊂ Ω

}
and the “indicator” function Ψ = Ψ(E,Ω) by

Ψ(E,Ω) :=

∫
Ω

|xn+1|α|DϕE | −N(E,Ω),

we consider E ⊂ Rn+1, so that

Ψ(E,Ω) = 0 for all open sets Ω ⊂ Rn+1.

The following result immediately implies the monotonicity formula for minimizing
boundaries, see also Giusti [GE] Lemma 5.8 for a similar estimate.

Proposition 5. Let E ⊂ Rn+1 have finite perimeter in a ball BR(0) ⊂ Rn+1. Then
we have for all balls Bσ(0) ⊂ Bρ(0) ⊂⊂ BR(0) the estimate(∫

Bρ−Bσ
|xn+1|α

|x ·DϕE |
|x|n+α+1

)2

≤ 2

(∫
Bρ−Bσ

|xn+1|α
|DϕE |
|x|n+α

)
·{

(n+ α)

∫ ρ

σ

r−n−α−1Ψ(E,Br) dr + ρ−n−α
∫
Bρ

|xn+1|α|DϕE |

− σ−n−α
∫
Bσ

|xn+1|α|DϕE |

}
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where α > 0 and Bσ = Bσ(0), Bρ = Bρ(0).

Remark. The same result holds for arbitrary balls Bσ ⊂⊂ Bρ(ξ) ⊂ BR(0) with
center ξ = (ξ1, . . . , ξn, 0) lying on the coordinate hyperplane {xn+1 = 0}.

Proof of Proposition 5. Let φεE be a mollification of the characteristic function ϕE
with the properties∫

Br

|ϕE − φεE | dHn → 0, as ε→ 0, and∫
Br

|xn+1|α|DφεE | dx→
∫
Br

|xn+1|α|DϕE |, as ε→ 0

(13)

for almost all r ∈ [0, R], (cp. [MF] Thm. 12.3).
Define

ϕEBr (x) :=

ϕE
(
r x
|x|

)
, if |x| ≤ r

ϕE(x) , if |x| > r

and
ηεr(x) := φεE

(
r
x

|x|

)
.

Observe first that∫
Br

|ηεr − ϕEBr | dx =

∫ r

0

∫
∂Bρ

|ηεr − ϕEBr | dH
n dρ

=

∫ r

0

(ρ
r

)n ∫
∂Br

|ηεr − ϕEBr | dH
ndρ

=
r

n+ 1

∫
∂Br

|φεE − ϕ| dHn

→ 0 as ε→ 0 f.a.a. r ∈ [0, R]

(14)

whence by lower semicontinuity also∫
Br

|xn+1|α|DϕE | −Ψ(E,Br) ≤
∫
Br

|xn+1|α|DϕEBr |

≤ lim inf
ε→0

∫
Br

|xn+1|α|Dηεr | dx.
(15)

From the definition of ηεr we compute

Dηεr(x) = r

DφεE
(
r x
|x|

)
|x|

−

(
DφεE(r x

|x| ) · x
)

|x|3
· x
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and therefore∫
Br

|xn+1|α|Dηεr | dx

= r

∫
Br

|xn+1|α
{
|x|−2

∣∣∣∣DφεE (r x|x|
)∣∣∣∣2 − |x|−4

(
x ·DφεE

(
r
x

|x|

))2
} 1

2

dx

= r

∫ r

0

∫
∂Bτ

|xn+1|α|x|−1

∣∣∣∣DφεE (r x|x|
)∣∣∣∣ ·

1−

(
x ·DφεE(r x

|x| )
)2

|x|2|DφεE(r x
|x| )|2


1
2

dHndτ.

Using the transformation x =
τ

r
y we find∫

Br

|xn+1|α|Dηεr | dx

= r

r∫
0

∫
∂Br

|yn+1|α|y|−1
(τ
r

)α−1

|DφεE(y)|

{
1− (y ·DφεE(y))

2

|y|2|DφεE(y)|2

} 1
2 (τ
r

)n
dHn dτ

≤ r
r∫

0

(τ
r

)n+α−1
∫
∂Br

|xn+1|αr−1|DφεE |

{
1− (x ·DφεE(x))

2

|x|2|DφεE(x)|2

} 1
2

dHn dτ

≤ r

n+ α

∫
∂Br

|xn+1|α|DφεE(x)|

{
1− 1

2

(x ·DφεE(x))
2

|x|2|DφεE(x)|2

}
dHn.

(16)

Now multiply (15) by r−n−α−1, integrate over r from σ to ρ and then employ (16)∫ ρ

σ

r−n−α−1

(∫
Br

|xn+1|α|DϕE | −Ψ(E,Br)

)
dr

≤ lim inf
ε→0

∫ ρ

σ

r−n−α−1

∫
Br

|xn+1|α|Dηεr | dx dr

≤ lim inf
ε→0

{
1

n+ α

∫ ρ

σ

r−n−α
∫
∂Br

|xn+1|α|DφεE(x)| dHn dr

− 1

2(n+ α)

∫ ρ

σ

r−n−α
∫
∂Br

|xn+1|α
(x ·DφεE(x))

2

|x|2|DφεE(x)|
dHn dr

}

=
1

n+ α
lim inf
ε→0

{
ρ−n−α

∫
Bρ

|xn+1|α|DφεE(x)| dx− σ−n−α
∫
Bσ

|xn+1|α|DφεE(x)| dx

+ (n+ α)

∫ ρ

σ

r−n−α−1

∫
Br

|xn+1|α|DφεE(x)| dx dr

− 1

2

∫ ρ

σ

r−n−α
∫
∂Br

|xn+1|α
(x ·DφεE(x))

2

|x|2|DφεE(x)|
dHn dr

}
,
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where in the last step we have used an integration by parts. Rearranging terms we
get

lim sup
ε→0

1

2(n+ α)

∫
Bρ−Bσ

|xn+1|α
(x ·DφεE(x))

2

|x|n+α+2|DφεE(x)|
dx

≤ −
∫ ρ

σ

r−n−α−1

∫
Br

|xn+1|α|DϕE | dr +

∫ ρ

σ

r−n−α−1Ψ(Br) dr

+
1

(n+ α)
lim inf
ε→0

{
ρ−n−α

∫
Bρ

|xn+1|α|DφεE(x)| dx

− σ−n−α
∫
Bσ

|xn+1|α|DφεE(x)| dx

+ (n+ α)

∫ ρ

σ

r−n−α−1

∫
Br

|xn+1|α|DφεE(x)| dx dr

}
.

(17)

On the other hand we apply Schwarz’ inequality to obtain(∫
Bρ−Bσ

|xn+1|α
|x ·DφεE(x)|
|x|n+α+1

dx

)2

≤

(∫
Bρ−Bσ

|xn+1|α
|DφεE(x)|
|x|n+α

dx

)(∫
Bρ−Bσ

|xn+1|α
(x ·DφεE(x))

2

|x|n+α+2|DφεE(x)|
dx

)
and estimate the second factor with the help of (17). This yields the inequality

lim sup
ε→0

(∫
Bρ−Bσ

|xn+1|α
|DφεE(x) · x|
|x|n+α+1

dx

)2

≤ lim sup
ε→0

2(n+ α)

∫
Bρ−Bσ

|xn+1|α
|DφεE(x)|
|x|n+α

dx

{
−
∫ ρ

σ

r−n−α−1

∫
Br

|xn+1|α|DϕE | dr

+

∫ ρ

σ

r−n−α−1Ψ(E,Br) dr

+
1

(n+ α)
lim inf
ε→0

[
ρ−n−α

∫
Bρ

|xn+1|α|DφεE(x)| dx

− σ−n−α
∫
Bσ

|xn+1|α|DφεE(x)| dx

+ (n+ α)

∫ ρ

σ

r−n−α−1

∫
Br

|xn+1|α|DφεE(x)| dx dr
]}

which in turn – using the approximation (13) – proves the final estimate(∫
Bρ−Bσ

|xn+1|α
|DϕE · x|
|x|n+α+1

)2

≤ 2

(∫
Bρ−Bσ

|xn+1|α
|DϕE |
|x|n+α

)
·{

(n+ α)

∫ ρ

σ

r−n−α−1Ψ(E,Br) dr + ρ−n−α
∫
Bρ

|xn+1|α|DϕE |

−σ−n−α
∫
Bσ

|xn+1|α|DϕE |
}
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�

Proposition 5 immediately implies the monotonicity formula for minimizing
boundaries.

Proposition 6. Let α > 0 and suppose E ⊂ Rn+1 is a Caccioppoli set which locally
minimizes E in Ω ⊂ Rn+1, i.e. Ψ(E,Ω) = 0. Then we have the inequality

σ−n−α
∫
Bσ

|xn+1|α|DϕE | ≤ ρ−n−α
∫
Bρ

|xn+1|α|DϕE |

for all balls Bσ = Bσ(ξ) ⊂ Bρ = Bρ(ξ) ⊂⊂ Ω, where ξ = (ξ1, . . . , ξn, 0) ∈ Rn × {0}
is arbitrary.

3. Area growth

Here we suppose that E ⊂ Rn+1 has locally finite perimeter in Rn+1 and mini-
mizes

E(U) =

∫
|xn+1|α|DϕU |, α > 0

locally in Rn+1 among Caccioppoli sets, i.e. the indicator function

Ψ(E,Ω) = 0

for all open sets Ω ⊂ Rn+1. We say that E has “sublinear growth”, if there exists
some nonnegative measurable function s : Rn → R+ such that M = ∂∗E fulfills

M ⊂ {(x, xn+1) ∈ Rn × R;−s(x) ≤ xn+1 ≤ s(x)}(18)

and

lim
R→∞

|s|∞,BR(0)

R
= 0.(19)

Here BR(0) ⊂ Rn denotes the n-ball with center at 0 ∈ Rn and |s|∞,BR stands for
the sup-norm of s on BR. Analogously a function u ∈ BVloc(Rn) is of sublinear
growth, if the subgraph

U := {(x, t) ∈ Rn × R; t < u(x)}

has sublinear growth.

Proposition 7. Let E ⊂ Rn+1 be a Caccioppoli set which locally minimizes E in
Rn+1 for some α > 0 and suppose M = ∂∗E is of sublinear growth. Then we have

lim
R→∞

R−n−α
∫
BR(0)

|xn+1|α|DϕE | = 0, BR(0) ⊂ Rn+1.

Remark. Proposition 7 is sharp as one sees by considering the cones

Cαn :=

{
(x, xn+1) ∈ Rn × R; 0 < xn+1 <

√
α

n− 1
‖x‖
}

which are of linear growth and minimize

E =

∫
|xn+1|α|DϕU |,
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if – for example – n = 2 and α ≥ 6 say, see [DU1][DU2] for more details. Also, one
easily computes ∫

BR(0)

|xn+1|α|DϕCαn | = c(n, α)Rn+α

for some constant c(n, α) > 0.

Proof. Define the cylinder

CR := {(x, xn+1) ∈ Rn × R; |x| < R and − |s|∞,BR < xn+1 < |s|∞,BR}

where s : Rn → R+ is some “dominance function” with the properties (18) & (19).
The minimum property of E implies for any ε > 0

E(E,CR+ε) : =

∫
CR+ε

|xn+1|α|DϕE | ≤
∫
CR+ε

|xn+1|α|DϕE−CR |

= E(E − CR, CR+ε)

(20)

and the trace formula for BV -functions yields for almost all R, ε > 0

E(E − CR, CR+ε) = E(E,CR+ε − CR) +

∫
∂CR∩E

|xn+1|αdHn(21)

and similarly also

E(E,CR+ε) ≤
∫
CR+ε

|xn+1|α|DϕE∪CR |

= E(E ∪ CR, CR+ε)

= E(E,CR+ε − CR) +

∫
∂CR∩(Rn+1−E)

|xn+1|αdHn.

(22)

(20), (21) and (22) imply the estimate

E(E,CR+ε) =

∫
CR+ε

|xn+1|α|DϕE |

≤ E(E,CR+ε − CR)

+ min

{∫
∂CR∩E

|xn+1|αdHn,
∫
∂CR∩(Rn+1−E)

|xn+1|αdHn

}
which in turn yields f.a.a. R > 0, as ε→ 0

E(E,CR) ≤ min

{∫
∂CR∩E

|xn+1|αdHn,
∫
∂CR∩(Rn+1−E)

|xn+1|αdHn

}
.(23)

We put ∂CR = ZR ∪D+
R ∪D

−
R , where

ZR := {(x, xn+1) ∈ Rn × R; |x| = R and − |s|∞,BR ≤ xn+1 ≤ |s|∞,BR}

denotes the vertical wall and

D±R := {(x, xn+1) ∈ Rn × R; |x| ≤ R, xn+1 = ±|s|∞,BR}
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denote the top and bottom of the cylinder ∂CR respectively. We find the estimate∫
∂CR

|xn+1|αdHn =

∫
D+
R∪D

−
R

|xn+1|αdHn +

∫
ZR

|xn+1|αdHn

≤ 2ωnR
n|s|α∞,BR +

ωn
1 + α

Rn−1|s|1+α
∞,BR

whence, by virtue of (23) also

R−n−α
∫
CR

|xn+1|α|DϕE | ≤ c(n, α)
{
R−α|s|α∞,BR +R−α−1|s|1+α

∞,BR

}
.

Finally, by assumption M = ∂∗E ⊂ {(x, xn+1) ∈ Rn × R;−s(x) < xn+1 < s(x)},
whence M ∩BR(0) ⊂ CR and together with (23) and (19) we conclude

lim
R→∞

R−n−α
∫
BR(0)

|xn+1|α|DϕE | = 0

�

The proof of the following Proposition is standard, see e. g. [GT], chapter 16.
For convenience we give the argument in some detail.

Proposition 8. Let u ∈ H1
1,loc(Rn −K),K ⊂ Rn compact, be a weak nonnegative

solution of the s.m.s.e. (3) in (Rn−K) and let K ⊂ BR0
(0) ⊂ Rn. Then for every

ρ > R0 + 1 there holds the area estimate∫
M∩Bρ(0)

xαn+1dHn ≤ c(n)ρn|u|α∞,Bρ−BR0+1
+ |u|α∞,Bρ−BR0+1

|u|1,BR0+1−BR0

where M := graphu|Bρ−BR0+1
and |u|p,Ω denotes the Lp-norm of u on Ω.

Proof. Choose ρ > R0 + 1 and some cut-off function η ∈ C0,1
c (Rn − K) with the

properties

η(x) =

1, if R0 + 1 ≤ |x| ≤ ρ,

0, if |x| ≤ R0 or |x| ≥ 2ρ,

and such that a.e.

|Dη| ≤


1 for R0 ≤ |x| ≤ R0 + 1,

0 for R0 + 1 < |x| < ρ,

1
ρ for ρ ≤ |x| ≤ 2ρ.

Put ϕ := η · uρ, where uρ denotes the truncated function

uρ :=

u on {0 ≤ u < ρ},

ρ on {u ≥ ρ}.

Then there holds a.e.

Duρ :=

Du on {0 ≤ u < ρ},

0 on {u ≥ ρ}.
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and ϕ ∈ H̊1
1 (B2ρ −K) satisfies Dϕ = Dη · uρ + ηDuρ a. e. Upon substitution of ϕ

and Dϕ into the weak formulation of (3)∫
Rn−K

(
DuDϕ√
1 + |Du|2

+
αϕ

u
√

1 + |Du|2

)
dx = 0

we arrive at∫
B2ρ−BR0

{
DuDη uρ√
1 + |Du|2

+
DuDuρη√
1 + |Du|2

+
αηuρ

u
√

1 + |Du|2

}
dx = 0.

Since Duρ = 0 on {u ≥ ρ} a.e. we find∫
(B2ρ−BR0

)∩{u<ρ}

|Du|2η√
1 + |Du|2

dx = −
∫
B2ρ−BR0

DuDη uρ√
1 + |Du|2

dx

− α
∫
B2ρ−BR0

uρη

u
√

1 + |Du|2
dx.

In particular, because of η = 1, if R0 + 1 ≤ |x| ≤ ρ, 0 ≤ η ≤ 1 and u, uρ ≥ 0 we
obtain ∫

(Bρ−BR0+1)∩{u<ρ}

|Du|2√
1 + |Du|2

≤
∫
B2ρ−BR0

uρ|Du| |Dη|√
1 + |Du|2

dx

and hence∫
(Bρ−BR0+1)∩{u<ρ}

√
1 + |Du|2 dx ≤ Ln(Bρ − BR0+1) +

∫
B2ρ−Bρ

uρ|Du| |Dη|√
1 + |Du|2

dx

+

∫
BR0+1−BR0

uρ|Du| |Dη|√
1 + |Du|2

dx.

Using 0 ≤ uρ ≤ u, 0 ≤ uρ ≤ ρ, |Dη| ≤ 1
ρ on {ρ ≤ |x| ≤ 2ρ} and |Dη| ≤ 1 on

{R0 ≤ |x| ≤ R0 + 1} we find∫
(Bρ−BR0+1)∩{u<ρ}

√
1 + |Du|2 dx

≤ Ln(Bρ − BR0+1) + Ln(B2ρ − Bρ) + |u|1,BR0+1−BR0

≤ c1(n)ρn + |u|1,BR0+1−BR0
.

Thus we have∫
(Bρ−BR0+1)∩{u<ρ}

uα
√

1 + |Du|2 dx ≤ |u|α∞,Bρ−BR0+1
{c1(n)ρn + |u|1,BR0+1−BR0

}

and in particular, with M = graphu|Bρ−BR0+1∫
M∩Bρ(0)

xαn+1dHn ≤ c1(n)ρn|u|α∞,Bρ−BR0+1
+ |u|α∞,Bρ−BR0+1

|u|1,BR0+1−BR0
.

�

4. Proofs

We start with
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Proof of Theorem 1. Suppose on the contrary to the statement of Theorem 1, there
is a Lipschitz-solution u ≥ 0 of the s.m.s.e. (∗) which satisfies the growth condition

u(x) = o(|x|) as |x| → ∞.

By Propositions 3 and 4, especially formula (12) applied to M = graph(u), dµ =

dHn and ξ = 0 ∈ Rn+1 we get for all 0 < σ < ρ <∞ the inequality

σ−n−α
∫
Bσ(0)∩M

xαn+1dHn ≤ ρ−n−α
∫
Bρ(0)∩M

xαn+1dHn.

Since Ln ({u = 0}) = 0 there is some σ0 > 0 with

σ−n−α0

∫
Bσ0∩M

xαn+1dHn > 0.

However, according to Proposition 8 we must have

lim
ρ→∞

ρ−n−α
∫
Bρ∩M

xαn+1dHn = 0,

an obvious contradiction. �

Proof of Theorem 2. Let u ∈ BV 1+α
+,loc(Rn) be a local minimum of the variational

integral

E =

∫
uα
√

1 + |Du|2 , α > 0

in the class BV 1+α
+ (Ω), Ω ⊂ Rn arbitrary. Then we have u ∈ BVloc(Rn) (in fact

u ∈ H1
1,loc(Rn) according to Tennstädt [TT1]) and the subgraph

U :=
{

(x, t) ∈ Rn+1; t < u(x)
}

has locally finite perimeter in Rn+1. By Theorem 10 in [BD], the supgraph U locally
minimizes

E(U) =

∫
|xn+1|α|DϕU |

in Rn+1. (In fact, in the paper [BD] only the case α = 1 is considered, however the
generalization to arbitrary α > 0 is straight forward!). Now we are in the situation
described in Proposition 6 with minimizing set U and arbitrary open set Ω ⊂ Rn+1.
For ξ = 0 and 0 < σ < ρ <∞ arbitrary we get

σ−n−α
∫
Bρ

|xn+1|α|DϕU | ≤ ρ−n−α
∫
Bρ(0)

|xn+1|α|DϕU |.

By virtue of Proposition 7 and by letting ρ→∞ we finally arrive at∫
Bσ(0)

|xn+1|α|DϕU | = 0

for every σ > 0, hence ∂U = {xn+1 = 0}. �

Proof of Theorem 3. Theorem 3 follows from Propositions 6 and 7 analogously to
the proof to Theorem 2. �

Proof of Theorem 4. Suppose on the contrary to the statement of Theorem 4, that
there is a non-trivial u ∈ H1

1,loc(Rn) ∩ C0(Rn) which solves the s.m.s.e. weakly in
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Rn − {u = 0} and which is of sublinear growth. By Proposition 3′ M = graph(u)

is stationary in Rn+1. Proposition 4, formula (12) with ξ = 0, Proposition 8, and
the assumption of sublinear growth imply that

σ−n−α
∫
Bσ(0)∩M

xαn+1dHn = 0

for every σ > 0 and M = graph(u) ⊂ Rn+1; whence we had u = 0 on Rn. This
contradiction finishes the proof of Theorem 4. �
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