SCHRIFTENREIHE DER FAKULTÄT FÜR MATHEMATIK

BERNSTEIN RESULTS FOR SYMMETRIC MINIMAL SURFACES OF CONTROLLED GROWTH
by
Ulrich Dierkes and Tobias Tennstädt

SM-UDE-806 2016

BERNSTEIN RESULTS FOR SYMMETRIC MINIMAL SURFACES OF CONTROLLED GROWTH

ULRICH DIERKES AND TOBIAS TENNSTÄDT

Abstract

We prove that there is no entire solution of the symmetric minimal surface equation which is of sublinear growth. This result is extended to parametric and non-parametric minimizers of the corresponding variational integral.

0. Introduction

By a well known result of Bernstein [BS] every entire classical solution u of the minimal surface equation

$$
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=0
$$

in \mathbb{R}^{2}, has to be an affine-linear function. In fact this theorem was shown to hold up to dimension 7 by Fleming [FW], De Giorgi [DG], Almgren [AF] and J. Simons [SJ], while there exist nonlinear entire solutions in $\mathbb{R}^{n}, n \geq 8$, as was first discovered by Bombieri - De Giorgi - Giusti [BDG]. Many more non-affine examples were constructed by L. Simon [SL2].

On the other hand Moser [MJ] proved that every entire solution u of the minimal surface equation in \mathbb{R}^{n}, n arbitrary, is affine linear, provided $|D u|_{0, \mathbb{R}^{n}}$ is finite, and it follows from the a-priori gradient estimate of Bombieri - De Giorgi - Miranda [BDGM] that this is already the case if u grows at most linearly, in the sense that

$$
u(x) \leq C(1+|x|) \text { for some } C>0 \text { and all } x \in \mathbb{R}^{n}
$$

Ecker and Huisken [EH] extended Moser's result by requiring instead of boundedness only sublinear growth of the gradient $D u$, that is

$$
|D u(x)|=\mathrm{o}(|x|) \text { as }|x| \rightarrow \infty .
$$

Optimal results of this type were proved by L. Simon [SL2], [SL3].
In this paper we consider entire solutions of the symmetric minimal surface equation (in short: s.m.s.e.)

$$
\begin{equation*}
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=\frac{\alpha}{u \sqrt{1+|D u|^{2}}} \tag{*}
\end{equation*}
$$

[^0]where $\alpha>0$ denotes some positive number. $(*)$ is the Euler-equation of the variational integral
$$
E(u)=\int u^{\alpha} \sqrt{1+|D u|^{2}} d x
$$
which, for $\alpha=m \in \mathbb{N}$ and positive $u: \Omega \rightarrow \mathbb{R}^{+}$, describes, up to a constant factor, the area of the rotated graph
$$
\mathcal{M}_{\mathrm{rot}}=\left\{(x, u(x) \omega) \in \mathbb{R}^{n} \times \mathbb{R}^{m+1} ; x \in \Omega \subset \mathbb{R}^{n} \text { and } \omega \in S^{m}\right\}
$$
where $S^{m} \subset \mathbb{R}^{m+1}$ denotes the unit m-sphere, see e.g. the computation in [DU7].
A different interpretation for $(*)$ with $\alpha=1$ in the two-dimensional case was already given by Poisson [PS], who considered (*) as a model equation for an ideal "heavy surface of constant mass density" which is exposed to a vertical gravitational field. Furthermore, architects consider $(*)$ as a model equation for a so called "hanging roof", which is of importance for the constructions of "perfect domes" or "cupolas", see the discussion in $[\mathrm{OF}]$ and the literature cited therein.

The symmetric (or "singular") minimal surface equation (*) is an equation of mean curvature type, with mean curvature H given by

$$
H(u, D u)=\frac{\alpha}{u \sqrt{1+|D u|^{2}}},
$$

whence H is a-priori not bounded, nor can a solution u of $(*)$ be of class C^{2} in a neighbourhood of a point x_{0} with $u\left(x_{0}\right)=0$. Thus we typically consider either classical positive solutions, or weak Lipschitz solutions $u \geq 0$ of the s.m.s.e. For the existence of classical solutions of $(*)$ with prescribed boundary values we refer to the papers by Dierkes - Huisken [DH] and Dierkes [DU6].

On the other hand, it is easily checked that the cones

$$
c_{n}^{\alpha}(x):=\sqrt{\frac{\alpha}{n-1}}\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)^{\frac{1}{2}}=\sqrt{\frac{\alpha}{n-1}}|x|
$$

are classical solutions of $(*)$ on $\mathbb{R}^{n}-\{0\}$ and weak Lipschitz-solutions on all of \mathbb{R}^{n}, for every $\alpha>0, n \geq 2$. For a complete classification of these cones concerning their minimizing properties and for the construction of nonaffine entire C^{∞}-solution asymptotic to these cones, we refer to the papers by Dierkes [DU1], [DU2], [DU3].

In view of these remarks the following result is optimal.
Theorem 1. There is no entire nonnegative solution $u \in C^{0,1}\left(\mathbb{R}^{n}\right)$ of the symmetric minimal surface equation (*) satisfying

$$
u(x)=o(|x|) \quad \text { as } \quad|x| \rightarrow \infty .
$$

(Here $\alpha>0, n \geq 2$ are arbitrary).
We also prove a version of Theorem 1 for less regular, local minimizers of the integral E in \mathbb{R}^{n}.

Theorem 2. Let $\alpha>0$ and $u \in B V_{+, \text {loc }}^{1+\alpha}\left(\mathbb{R}^{n}\right)$ be a local minimizer of E in \mathbb{R}^{n} which is of sublinear growth. Then $u \equiv 0$.

Here the class $B V_{+}^{1+\alpha}(\Omega)$, where $\Omega \subset \mathbb{R}^{n}$ is open and $\alpha>0$ is defined by

$$
B V_{+}^{1+\alpha}(\Omega):=\left\{u \in L_{1+\alpha}(\Omega) ; u \geq 0 \text { and } u^{1+\alpha} \in B V(\Omega)\right\}
$$

It is the natural function space on which the integral

$$
E(u)=\int_{\Omega} u^{\alpha} \sqrt{1+|D u|^{2}} d x
$$

can be defined (as a measure) and also minimized, cp. the papers by Bemelmans and Dierkes [BD] and [DU3]. Note that $\frac{1}{2}$-Hölder-continuity is the optimal regularity for minimizers of $E(\cdot)$ that can be expected in general, see the examples by Dierkes [DU1], [DU2]. Recently T. Tennstädt [TT1][TT2] proved $\frac{1}{2}$-Hölder-continuity for every minimizer in dimensions $n \leq 6$. Again, by the examples constructed in [DU1], [DU2] it follows that Theorem 2 is optimal of its type.

Thirdly we prove an analogous result for Caccioppoli sets minimizing the parametric energy functional

$$
\mathcal{E}(U)=\int\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{U}\right|
$$

see chapters 2 and 3 for the pertinent definitions.
Theorem 3. Let $\alpha>0$ and $U \subset \mathbb{R}^{n+1}$ be a Caccioppoli set which locally minimizes the integral $\mathcal{E}(\cdot)$ in \mathbb{R}^{n+1} and which is of sublinear growth. Then U is the half-space $\left\{\left(x, x_{n+1}\right) \in \mathbb{R}^{n} \times \mathbb{R} ; x_{n+1} \leq 0\right\}$.

Finally we consider certain types of "exterior" solutions of the s.m.s.e. (*) which possibly vanish on a set of positive measure.

Theorem 4. Let $\alpha>1$ and $n \geq 2$ be arbitrary. There is no non-trivial nonnegative function $u \in H_{1, \text { loc }}^{1}\left(\mathbb{R}^{n}\right) \cap C^{0}\left(\mathbb{R}^{n}\right)$ which solves the symmetric minimal surface equation (*) weakly in $\mathbb{R}^{n}-\{u=0\}$, where the coincidence set $\{u=0\}$ is supposed to be bounded and which is of sublinear growth in the sense that

$$
u(x)=o(|x|) \quad \text { as } \quad|x| \rightarrow \infty .
$$

The examples constructed in [DU1], [DU2] are of class $H_{p, \text { loc }}^{1}\left(\mathbb{R}^{n}\right) \cap C^{0, \frac{1}{2}}\left(\mathbb{R}^{n}\right), \forall p<$ 2 , vanish on balls $\mathcal{B}_{R}(0) \subset \mathbb{R}^{n}$ and are of linear growth at infinity. Hence Theorem 4 is optimal.

Further Bernstein type results for stable solutions of (*) in small dimensions were proved in [DU5].

The proofs of Theorems $1,2,3$ and 4 follow from suitable monotonicity and area estimates given in Sections 2 and 3. The Theorems are proved in Section 4.

1. Preliminaries

We here consider quite generally integer multiplicity n-rectifiable varifolds $v=$ $v(M, \Theta)$ in \mathbb{R}^{n+1} (in the sense of Allard and Simon [SL1]), briefly "integer n varifolds", that is - modulo n-dimensional Hausdorff-measure zero - a countably
n-rectifiable \mathcal{H}^{n}-measurable subset M of \mathbb{R}^{n+1} together with an integer valued positive and locally integrable function Θ on M. Associated to the varifold v is the Radon measure $\mu_{v}:=\mathcal{H}^{n}\left\llcorner\Theta\right.$ i.e. $\mu_{v}(A)=\int_{A} \Theta d \mathcal{H}^{n}=\int_{A \cap M} \Theta d \mathcal{H}^{n}$ for any \mathcal{H}^{n} measurable set $A \subset \mathbb{R}^{n+1}$, where we have put $\Theta \equiv 0$ outside of M. In particular we have in mind varifolds (with multiplicity $\Theta=1$) given by the reduced boundary $\partial^{*} E$ of a Caccioppoli set $E \subset \mathbb{R}^{n+1}$. Recall that $E \subset U \subset \mathbb{R}^{n+1}, U$ open, is a set of locally finite perimeter (or "Caccioppoli set") in U, if E is \mathcal{L}^{n+1}-measurable and if the characteristic function φ_{E} of E has locally finite bounded variation in $U, \varphi_{E} \in B V_{\text {loc }}(U)$. If $E \subset \mathbb{R}^{n+1}$ has locally finite perimeter in $U \subset \mathbb{R}^{n+1}$ there is a Radon measure $\mu_{E}=\left|D \varphi_{E}\right|$ on U and a $\left|D \varphi_{E}\right|$ measurable function $\nu=\left(\nu_{1}, \ldots, \nu_{n+1}\right)$ (the generalized inward unit normal) with $\|\nu(x)\|=1$ for $\left|D \varphi_{E}\right|$ a. e. $x \in U$ and such that for every $g=\left(g_{1}, \ldots, g_{n+1}\right) \in C_{c}^{1}\left(U, \mathbb{R}^{n+1}\right)$ we have

$$
\begin{aligned}
\int_{E \cap U} \operatorname{div} g d \mathcal{L}^{n+1} & =-\int_{U}(g \cdot \nu)\left|D \varphi_{E}\right| \\
& =-\int_{U} g \cdot D \varphi_{E}
\end{aligned}
$$

$D \varphi_{E}$ denoting the vector measure $\nu\left|D \varphi_{E}\right|$. Furthermore the reduced boundary $\partial^{*} E$ of a Caccioppoli set E is given by

$$
\partial^{*} E=\left\{x \in U ; \quad \lim _{\rho \rightarrow 0} \frac{\int_{B_{\rho}(x)} \nu\left|D \varphi_{E}\right|}{\int_{B_{\rho}(x)}\left|D \varphi_{E}\right|} \text { exists and has length equal to } 1\right\} .
$$

In particular we have $\left|D \varphi_{E}\right|=\left|D \varphi_{E}\right|\left\llcorner\partial^{*} E=\mathcal{H}^{n}\left\llcorner\partial^{*} E, \partial^{*} E\right.\right.$ is countably n-rectifiable and each point $x \in \partial^{*} E$ has an approximate tangent space T_{x} with multiplicity 1 given by

$$
T_{x}=\left\{y \in \mathbb{R}^{n+1} ; y \cdot \nu_{E}(x)=0\right\}, \text { where } \nu_{E}(x):=\lim _{\rho \rightarrow 0} \frac{\int_{B_{\rho}(x)} \nu\left|D \varphi_{E}\right|}{\int_{B_{\rho}(x)}\left|D \varphi_{E}\right|},
$$

see [GE] and [SL1] for more discussion and proofs.
Now let $v=v(M, \Theta)$ be a rectifiable n-varifold in $U \subset \mathbb{R}^{n+1}, U$ open, and consider the functional

$$
\mathcal{E}_{\alpha}(M)=\int_{M}\left|x_{n+1}\right|^{\alpha} d \mu_{v} \quad, \alpha>0
$$

The first variation can be computed e.g. as in Simon [SL1] or [DU4]; for convenience we sketch the proof.

To this end consider a one parameter family $\Phi_{t},-1 \leq t \leq 1$, of diffeomorphisms of $U \subset \mathbb{R}^{n+1}$ with the following properties,
i) $\Phi_{t}(x)=\Phi(t, x) \in C^{2}((-1,1) \times U, U)$
ii) $\Phi_{0} \equiv I d_{\mid U}$
iii) $\Phi_{t}(x)=x$ for all $t \in[-1,1]$ and every $x \in U-K$ for some compact set $K \subset U$.

Put $X(x):=\frac{\partial \Phi}{\partial t}(t, x)_{\mid t=0} \in C_{c}^{1}\left(U, \mathbb{R}^{n+1}\right)$ to denote the initial velocity vector for $\Phi(t, x)$ and let $\Phi_{t \# v}$ denote the image varifold $\Phi_{t \# v}=v\left(\Phi_{t}(M), \Theta \circ \Phi_{t}^{-1}\right)$. The
general area-formula ([SL1]) yields

$$
\mathcal{E}_{\alpha}\left(\Phi_{t \#}(v\llcorner K))=\int_{M \cap K}\left|\Psi_{t}^{n+1}\right|^{\alpha} J \Psi_{t} \cdot \Theta d \mathcal{H}^{n}\right.
$$

where we have put $\Psi_{t}:=\Phi_{t_{\mid M \cap K}}, K$ compact, $K \subset U$ and $J \Psi_{t}$ denotes the Jacobian of Ψ_{t}. By definition the first variation is given by

$$
\delta \mathcal{E}_{\alpha}(v, X):=\frac{d}{d t} \mathcal{E}_{\alpha}\left(\Phi_{t \#}(v\llcorner K))_{\mid t=0}\right.
$$

Proposition 1. Let $v=v(M, \Theta)$ be an integer n-rectifiable varifold, $\Phi_{t}(x)=$ $\Phi(t, x)$ and $X(x)=\left.\frac{\partial}{\partial t} \Phi(t, x)\right|_{t=0}$ be as above. Suppose either $M \subset \mathbb{R}^{n} \times \mathbb{R}^{+}, \mathbb{R}^{+}:=$ $\{t>0\}$, or $\alpha>1$, then the first variation of \mathcal{E}_{α} is given by

$$
\delta \mathcal{E}_{\alpha}(v)=\int_{M \cap K}\left|x_{n+1}\right|^{\alpha}\left(\operatorname{div}_{M} X(x)+\alpha \frac{X^{n+1}(x)}{x_{n+1}}\right) d \mu_{v}
$$

where X^{n+1} denotes the $(n+1)$-st component of the vector field $X=\left(X^{1}, \ldots, X^{n+1}\right)$.
Proof. For convenience we sketch the argument and refer to [SL1] [DU4] and [DHT] chapter 3.2 for more detailed calculations. By standard arguments one finds for the Jacobian $J \Psi_{t}$ the development

$$
\begin{aligned}
J \Psi_{t} & =1+t \operatorname{div}_{M} X+\mathcal{O}\left(t^{2}\right), \text { while } \\
\left|\Psi_{t}^{n+1}(x)\right|^{\alpha} & =\left|x_{n+1}\right|^{\alpha}\left\{1+\alpha t \frac{X^{n+1}(x)}{x_{n+1}}+\mathcal{O}\left(t^{2}\right)\right\} .
\end{aligned}
$$

The first variation formula now follows by computing the coefficient of t in the product $\left|\Psi_{t}^{n+1}(x)\right|^{\alpha} \cdot J \Psi_{t}$.

Definition 1. The varifold $v=v(M, \Theta)$ is called stationary in $U \subset \mathbb{R}^{n+1}, U$ open, if

$$
\begin{equation*}
\int_{M}\left|x_{n+1}\right|^{\alpha}\left(\operatorname{div}_{M} X(x)+\alpha \frac{X^{n+1}(x)}{x_{n+1}}\right) d \mu=0 \tag{1}
\end{equation*}
$$

holds for all vector fields $X(x)=\left(X^{1}(x), \ldots, X^{n+1}(x)\right) \in C_{c}^{1}\left(U, \mathbb{R}^{n+1}\right)$.
Remark. Here we either assume $\alpha>1$ or $M \subset \mathbb{R}^{n} \times \mathbb{R}^{+}$(or $M \subset \mathbb{R}^{n} \times \mathbb{R}^{-}, \mathbb{R}^{-}=$ $\{t<0\}$).

Proposition 2. Let $M \subset \mathbb{R}^{n+1}$ be a C^{2}-hypersurface and $U \subset \mathbb{R}^{n+1}$ be an open set, such that $M \cap U \neq \emptyset, \partial M \cap U=\emptyset$ and $\mathcal{H}^{n}(M \cap K)<\infty$ for each compact set $K \subset U$. Then M is stationary in U if and only if the mean curvature $H=$ $H(x), x \in M \cap U$, with respect to the unit normal $\nu=\left(\nu_{1}, \ldots, \nu_{n+1}\right)=\nu(x)$ satisfies the Euler equation

$$
\begin{equation*}
\left|x_{n+1}\right|^{\alpha} H(x)=\alpha\left|x_{n+1}\right|^{\alpha} \frac{\nu_{n+1}}{x_{n+1}} \tag{2}
\end{equation*}
$$

Remarks.
i) Clearly, if $M \subset \mathbb{R}^{n} \times \mathbb{R}^{+},(2)$ is equivalent to $H(x)=\alpha \frac{\nu_{n+1}}{x_{n+1}}, \forall x \in M$, and also, if $M=\operatorname{graph}(u)$ for some positive function $u: \Omega \rightarrow \mathbb{R}^{+}$, to the
symmetric minimal surface equation

$$
\begin{equation*}
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=\frac{\alpha}{u \sqrt{1+|D u|^{2}}} . \tag{3}
\end{equation*}
$$

On the other hand, given a stationary C^{2} hypersurface $M \subset \mathbb{R}^{n} \times \mathbb{R}$ and a point $y_{0}:=\left(\hat{y}_{0}, 0\right) \in M, \hat{y}_{0} \in \mathbb{R}^{n}$ with the property that every ball $B_{\varepsilon}\left(y_{0}\right) \subset \mathbb{R}^{n+1}, \varepsilon>0$, contains points $y_{\varepsilon} \in M \cap B_{\varepsilon}\left(y_{0}\right)$ with $\left(y_{\varepsilon}\right)_{n+1} \neq 0$ then we can conclude

$$
\lim _{\varepsilon \rightarrow 0}\left(\frac{\alpha \nu_{n+1}\left(y_{\varepsilon}\right)}{y_{\varepsilon}^{n+1}}\right)=H\left(y_{0}\right) \text { exists; }
$$

in particular $\nu_{n+1}\left(y_{0}\right)=0$. Hence M intersects the coordinate plane $\left\{x_{n+1}=0\right\}$ vertically an y_{0} and can be written locally at y_{0} as a graph $x_{1}=f\left(x_{2}, \ldots, x_{n+1}\right)$ say (which satisfies some singular elliptic p.d.e.).
ii) The coordinate plane $\left\{x_{n+1}=0\right\}$ satisfies (2) (with $\alpha>1$) but is not a solution of (3).
iii) There are Lipschitz hypersurface solutions of (2) given by the union of any vertical half-plane and the corresponding half-plane of the coordinate plane $\left\{x_{n+1}=0\right\}$.
iv) There exist (Lipschitz-)continuous piecewise C^{2}-hypersurfaces which are \mathcal{H}^{n}-a.e. solutions of (2) (for $\alpha>1$), namely the union of an n-ball $\mathcal{B}_{R}(0) \subset$ $\mathbb{R}^{n} \times\{0\}$ and a C^{2}-hypersurface in $\mathbb{R}^{n} \times \mathbb{R}^{+}$with boundary $\partial \mathcal{B}_{R}(0)$ given by the graph of a particular $\frac{1}{2}$-Hölder continuous function $u: \mathbb{R}^{n}-\mathcal{B}_{R}(0) \rightarrow$ $\mathbb{R}^{+} \cup\{0\}$. See the work of Dierkes [DU1].

Proof of Proposition 2. Suppose $M \subset \mathbb{R}^{n+1}$ is stationary in U and let $X(x):=$ $\xi(x) \cdot \nu(x)$, where $\xi \in C_{c}^{1}(U, \mathbb{R})$ is arbitrary and ν is some unit normal on M. Then $\operatorname{div}_{M} X=\xi \operatorname{div}_{M} \nu=-\xi H$ and hence (2) follows from (1) and a standard device. On the other hand, if $M \in C^{2}$ satisfies (2) and $X \in C_{c}^{1}\left(U, \mathbb{R}^{n+1}\right)$ is given arbitrarily, we decompose $X=X^{\perp}+X^{\top}$ into its normal part $X^{\perp}=(X \cdot \nu) \nu$ and the tangential part $X^{\top} \in T_{x} M$ respectively and compute $\operatorname{div}_{M} X^{\perp}=(X \cdot \nu) \operatorname{div}_{M} \nu=-H(X \cdot \nu)$. Therefore we have

$$
\begin{equation*}
\left|x_{n+1}\right|^{\alpha} \operatorname{div}_{M} X^{\perp}=-\left|x_{n+1}\right|^{\alpha} H(X \cdot \nu)=-\alpha\left|x_{n+1}\right|^{\alpha} \frac{\nu_{n+1}}{x_{n+1}}(X \cdot \nu) \tag{4}
\end{equation*}
$$

by (2). Furthermore we find

$$
\begin{align*}
\left|x_{n+1}\right|^{\alpha} \operatorname{div}_{M} X^{\top}= & \operatorname{div}_{M}\left(\left|x_{n+1}\right|^{\alpha} X^{\top}\right)-\nabla_{M}\left(\left|x_{n+1}\right|^{\alpha}\right) X^{\top} \\
= & \operatorname{div}_{M}\left\{\left|x_{n+1}\right|^{\alpha} X^{\top}\right\}-\alpha \frac{\left|x_{n+1}\right|^{\alpha}}{x_{n+1}}\left(\nabla_{M} x_{n+1} \cdot X^{\top}\right) \\
= & \operatorname{div}_{M}\left\{\left|x_{n+1}\right|^{\alpha} X^{\top}\right\}-\alpha \frac{\left|x_{n+1}\right|^{\alpha}}{x_{n+1}} X^{n+1} \tag{5}\\
& +\alpha \frac{\left|x_{n+1}\right|^{\alpha}}{x_{n+1}} \nu_{n+1}(X \cdot \nu)
\end{align*}
$$

where we have used the relation

$$
\begin{aligned}
\nabla_{M} x_{n+1} \cdot X^{\top} & =\left(\mathrm{e}_{n+1}-\left(\mathrm{e}_{n+1} \cdot \nu\right) \nu\right) \cdot X^{\top} \\
& =\left(\mathrm{e}_{n+1}-\left(\mathrm{e}_{n+1} \cdot \nu\right) \nu\right) \cdot X \\
& =X^{n+1}-\nu_{n+1}(X \cdot \nu)
\end{aligned}
$$

denoting by e_{n+1} the vector $(0, \ldots, 0,1) \in \mathbb{R}^{n+1}$. Concluding we finally obtain from (4) and (5) the identity

$$
\begin{aligned}
& \left|x_{n+1}\right|^{\alpha}\left(\operatorname{div}_{M} X+\alpha \frac{X^{n+1}(x)}{x_{n+1}}\right) \\
= & \operatorname{div}_{M}\left\{\left|x_{n+1}\right|^{\alpha} X^{\top}\right\}-\alpha \frac{\left|x_{n+1}\right|^{\alpha}}{x_{n+1}} X^{n+1}+\alpha \frac{\left|x_{n+1}\right|^{\alpha}}{x_{n+1}} \nu_{n+1}(X \cdot \nu) \\
& -\alpha \frac{\left|x_{n+1}\right|^{\alpha}}{x_{n+1}} \nu_{n+1}(X \cdot \nu)+\alpha \frac{\left|x_{n+1}\right|^{\alpha} X^{n+1}}{x_{n+1}} \\
= & \operatorname{div}_{M}\left\{\left|x_{n+1}\right|^{\alpha} X^{\top}\right\} .
\end{aligned}
$$

Hence (1) follows from the divergence theorem since X^{\top} has compact support on M.

Proposition 3. Let $u \in C^{0,1}\left(\mathbb{R}^{n}\right)$ be a weak nonnegative solution of the symmetric minimal surface equation (*) in \mathbb{R}^{n} with $\alpha>0$. Then $M=\operatorname{graph}(u) \subset \mathbb{R}^{n+1}$ is stationary in \mathbb{R}^{n+1}, i.e.

$$
\int_{M} x_{n+1}^{\alpha}\left\{\operatorname{div}_{M} X(x)+\alpha \frac{X^{n+1}(x)}{x_{n+1}}\right\} d \mathcal{H}^{n}(x)=0
$$

holds for all vectorfields $X=\left(X^{1}, \ldots, X^{n+1}\right) \in C_{c}^{1}\left(\mathbb{R}^{n+1}, \mathbb{R}^{n+1}\right)$.
Remark. Note that here it is not assumed $\alpha>1$ although the level set $\{u=0\}$ might be nonempty. In fact we show existence of the integral in this case, even if $\alpha \in(0,1]$.

Proof. Since $M=\left\{(x, u(x)) \in \mathbb{R}^{n} \times \mathbb{R}\right\}$ is the Lipschitz image of \mathbb{R}^{n} it is countably n-rectifiable and by Schauder theory we have $u \in C^{\infty}(\{u>0\})$. Whence the mean curvature of $M \cap \mathbb{R}^{n} \times\{t>0\}$ is simply

$$
H(x)=\alpha \frac{\nu_{n+1}}{x_{n+1}}=\frac{\alpha}{u \sqrt{1+|D u|^{2}}}, x=\left(x_{1}, \ldots, x_{n+1}\right)
$$

and by Proposition 2 it follows that M is stationary in $\mathbb{R}^{n} \times\{t>0\}$ that is we have the relation

$$
\begin{equation*}
\int_{M} x_{n+1}^{\alpha}\left\{\operatorname{div}_{M} X+\alpha \frac{X^{n+1}}{x_{n+1}}\right\} d \mathcal{H}^{n}(x)=0 \tag{6}
\end{equation*}
$$

for all vectorfields $X \in C_{c}^{1}\left(\mathbb{R}^{n} \times\{t>0\}, \mathbb{R}^{n+1}\right.$) (and, clearly, for all $X \in C_{c}^{1}\left(\mathbb{R}^{n} \times\right.$ $\left.\{t \neq 0\}, \mathbb{R}^{n+1}\right)$ since $\left.u \geq 0\right)$.

By assumption $u \in C^{0,1}\left(\mathbb{R}^{n}\right)=H_{\infty, \text { loc }}^{1}\left(\mathbb{R}^{n}\right)$ is a solution of the equation

$$
\int_{\mathbb{R}^{n}}\left\{\frac{D u D \varphi}{\sqrt{1+|D u|^{2}}}+\frac{\alpha \varphi}{u \sqrt{1+|D u|^{2}}}\right\} d x=0
$$

for all $\varphi \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$, and $|D u| \in L_{\infty, \text { loc }}\left(\mathbb{R}^{n}\right)$ together with a standard test function argument imply that

$$
\frac{1}{u} \in L_{1, \operatorname{loc}}\left(\mathbb{R}^{n}\right), \text { whence also } \mathcal{L}^{n}(\{u=0\})=\mathcal{H}^{n}(\{u=0\})=0
$$

For $\varepsilon>0$ consider a smooth cutoff function $\eta_{\varepsilon}: \mathbb{R} \rightarrow \mathbb{R}$ given by the conditions $\eta_{\varepsilon}(t)=1$, for $|t| \geq 3 \varepsilon, \eta_{\varepsilon}(t)=0$, for $|t| \leq \varepsilon$ and $0 \leq \eta_{\varepsilon} \leq 1,\left|\eta_{\varepsilon}^{\prime}(t)\right| \leq \frac{1}{\varepsilon}$ for all t, hence $\eta_{\varepsilon} \rightarrow 1$ a.e. as $\varepsilon \rightarrow 0$. Furthermore let $X \in C_{c}^{1}\left(\mathbb{R}^{n+1}, \mathbb{R}^{n+1}\right)$ be an arbitrary vectorfield and suppose $\operatorname{supp} X \subset B_{R}(0) \subset \mathbb{R}^{n+1}$. The truncated vectorfield $X_{\varepsilon}(x):=\eta_{\varepsilon}\left(x_{n+1}\right) \cdot X(x)$ is admissible in (6) and since

$$
\operatorname{div}_{M} X_{\varepsilon}(x)=\eta_{\varepsilon}\left(x_{n+1}\right) \operatorname{div}_{M} X+X(x) \cdot \eta_{\varepsilon}^{\prime}\left(x_{n+1}\right) \cdot \nabla_{M} x_{n+1}
$$

we get the relation

$$
\begin{gathered}
\int_{M \cap B_{R}} x_{n+1}^{\alpha}\left\{\eta_{\varepsilon}\left(x_{n+1}\right) \operatorname{div}_{M} X+X(x) \eta_{\varepsilon}^{\prime}\left(x_{n+1}\right) \nabla_{M} x_{n+1}\right. \\
\left.+\alpha \frac{X^{n+1}(x)}{x_{n+1}} \eta_{\varepsilon}\left(x_{n+1}\right)\right\} d \mathcal{H}^{n}(x)=0
\end{gathered}
$$

for every $\varepsilon>0$. The second integral can be estimated as follows

$$
\begin{aligned}
& \left|\int_{M \cap B_{R}} x_{n+1}^{\alpha} \eta_{\varepsilon}^{\prime}\left(x_{n+1}\right) X(x) \cdot \nabla_{M} x_{n+1} d \mathcal{H}^{n}(x)\right| \\
\leq & \sup _{M \cap B_{R}}|X| \int_{M \cap B_{R} \cap\left\{\varepsilon \leq x_{n+1} \leq 3 \varepsilon\right\}} x_{n+1}^{\alpha} \cdot \frac{1}{\varepsilon} d \mathcal{H}^{n}(x) \\
\leq & 3 \sup _{M \cap B_{R}}|X| \int_{M \cap B_{R} \cap\left\{\varepsilon \leq x_{n+1} \leq 3 \varepsilon\right\}} x_{n+1}^{\alpha-1} d \mathcal{H}^{n}(x) \\
\leq & 3\|X\|_{0, B_{R}} \int_{\mathcal{B}_{R}(0) \cap\{0 \leq u \leq 3 \varepsilon\}} u^{\alpha-1} \sqrt{1+|D u|^{2}} d x \\
\leq & 3\|X\|_{0, B_{R}}\left\{1+\|D u\|_{0, \mathcal{B}_{R}}^{2}\right\}^{\frac{1}{2}}\left\|u^{-1}\right\|_{1, \mathcal{B}_{R}} \cdot(3 \varepsilon)^{\alpha} \\
\rightarrow & 0, \text { as } \varepsilon \rightarrow 0
\end{aligned}
$$

since $u^{-1} \in L_{1, \text { loc }}\left(\mathbb{R}^{n}\right)$.
Observe in particular that the function $x_{n+1}^{\alpha-1}$ is integrable w.r.t. n-dimensional Hausdorff-measure over $M \cap B_{R}$ for all $\alpha \geq 0$. In addition, since $\eta_{\varepsilon}\left(x_{n+1}\right) \rightarrow 1 \mathcal{H}^{n}$ a.e. on $M \cap B_{R}\left(\right.$ recall $\left.\mathcal{H}^{n}(\{u=0\})=0\right)$, we infer from Lebesgue's dominated convergence theorem

$$
\int_{M \cap B_{R}} x_{n+1}^{\alpha} \eta_{\varepsilon}\left(x_{n+1}\right) \operatorname{div}_{M} X(x) d \mathcal{H}^{n}(x) \rightarrow \int_{M \cap B_{R}} x_{n+1}^{\alpha} \operatorname{div}_{M} X(x) d \mathcal{H}^{n}(x)
$$

and

$$
\int_{M \cap B_{R}} \alpha x_{n+1}^{\alpha-1} X^{n+1}(x) \eta_{\varepsilon}\left(x_{n+1}\right) d \mathcal{H}^{n}(x) \rightarrow \int_{M \cap B_{R}} x_{n+1}^{\alpha-1} X^{n+1}(x) d \mathcal{H}^{n}(x)
$$

both as $\varepsilon \rightarrow 0$. In conclusion we have

$$
\int_{M \cap B_{R}} x_{n+1}^{\alpha}\left\{\operatorname{div}_{M} X(x)+\alpha \frac{X^{n+1}(x)}{x_{n+1}}\right\} d \mathcal{H}^{n}(x)=0
$$

for arbitrary $X \in C_{c}^{1}\left(\mathbb{R}^{n+1}, \mathbb{R}^{n+1}\right)$ compactly supported in the ball $B_{R}(0) \subset \mathbb{R}^{n+1}$.

Similarly we prove for $\alpha>1$
Proposition 3^{\prime}. Let $\alpha>1$ and $u: \mathbb{R}^{n} \rightarrow \mathbb{R}_{0}^{+}=\{t \geq 0\}, u \in H_{1, \text { loc }}^{1}\left(\mathbb{R}^{n}\right) \cap C^{0}\left(\mathbb{R}^{n}\right)$, be a weak solution of the s.m.s.e. (*) in $\mathbb{R}^{n}-\{u=0\}$. Then $M:=\operatorname{graph}(u)$ is stationary in \mathbb{R}^{n+1}.

Remarks.
i) Here we have in mind exterior solutions of (3) in ($\left.\mathbb{R}^{n}-\bar{\Omega}\right)$, where $\Omega \subset \mathbb{R}^{n}$ is bounded and open, which in addition satisfy $u=0$ on $\bar{\Omega}$. Recall that there are even minima u for E of this type, where $\Omega=\mathcal{B}_{R}(0)$ is a ball and $u \in C^{\infty}\left(\mathbb{R}^{n}-\overline{B_{R}(0)} \cap C^{0, \frac{1}{2}}\left(\mathbb{R}^{n}\right) \cap H_{p, \text { loc }}^{1}\left(\mathbb{R}^{n}\right), \forall p<2\right.$, cp. [DU2]. Recently, Tennstädt [TT1][TT2] proved that every local minimizer u of E is of class $H_{1, l o c}^{1} \cap C^{0, \frac{1}{2}}$, if $n \leq 6$.
ii) It was recently shown by Tennstädt [TT1][TT3] that, for minimizing functions u, the zero set $\{u=0\}$ has locally finite perimeter and is locally mean convex.

Proof. By assumption the set $\{u>0\}$ is open and classical regularity theory implies $u \in C^{2}(\{u>0\})$. Furthermore $u \in H_{1, \text { loc }}^{1}\left(\mathbb{R}^{n}\right) \subset B V_{\text {loc }}\left(\mathbb{R}^{n}\right)$, whence the subgraph $U:=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R} ; t<u(x)\right\}$ has locally finite perimeter given by $\int \sqrt{1+|D u|^{2}} d x$ and $M=\partial^{*} U=\operatorname{graph}(u)$ is n-rectifiable. Invoking Proposition 2 we obtain that $M=\operatorname{graph}(u)$ is stationary in $\mathbb{R}^{n} \times\{t \neq 0\} \subset \mathbb{R}^{n+1}$ and a similar argument as the one given in the proof of Proposition 3 , using that now $\alpha>1$ is assumed, finishes the proof.

2. Monotonicity formulae

We here give two versions of the monotonicity formula; namely one for stationary varifolds and - somewhat differently - another formula for minimizing boundaries.

First assume that $v=v(M, \Theta)$ is stationary in $U \subset \mathbb{R}^{n+1}$, i.e. we have the identity

$$
\int_{M}\left|x_{n+1}\right|^{\alpha}\left(\operatorname{div}_{M} X(x)+\alpha \frac{X^{n+1}(x)}{x_{n+1}}\right) d \mathcal{H}^{n}(x)=0
$$

for all differentiable vectorfields $X=\left(X^{1}, \ldots, X^{n+1}\right)$ with compact support in U. We choose the standard test function $X(x):=\gamma(r)(x-\xi)$, where $\xi \in U$ is fixed, $r:=|x-\xi|$ and $\gamma \in C^{1}(\mathbb{R})$ with $\gamma^{\prime}(t) \leq 0, \forall t \in \mathbb{R}, \gamma(t)=1$ for $t \leq \frac{\rho}{2}, \gamma(t)=0$ for $t \geq \rho$ and $\overline{B_{\rho}(\xi)} \subset U$. Standard calculations (cf. [SL1] and [DHT]) yield

$$
\begin{equation*}
\operatorname{div}_{M} X(x)=\operatorname{div}_{M}(\gamma(r)(x-\xi))=\gamma(r) \operatorname{div}_{M}(x-\xi)+\gamma^{\prime}(r) \nabla_{M} r \cdot(x-\xi) \tag{7}
\end{equation*}
$$

and since

$$
\nabla_{M} r=\nabla_{M}|x-\xi|=\frac{(x-\xi)^{\top}}{|x-\xi|}
$$

we have

$$
\nabla_{M} r(x-\xi)=r \frac{(x-\xi)^{\top}}{|x-\xi|} \frac{(x-\xi)^{\top}}{|x-\xi|}=r\left[1-\left(\frac{(x-\xi)^{\perp}}{|x-\xi|}\right)^{2}\right]=r\left[1-\left|D r^{\perp}\right|^{2}\right]
$$

where $D r=\frac{(x-\xi)}{|x-\xi|}$ denotes the gradient of r.
Furthermore

$$
\begin{align*}
\operatorname{div}_{M}(x-\xi) & =\sum_{j=1}^{n+1} \mathrm{e}_{j} \cdot \nabla_{M}\left(x_{j}-\xi_{j}\right)=\sum_{j=1}^{n+1} \mathrm{e}_{j} \mathrm{e}_{j}^{\top} \\
& =\sum_{j=1}^{n+1} \mathrm{e}_{j}\left(\mathrm{e}_{j}-\mathrm{e}_{j}^{\perp}\right)=(n+1)-\sum_{j=1}^{n+1}\left(\mathrm{e}_{j}^{\perp}\right)^{2} \tag{8}\\
& =(n+1)-\sum_{j=1}^{n+1}\left[\left(\nu \mathrm{e}_{j}\right) \cdot \nu\right]^{2}=(n+1)-1 \\
& =n
\end{align*}
$$

since $\mathrm{e}_{j}=\mathrm{e}_{j}^{\top}+\mathrm{e}_{j}^{\perp}$ and $\nu \mathrm{e}_{j}=\nu_{j}=\nu \mathrm{e}_{j}^{\perp}, \mathrm{e}_{1}, \ldots, \mathrm{e}_{n+1}$ denoting the standard basis of \mathbb{R}^{n+1}. By (7), (8) and the first variation formula we find

$$
\operatorname{div}_{M} X=n \gamma(r)+\gamma^{\prime}(r) r\left(1-\left|D r^{\perp}\right|^{2}\right)
$$

whence

$$
\begin{aligned}
& n \int_{M}\left|x_{n+1}\right|^{\alpha} \gamma(r) d \mu_{v}+\int_{M}\left|x_{n+1}\right|^{\alpha} \gamma^{\prime}(r) r\left(1-\left|D r^{\perp}\right|^{2}\right) d \mu_{v} \\
& \quad+\alpha \int_{M}\left|x_{n+1}\right|^{\alpha} x_{n+1}^{-1} \gamma(r)\left(x_{n+1}-\xi_{n+1}\right) d \mu_{v}=0
\end{aligned}
$$

or
(9) $\quad(n+\alpha) \int_{M}\left|x_{n+1}\right|^{\alpha} \gamma(r) d \mu_{v}+\int_{M}\left|x_{n+1}\right|^{\alpha} r \gamma^{\prime}(r) d \mu_{v}$

$$
=\alpha \int_{M}\left|x_{n+1}\right|^{\alpha} x_{n+1}^{-1} \gamma(r) \xi_{n+1} d \mu_{v}+\int_{M}\left|x_{n+1}\right|^{\alpha} \gamma^{\prime}(r) r\left|D r^{\perp}\right|^{2} d \mu_{v}
$$

Now we take $\gamma(r):=\Phi\left(\frac{r}{\rho}\right)$ with $\Phi \in C^{1}(\mathbb{R})$ satisfying $\Phi(t)=1$ if $t \leq \frac{1}{2}, \Phi(t)=0$ if $t \geq 1$, as well as $0 \leq \Phi(t) \leq 1$ and $\Phi^{\prime}(t) \leq 0$ for all $t \in \mathbb{R}$. Then

$$
r \gamma^{\prime}(r)=r \Phi^{\prime}\left(\frac{r}{\rho}\right) \frac{1}{\rho}=-\rho \frac{\partial}{\partial \rho} \Phi\left(\frac{r}{\rho}\right)
$$

and (9) yields

$$
\begin{aligned}
& (n+\alpha) \int_{M}\left|x_{n+1}\right|^{\alpha} \Phi\left(\frac{r}{\rho}\right) d \mu_{v}-\rho \int_{M}\left|x_{n+1}\right|^{\alpha} \frac{\partial}{\partial \rho} \Phi\left(\frac{r}{\rho}\right) d \mu_{v}= \\
& \quad \alpha \int_{M}\left|x_{n+1}\right|^{\alpha} x_{n+1}^{-1} \Phi\left(\frac{r}{\rho}\right) \xi_{n+1} d \mu_{v}-\rho \int_{M}\left|x_{n+1}\right|^{\alpha} \frac{\partial}{\partial \rho} \Phi\left(\frac{r}{\rho}\right)\left|D r^{\perp}\right|^{2} d \mu_{v}
\end{aligned}
$$

Putting

$$
\begin{aligned}
I(\rho) & :=\int_{M}\left|x_{n+1}\right|^{\alpha} \Phi\left(\frac{r}{\rho}\right) d \mu_{v} \\
L(\rho) & :=\int_{M}\left|x_{n+1}\right|^{\alpha} x_{n+1}^{-1} \xi_{n+1} \Phi\left(\frac{r}{\rho}\right) d \mu_{v} \text { and } \\
J(\rho) & :=\int_{M}\left|x_{n+1}\right|^{\alpha} \Phi\left(\frac{r}{\rho}\right)\left|D r^{\perp}\right|^{2} d \mu_{v}
\end{aligned}
$$

we infer the equation

$$
(n+\alpha) I(\rho)-\rho I^{\prime}(\rho)=\alpha L(\rho)-\rho J^{\prime}(\rho)
$$

and since

$$
\begin{aligned}
\frac{d}{d \rho}\left[\rho^{-(n+\alpha)} I(\rho)\right] & =-(n+\alpha) \rho^{-(n+\alpha+1)} I(\rho)+\rho^{-(n+\alpha)} I^{\prime}(\rho) \\
& =-\rho^{-(n+\alpha+1)}\left[(n+\alpha) I-\rho I^{\prime}\right]
\end{aligned}
$$

this implies the differential equation

$$
\frac{d}{d \rho}\left(\rho^{-(n+\alpha)} I(\rho)\right)=\rho^{-(n+\alpha)} J^{\prime}(\rho)-\alpha \rho^{-(n+\alpha+1)} L(\rho)
$$

Integration between $0<\sigma<\rho$ yields

$$
\rho^{-(n+\alpha)} I(\rho)-\sigma^{-(n+\alpha)} I(\sigma)=\int_{\sigma}^{\rho} \tau^{-n-\alpha} J^{\prime}(\tau) d \tau-\alpha \int_{\sigma}^{\rho} \tau^{-n-\alpha-1} L(\tau) d \tau
$$

and upon partial integration of the first integral, then letting Φ tend to the characteristic function of the interval $(-\infty, 1)$ and finally applying Fubini's theorem, we conclude the monotonicity formula

$$
\begin{align*}
& \rho^{-(n+\alpha)} \int_{B_{\rho}(\xi)}\left|x_{n+1}\right|^{\alpha} d \mu_{v}-\sigma^{-(n+\alpha)} \int_{B_{\sigma}(\xi)}\left|x_{n+1}\right|^{\alpha} d \mu_{v} \\
= & \int_{B_{\rho}-B_{\sigma}(\xi)}\left|x_{n+1}\right|^{\alpha} \frac{\left|D r^{\perp}\right|^{2}}{r^{n+\alpha}} d \mu_{v}-\frac{\alpha \xi_{n+1}}{n+\alpha} \int_{B_{\rho}} \frac{\left|x_{n+1}\right|^{\alpha}}{x_{n+1}}\left[\frac{1}{r_{\sigma}^{n+\alpha}}-\frac{1}{\rho^{n+\alpha}}\right] d \mu_{v} \tag{10}
\end{align*}
$$

where $r_{\sigma}:=\max (r, \sigma)$.
In particular, if $\xi_{n+1}=0$ we have the identity

$$
\begin{align*}
& \sigma^{-(n+\alpha)} \int_{B_{\sigma}(\xi)}\left|x_{n+1}\right|^{\alpha} d \mu_{v}=\rho^{-(n+\alpha)} \int_{B_{\rho}(\xi)}\left|x_{n+1}\right|^{\alpha} d \mu_{v} \tag{11}\\
&-\int_{B_{\rho}-B_{\sigma}}\left|x_{n+1}\right|^{\alpha} \frac{\left|D r^{\perp}\right|^{2}}{r^{n+\alpha}} d \mu_{v}
\end{align*}
$$

and the inequality

$$
\begin{equation*}
\sigma^{-(n+\alpha)} \int_{B_{\sigma}(\xi)}\left|x_{n+1}\right|^{\alpha} d \mu_{v} \leq \rho^{-(n+\alpha)} \int_{B_{\rho}(\xi)}\left|x_{n+1}\right|^{\alpha} d \mu_{v} \tag{12}
\end{equation*}
$$

holding true for all $0<\sigma \leq \rho$ with $\overline{B_{\sigma}(\xi)} \subset U$.
We have thus proved

Proposition 4. Suppose $v=v(M, \Theta)$ is stationary in $U \subset \mathbb{R}^{n+1}$ and $B_{\rho}(\xi) \subset \subset U$. Then we have the monotonicity formula (10), and if $\xi=\left(\xi_{1}, \ldots, \xi_{n}, 0\right)$ the formulae (11) or (12) holding true.

Remark. In general we assume $\alpha>1$ in the definition of stationarity; however if $M=\operatorname{graph} u$, where $u \geq 0$ is some Lipschitz-solution of the s.m.s.e. $(*)$ then, because of Proposition 3, $\alpha>0$ is sufficient in this case. In particular we then also have the monotonicity formulae for all $\alpha>0$ and $M=$ graph of a Lipschitz solution u. Similarly, if v is given by the reduced boundary of a minimizing set $E \subset \mathbb{R}^{n+1}$, then we conclude a monotonicity formula for all $\alpha>0$ directly from the minimizing property of v, rather then differentiating the functional as in Proposition 4, see Proposition 6. To show this we consider n-rectifiable varifolds $v=v(M, \Theta)$ given by the reduced boundary $\partial^{*} E$ of a Caccioppoli set $E \subset \mathbb{R}^{n+1}$ which locally minimizes the functional

$$
\mathcal{E}(U)=\int\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{U}\right|, \quad \alpha>0
$$

in \mathbb{R}^{n+1}, i.e. we have

$$
\int_{\Omega}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right| \leq \int_{\Omega}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{F}\right|
$$

for any bounded open set $\Omega \subset \mathbb{R}^{n+1}$ and all sets $F \subset \mathbb{R}^{n+1}$ with locally finite perimeter such that $F \Delta E \subset \subset \Omega$. In other words, if we introduce the quantities $\mathrm{N}=\mathrm{N}(E, \Omega)$ by
$\mathrm{N}(E, \Omega):=\inf \left\{\int_{\Omega}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{F}\right| ; F\right.$ has finite perimeter in Ω and $\left.F \Delta E \subset \subset \Omega\right\}$ and the "indicator" function $\Psi=\Psi(E, \Omega)$ by

$$
\Psi(E, \Omega):=\int_{\Omega}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right|-\mathrm{N}(E, \Omega)
$$

we consider $E \subset \mathbb{R}^{n+1}$, so that

$$
\Psi(E, \Omega)=0 \text { for all open sets } \Omega \subset \mathbb{R}^{n+1}
$$

The following result immediately implies the monotonicity formula for minimizing boundaries, see also Giusti [GE] Lemma 5.8 for a similar estimate.

Proposition 5. Let $E \subset \mathbb{R}^{n+1}$ have finite perimeter in a ball $B_{R}(0) \subset \mathbb{R}^{n+1}$. Then we have for all balls $B_{\sigma}(0) \subset B_{\rho}(0) \subset \subset B_{R}(0)$ the estimate

$$
\begin{aligned}
& \left(\int_{B_{\rho}-B_{\sigma}}\left|x_{n+1}\right|^{\alpha} \frac{\left|x \cdot D \varphi_{E}\right|}{|x|^{n+\alpha+1}}\right)^{2} \leq 2\left(\int_{B_{\rho}-B_{\sigma}}\left|x_{n+1}\right|^{\alpha} \frac{\left|D \varphi_{E}\right|}{|x|^{n+\alpha}}\right) \\
& \left\{(n+\alpha) \int_{\sigma}^{\rho} r^{-n-\alpha-1} \Psi\left(E, B_{r}\right) d r+\rho^{-n-\alpha} \int_{B_{\rho}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right|\right. \\
& \left.\quad-\sigma^{-n-\alpha} \int_{B_{\sigma}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right|\right\}
\end{aligned}
$$

where $\alpha>0$ and $B_{\sigma}=B_{\sigma}(0), B_{\rho}=B_{\rho}(0)$.

Remark. The same result holds for arbitrary balls $B_{\sigma} \subset \subset B_{\rho}(\xi) \subset B_{R}(0)$ with center $\xi=\left(\xi_{1}, \ldots, \xi_{n}, 0\right)$ lying on the coordinate hyperplane $\left\{x_{n+1}=0\right\}$.

Proof of Proposition 5. Let ϕ_{E}^{ε} be a mollification of the characteristic function φ_{E} with the properties

$$
\begin{align*}
\int_{B_{r}}\left|\varphi_{E}-\phi_{E}^{\varepsilon}\right| d \mathcal{H}^{n} & \rightarrow 0, \text { as } \varepsilon \rightarrow 0, \text { and } \\
\int_{B_{r}}\left|x_{n+1}\right|^{\alpha}\left|D \phi_{E}^{\varepsilon}\right| d x & \rightarrow \int_{B_{r}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right|, \text { as } \varepsilon \rightarrow 0 \tag{13}
\end{align*}
$$

for almost all $r \in[0, R]$, (cp. [MF] Thm. 12.3).
Define

$$
\varphi_{E_{B_{r}}}(x):= \begin{cases}\varphi_{E}\left(r \frac{x}{|x|}\right) & , \text { if }|x| \leq r \\ \varphi_{E}(x) & , \text { if }|x|>r\end{cases}
$$

and

$$
\eta_{r}^{\varepsilon}(x):=\phi_{E}^{\varepsilon}\left(r \frac{x}{|x|}\right) .
$$

Observe first that

$$
\begin{align*}
\int_{B_{r}}\left|\eta_{r}^{\varepsilon}-\varphi_{E_{B_{r}}}\right| d x & =\int_{0}^{r} \int_{\partial B_{\rho}}\left|\eta_{r}^{\varepsilon}-\varphi_{E_{B_{r}}}\right| d \mathcal{H}^{n} d \rho \\
& =\int_{0}^{r}\left(\frac{\rho}{r}\right)^{n} \int_{\partial B_{r}}\left|\eta_{r}^{\varepsilon}-\varphi_{E_{B_{r}}}\right| d \mathcal{H}^{n} d \rho \tag{14}\\
& =\frac{r}{n+1} \int_{\partial B_{r}}\left|\phi_{E}^{\varepsilon}-\varphi\right| d \mathcal{H}^{n} \\
& \rightarrow 0 \text { as } \varepsilon \rightarrow 0 \text { f.a.a. } r \in[0, R]
\end{align*}
$$

whence by lower semicontinuity also

$$
\begin{align*}
\int_{B_{r}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right|-\Psi\left(E, B_{r}\right) & \leq \int_{B_{r}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E_{B_{r}}}\right| \tag{15}\\
& \leq \liminf _{\varepsilon \rightarrow 0} \int_{B_{r}}\left|x_{n+1}\right|^{\alpha}\left|D \eta_{r}^{\varepsilon}\right| d x .
\end{align*}
$$

From the definition of η_{r}^{ε} we compute

$$
D \eta_{r}^{\varepsilon}(x)=r\left(\frac{D \phi_{E}^{\varepsilon}\left(r \frac{x}{|x|}\right)}{|x|}-\frac{\left(D \phi_{E}^{\varepsilon}\left(r \frac{x}{|x|}\right) \cdot x\right)}{|x|^{3}} \cdot x\right)
$$

and therefore

$$
\begin{aligned}
& \int_{B_{r}}\left|x_{n+1}\right|^{\alpha}\left|D \eta_{r}^{\varepsilon}\right| d x \\
= & r \int_{B_{r}}\left|x_{n+1}\right|^{\alpha}\left\{|x|^{-2}\left|D \phi_{E}^{\varepsilon}\left(r \frac{x}{|x|}\right)\right|^{2}-|x|^{-4}\left(x \cdot D \phi_{E}^{\varepsilon}\left(r \frac{x}{|x|}\right)\right)^{2}\right\}^{\frac{1}{2}} d x \\
= & r \int_{0}^{r} \int_{\partial B_{\tau}}\left|x_{n+1}\right|^{\alpha}|x|^{-1}\left|D \phi_{E}^{\varepsilon}\left(r \frac{x}{|x|}\right)\right| \cdot\left\{1-\frac{\left(x \cdot D \phi_{E}^{\varepsilon}\left(r \frac{x}{|x|}\right)\right)^{2}}{|x|^{2}\left|D \phi_{E}^{\varepsilon}\left(r \frac{x}{|x|}\right)\right|^{2}}\right\}^{\frac{1}{2}} d \mathcal{H}^{n} d \tau .
\end{aligned}
$$

Using the transformation $x=\frac{\tau}{r} y$ we find

$$
\begin{align*}
& \int_{B_{r}}\left|x_{n+1}\right|^{\alpha}\left|D \eta_{r}^{\varepsilon}\right| d x \\
= & r \int_{0}^{r} \int_{\partial B_{r}}\left|y_{n+1}\right|^{\alpha}|y|^{-1}\left(\frac{\tau}{r}\right)^{\alpha-1}\left|D \phi_{E}^{\varepsilon}(y)\right|\left\{1-\frac{\left(y \cdot D \phi_{E}^{\varepsilon}(y)\right)^{2}}{|y|^{2}\left|D \phi_{E}^{\varepsilon}(y)\right|^{2}}\right\}^{\frac{1}{2}}\left(\frac{\tau}{r}\right)^{n} d \mathcal{H}^{n} d \tau \\
\leq & r \int_{0}^{r}\left(\frac{\tau}{r}\right)^{n+\alpha-1} \int_{\partial B_{r}}\left|x_{n+1}\right|^{\alpha} r^{-1}\left|D \phi_{E}^{\varepsilon}\right|\left\{1-\frac{\left(x \cdot D \phi_{E}^{\varepsilon}(x)\right)^{2}}{|x|^{2}\left|D \phi_{E}^{\varepsilon}(x)\right|^{2}}\right\}^{\frac{1}{2}} d \mathcal{H}^{n} d \tau \tag{16}\\
\leq & \frac{r}{n+\alpha} \int_{\partial B_{r}}\left|x_{n+1}\right|^{\alpha}\left|D \phi_{E}^{\varepsilon}(x)\right|\left\{1-\frac{1}{2} \frac{\left(x \cdot D \phi_{E}^{\varepsilon}(x)\right)^{2}}{|x|^{2}\left|D \phi_{E}^{\varepsilon}(x)\right|^{2}}\right\} d \mathcal{H}^{n} .
\end{align*}
$$

Now multiply (15) by $r^{-n-\alpha-1}$, integrate over r from σ to ρ and then employ (16)

$$
\begin{aligned}
& \int_{\sigma}^{\rho} r^{-n-\alpha-1}\left(\int_{B_{r}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right|-\Psi\left(E, B_{r}\right)\right) d r \\
\leq & \liminf _{\varepsilon \rightarrow 0} \int_{\sigma}^{\rho} r^{-n-\alpha-1} \int_{B_{r}}\left|x_{n+1}\right|^{\alpha}\left|D \eta_{r}^{\varepsilon}\right| d x d r \\
\leq & \liminf _{\varepsilon \rightarrow 0}\left\{\frac{1}{n+\alpha} \int_{\sigma}^{\rho} r^{-n-\alpha} \int_{\partial B_{r}}\left|x_{n+1}\right|^{\alpha}\left|D \phi_{E}^{\varepsilon}(x)\right| d \mathcal{H}^{n} d r\right. \\
& \left.-\frac{1}{2(n+\alpha)} \int_{\sigma}^{\rho} r^{-n-\alpha} \int_{\partial B_{r}}\left|x_{n+1}\right|^{\alpha} \frac{\left(x \cdot D \phi_{E}^{\varepsilon}(x)\right)^{2}}{|x|^{2}\left|D \phi_{E}^{\varepsilon}(x)\right|} d \mathcal{H}^{n} d r\right\} \\
= & \frac{1}{n+\alpha} \liminf _{\varepsilon \rightarrow 0}\left\{\rho^{-n-\alpha} \int_{B_{\rho}}\left|x_{n+1}\right|^{\alpha}\left|D \phi_{E}^{\varepsilon}(x)\right| d x-\sigma^{-n-\alpha} \int_{B_{\sigma}}\left|x_{n+1}\right|^{\alpha}\left|D \phi_{E}^{\varepsilon}(x)\right| d x\right. \\
& +(n+\alpha) \int_{\sigma}^{\rho} r^{-n-\alpha-1} \int_{B_{r}}\left|x_{n+1}\right|^{\alpha}\left|D \phi_{E}^{\varepsilon}(x)\right| d x d r \\
& \left.-\frac{1}{2} \int_{\sigma}^{\rho} r^{-n-\alpha} \int_{\partial B_{r}}\left|x_{n+1}\right|^{\alpha} \frac{\left(x \cdot D \phi_{E}^{\varepsilon}(x)\right)^{2}}{|x|^{2}\left|D \phi_{E}^{\varepsilon}(x)\right|} d \mathcal{H}^{n} d r\right\}
\end{aligned}
$$

where in the last step we have used an integration by parts. Rearranging terms we get

$$
\begin{align*}
& \quad \limsup _{\varepsilon \rightarrow 0} \frac{1}{2(n+\alpha)} \int_{B_{\rho}-B_{\sigma}}\left|x_{n+1}\right|^{\alpha} \frac{\left(x \cdot D \phi_{E}^{\varepsilon}(x)\right)^{2}}{|x|^{n+\alpha+2}\left|D \phi_{E}^{\varepsilon}(x)\right|} d x \\
& \leq-\int_{\sigma}^{\rho} r^{-n-\alpha-1} \int_{B_{r}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right| d r+\int_{\sigma}^{\rho} r^{-n-\alpha-1} \Psi\left(B_{r}\right) d r \\
& \quad+\frac{1}{(n+\alpha)} \liminf _{\varepsilon \rightarrow 0}\left\{\rho^{-n-\alpha} \int_{B_{\rho}}\left|x_{n+1}\right|^{\alpha}\left|D \phi_{E}^{\varepsilon}(x)\right| d x\right. \tag{17}\\
& \quad-\sigma^{-n-\alpha} \int_{B_{\sigma}}\left|x_{n+1}\right|^{\alpha}\left|D \phi_{E}^{\varepsilon}(x)\right| d x \\
& \left.\quad+(n+\alpha) \int_{\sigma}^{\rho} r^{-n-\alpha-1} \int_{B_{r}}\left|x_{n+1}\right|^{\alpha}\left|D \phi_{E}^{\varepsilon}(x)\right| d x d r\right\}
\end{align*}
$$

On the other hand we apply Schwarz' inequality to obtain

$$
\begin{aligned}
& \left(\int_{B_{\rho}-B_{\sigma}}\left|x_{n+1}\right|^{\alpha} \frac{\left|x \cdot D \phi_{E}^{\varepsilon}(x)\right|}{|x|^{n+\alpha+1}} d x\right)^{2} \\
& \quad \leq\left(\int_{B_{\rho}-B_{\sigma}}\left|x_{n+1}\right|^{\alpha} \frac{\left|D \phi_{E}^{\varepsilon}(x)\right|}{|x|^{n+\alpha}} d x\right)\left(\int_{B_{\rho}-B_{\sigma}}\left|x_{n+1}\right|^{\alpha} \frac{\left(x \cdot D \phi_{E}^{\varepsilon}(x)\right)^{2}}{|x|^{n+\alpha+2}\left|D \phi_{E}^{\varepsilon}(x)\right|} d x\right)
\end{aligned}
$$

and estimate the second factor with the help of (17). This yields the inequality

$$
\begin{aligned}
& \quad \limsup _{\varepsilon \rightarrow 0}\left(\int_{B_{\rho}-B_{\sigma}}\left|x_{n+1}\right|^{\alpha} \frac{\left|D \phi_{E}^{\varepsilon}(x) \cdot x\right|}{|x|^{n+\alpha+1}} d x\right)^{2} \\
& \leq \limsup _{\varepsilon \rightarrow 0} 2(n+\alpha) \int_{B_{\rho}-B_{\sigma}}\left|x_{n+1}\right|^{\alpha} \frac{\left|D \phi_{E}^{\varepsilon}(x)\right|}{|x|^{n+\alpha}} d x\left\{-\int_{\sigma}^{\rho} r^{-n-\alpha-1} \int_{B_{r}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right| d r\right. \\
& \quad+\int_{\sigma}^{\rho} r^{-n-\alpha-1} \Psi\left(E, B_{r}\right) d r \\
& \quad+\frac{1}{(n+\alpha)} \liminf _{\varepsilon \rightarrow 0}\left[\rho^{-n-\alpha} \int_{B_{\rho}}\left|x_{n+1}\right|^{\alpha}\left|D \phi_{E}^{\varepsilon}(x)\right| d x\right. \\
& \quad-\sigma^{-n-\alpha} \int_{B_{\sigma}}\left|x_{n+1}\right|^{\alpha}\left|D \phi_{E}^{\varepsilon}(x)\right| d x \\
& \left.\left.\quad+(n+\alpha) \int_{\sigma}^{\rho} r^{-n-\alpha-1} \int_{B_{r}}\left|x_{n+1}\right|^{\alpha}\left|D \phi_{E}^{\varepsilon}(x)\right| d x d r\right]\right\}
\end{aligned}
$$

which in turn - using the approximation (13) - proves the final estimate

$$
\begin{aligned}
& \left(\int_{B_{\rho}-B_{\sigma}}\left|x_{n+1}\right|^{\alpha} \frac{\left|D \varphi_{E} \cdot x\right|}{|x|^{n+\alpha+1}}\right)^{2} \leq 2\left(\int_{B_{\rho}-B_{\sigma}}\left|x_{n+1}\right|^{\alpha} \frac{\left|D \varphi_{E}\right|}{|x|^{n+\alpha}}\right) \\
& \left\{(n+\alpha) \int_{\sigma}^{\rho} r^{-n-\alpha-1} \Psi\left(E, B_{r}\right) d r+\rho^{-n-\alpha} \int_{B_{\rho}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right|\right. \\
& \left.-\sigma^{-n-\alpha} \int_{B_{\sigma}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right|\right\}
\end{aligned}
$$

Proposition 5 immediately implies the monotonicity formula for minimizing boundaries.

Proposition 6. Let $\alpha>0$ and suppose $E \subset \mathbb{R}^{n+1}$ is a Caccioppoli set which locally minimizes \mathcal{E} in $\Omega \subset \mathbb{R}^{n+1}$, i.e. $\Psi(E, \Omega)=0$. Then we have the inequality

$$
\sigma^{-n-\alpha} \int_{B_{\sigma}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right| \leq \rho^{-n-\alpha} \int_{B_{\rho}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right|
$$

for all balls $B_{\sigma}=B_{\sigma}(\xi) \subset B_{\rho}=B_{\rho}(\xi) \subset \subset \Omega$, where $\xi=\left(\xi_{1}, \ldots, \xi_{n}, 0\right) \in \mathbb{R}^{n} \times\{0\}$ is arbitrary.

3. Area growth

Here we suppose that $E \subset \mathbb{R}^{n+1}$ has locally finite perimeter in \mathbb{R}^{n+1} and minimizes

$$
\mathcal{E}(U)=\int\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{U}\right|, \quad \alpha>0
$$

locally in \mathbb{R}^{n+1} among Caccioppoli sets, i.e. the indicator function

$$
\Psi(E, \Omega)=0
$$

for all open sets $\Omega \subset \mathbb{R}^{n+1}$. We say that E has "sublinear growth", if there exists some nonnegative measurable function $s: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$such that $M=\partial^{*} E$ fulfills

$$
\begin{equation*}
M \subset\left\{\left(x, x_{n+1}\right) \in \mathbb{R}^{n} \times \mathbb{R} ;-s(x) \leq x_{n+1} \leq s(x)\right\} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \frac{|s|_{\infty, \mathcal{B}_{R}(0)}}{R}=0 \tag{19}
\end{equation*}
$$

Here $\mathcal{B}_{R}(0) \subset \mathbb{R}^{n}$ denotes the n-ball with center at $0 \in \mathbb{R}^{n}$ and $|s|_{\infty, \mathcal{B}_{R}}$ stands for the sup-norm of s on \mathcal{B}_{R}. Analogously a function $u \in B V_{\text {loc }}\left(\mathbb{R}^{n}\right)$ is of sublinear growth, if the subgraph

$$
U:=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R} ; t<u(x)\right\}
$$

has sublinear growth.
Proposition 7. Let $E \subset \mathbb{R}^{n+1}$ be a Caccioppoli set which locally minimizes \mathcal{E} in \mathbb{R}^{n+1} for some $\alpha>0$ and suppose $M=\partial^{*} E$ is of sublinear growth. Then we have

$$
\lim _{R \rightarrow \infty} R^{-n-\alpha} \int_{B_{R}(0)}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right|=0, \quad B_{R}(0) \subset \mathbb{R}^{n+1}
$$

Remark. Proposition 7 is sharp as one sees by considering the cones

$$
C_{n}^{\alpha}:=\left\{\left(x, x_{n+1}\right) \in \mathbb{R}^{n} \times \mathbb{R} ; \quad 0<x_{n+1}<\sqrt{\frac{\alpha}{n-1}}\|x\|\right\}
$$

which are of linear growth and minimize

$$
\mathcal{E}=\int\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{U}\right|
$$

if - for example $-n=2$ and $\alpha \geq 6$ say, see [DU1][DU2] for more details. Also, one easily computes

$$
\int_{B_{R}(0)}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{C_{n}^{\alpha}}\right|=c(n, \alpha) R^{n+\alpha}
$$

for some constant $c(n, \alpha)>0$.

Proof. Define the cylinder

$$
C_{R}:=\left\{\left(x, x_{n+1}\right) \in \mathbb{R}^{n} \times \mathbb{R} ; \quad|x|<R \text { and }-|s|_{\infty, \mathcal{B}_{R}}<x_{n+1}<|s|_{\infty, \mathcal{B}_{R}}\right\}
$$

where $s: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$is some "dominance function" with the properties (18) \& (19).
The minimum property of E implies for any $\varepsilon>0$

$$
\begin{align*}
\mathcal{E}\left(E, C_{R+\varepsilon}\right): & =\int_{C_{R+\varepsilon}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right| \leq \int_{C_{R+\varepsilon}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E-\overline{C_{R}}}\right| \tag{20}\\
& =\mathcal{E}\left(E-\overline{C_{R}}, C_{R+\varepsilon}\right)
\end{align*}
$$

and the trace formula for $B V$-functions yields for almost all $R, \varepsilon>0$

$$
\begin{equation*}
\mathcal{E}\left(E-\overline{C_{R}}, C_{R+\varepsilon}\right)=\mathcal{E}\left(E, C_{R+\varepsilon}-\overline{C_{R}}\right)+\int_{\partial C_{R} \cap E}\left|x_{n+1}\right|^{\alpha} d \mathcal{H}_{n} \tag{21}
\end{equation*}
$$

and similarly also

$$
\begin{align*}
\mathcal{E}\left(E, C_{R+\varepsilon}\right) & \leq \int_{C_{R+\varepsilon}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E \cup \overline{C_{R}}}\right| \\
& =\mathcal{E}\left(E \cup \overline{C_{R}}, C_{R+\varepsilon}\right) \tag{22}\\
& =\mathcal{E}\left(E, C_{R+\varepsilon}-\overline{C_{R}}\right)+\int_{\partial C_{R} \cap\left(\mathbb{R}^{n+1}-E\right)}\left|x_{n+1}\right|^{\alpha} d \mathcal{H}_{n} .
\end{align*}
$$

(20), (21) and (22) imply the estimate

$$
\begin{aligned}
\mathcal{E}\left(E, C_{R+\varepsilon}\right)= & \int_{C_{R+\varepsilon}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right| \\
\leq & \mathcal{E}\left(E, C_{R+\varepsilon}-\overline{C_{R}}\right) \\
& +\min \left\{\int_{\partial C_{R} \cap E}\left|x_{n+1}\right|^{\alpha} d \mathcal{H}_{n}, \int_{\partial C_{R} \cap\left(\mathbb{R}^{n+1}-E\right)}\left|x_{n+1}\right|^{\alpha} d \mathcal{H}_{n}\right\}
\end{aligned}
$$

which in turn yields f.a.a. $R>0$, as $\varepsilon \rightarrow 0$

$$
\begin{equation*}
\mathcal{E}\left(E, C_{R}\right) \leq \min \left\{\int_{\partial C_{R} \cap E}\left|x_{n+1}\right|^{\alpha} d \mathcal{H}_{n}, \int_{\partial C_{R} \cap\left(\mathbb{R}^{n+1}-E\right)}\left|x_{n+1}\right|^{\alpha} d \mathcal{H}_{n}\right\} \tag{23}
\end{equation*}
$$

We put $\partial C_{R}=Z_{R} \cup D_{R}^{+} \cup D_{R}^{-}$, where

$$
Z_{R}:=\left\{\left(x, x_{n+1}\right) \in \mathbb{R}^{n} \times \mathbb{R} ;|x|=R \text { and }-|s|_{\infty, \mathcal{B}_{R}} \leq x_{n+1} \leq|s|_{\infty, \mathcal{B}_{R}}\right\}
$$

denotes the vertical wall and

$$
D_{R}^{ \pm}:=\left\{\left(x, x_{n+1}\right) \in \mathbb{R}^{n} \times \mathbb{R} ;|x| \leq R, x_{n+1}= \pm|s|_{\infty, \mathcal{B}_{R}}\right\}
$$

denote the top and bottom of the cylinder ∂C_{R} respectively. We find the estimate

$$
\begin{aligned}
\int_{\partial C_{R}}\left|x_{n+1}\right|^{\alpha} d \mathcal{H}_{n} & =\int_{D_{R}^{+} \cup D_{R}^{-}}\left|x_{n+1}\right|^{\alpha} d \mathcal{H}_{n}+\int_{Z_{R}}\left|x_{n+1}\right|^{\alpha} d \mathcal{H}_{n} \\
& \leq 2 \omega_{n} R^{n}|s|_{\infty, \mathcal{B}_{R}}^{\alpha}+\frac{\omega_{n}}{1+\alpha} R^{n-1}|s|_{\infty, \mathcal{B}_{R}}^{1+\alpha}
\end{aligned}
$$

whence, by virtue of (23) also

$$
R^{-n-\alpha} \int_{C_{R}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right| \leq c(n, \alpha)\left\{R^{-\alpha}|s|_{\infty, \mathcal{B}_{R}}^{\alpha}+R^{-\alpha-1}|s|_{\infty, \mathcal{B}_{R}}^{1+\alpha}\right\}
$$

Finally, by assumption $M=\partial^{*} E \subset\left\{\left(x, x_{n+1}\right) \in \mathbb{R}^{n} \times \mathbb{R} ;-s(x)<x_{n+1}<s(x)\right\}$, whence $M \cap B_{R}(0) \subset C_{R}$ and together with (23) and (19) we conclude

$$
\lim _{R \rightarrow \infty} R^{-n-\alpha} \int_{B_{R}(0)}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{E}\right|=0
$$

The proof of the following Proposition is standard, see e.g. [GT], chapter 16.
For convenience we give the argument in some detail.

Proposition 8. Let $u \in H_{1, \text { loc }}^{1}\left(\mathbb{R}^{n}-K\right), K \subset \mathbb{R}^{n}$ compact, be a weak nonnegative solution of the s.m.s.e. (3) in $\left(\mathbb{R}^{n}-K\right)$ and let $K \subset \mathcal{B}_{R_{0}}(0) \subset \mathbb{R}^{n}$. Then for every $\rho>R_{0}+1$ there holds the area estimate

$$
\int_{M \cap B_{\rho}(0)} x_{n+1}^{\alpha} d \mathcal{H}_{n} \leq c(n) \rho^{n}|u|_{\infty, \mathcal{B}_{\rho}-\mathcal{B}_{R_{0}+1}}^{\alpha}+|u|_{\infty, \mathcal{B}_{\rho}-\mathcal{B}_{R_{0}+1}}^{\alpha}|u|_{1, \mathcal{B}_{R_{0}+1}-\mathcal{B}_{R_{0}}}
$$

where $M:=$ graph $u_{\mid \mathcal{B}_{\rho}-\mathcal{B}_{R_{0}+1}}$ and $|u|_{p, \Omega}$ denotes the L_{p}-norm of u on Ω.

Proof. Choose $\rho>R_{0}+1$ and some cut-off function $\eta \in C_{c}^{0,1}\left(\mathbb{R}^{n}-K\right)$ with the properties

$$
\eta(x)= \begin{cases}1, & \text { if } \quad R_{0}+1 \leq|x| \leq \rho \\ 0, & \text { if }|x| \leq R_{0} \quad \text { or } \quad|x| \geq 2 \rho\end{cases}
$$

and such that a.e.

$$
|D \eta| \leq \begin{cases}1 & \text { for } R_{0} \leq|x| \leq R_{0}+1 \\ 0 & \text { for } R_{0}+1<|x|<\rho \\ \frac{1}{\rho} & \text { for } \rho \leq|x| \leq 2 \rho\end{cases}
$$

Put $\varphi:=\eta \cdot u_{\rho}$, where u_{ρ} denotes the truncated function

$$
u_{\rho}:= \begin{cases}u & \text { on }\{0 \leq u<\rho\} \\ \rho & \text { on }\{u \geq \rho\}\end{cases}
$$

Then there holds a.e.

$$
D u_{\rho}:= \begin{cases}D u & \text { on }\{0 \leq u<\rho\} \\ 0 & \text { on }\{u \geq \rho\} .\end{cases}
$$

and $\varphi \in \stackrel{\circ}{H}_{1}^{1}\left(\mathcal{B}_{2 \rho}-K\right)$ satisfies $D \varphi=D \eta \cdot u_{\rho}+\eta D u_{\rho}$ a. e. Upon substitution of φ and $D \varphi$ into the weak formulation of (3)

$$
\int_{\mathbb{R}^{n}-K}\left(\frac{D u D \varphi}{\sqrt{1+|D u|^{2}}}+\frac{\alpha \varphi}{u \sqrt{1+|D u|^{2}}}\right) d x=0
$$

we arrive at

$$
\int_{\mathcal{B}_{2 \rho}-\mathcal{B}_{R_{0}}}\left\{\frac{D u D \eta u_{\rho}}{\sqrt{1+|D u|^{2}}}+\frac{D u D u_{\rho} \eta}{\sqrt{1+|D u|^{2}}}+\frac{\alpha \eta u_{\rho}}{u \sqrt{1+|D u|^{2}}}\right\} d x=0 .
$$

Since $D u_{\rho}=0$ on $\{u \geq \rho\}$ a.e. we find

$$
\begin{aligned}
& \int_{\left(\mathcal{B}_{2 \rho}-\mathcal{B}_{R_{0}}\right) \cap\{u<\rho\}} \frac{|D u|^{2} \eta}{\sqrt{1+|D u|^{2}}} d x=-\int_{\mathcal{B}_{2 \rho}-\mathcal{B}_{R_{0}}} \frac{D u D \eta u_{\rho}}{\sqrt{1+|D u|^{2}}} d x \\
&-\alpha \int_{\mathcal{B}_{2_{\rho}-}-\mathcal{B}_{R_{0}}} \frac{u_{\rho} \eta}{u \sqrt{1+|D u|^{2}}} d x .
\end{aligned}
$$

In particular, because of $\eta=1$, if $R_{0}+1 \leq|x| \leq \rho, 0 \leq \eta \leq 1$ and $u, u_{\rho} \geq 0$ we obtain

$$
\int_{\left(\mathcal{B}_{\rho}-\mathcal{B}_{R_{0}+1}\right) \cap\{u<\rho\}} \frac{|D u|^{2}}{\sqrt{1+|D u|^{2}}} \leq \int_{\mathcal{B}_{2 \rho}-\mathcal{B}_{R_{0}}} \frac{u_{\rho}|D u||D \eta|}{\sqrt{1+|D u|^{2}}} d x
$$

and hence

$$
\begin{aligned}
\int_{\left(\mathcal{B}_{\rho}-\mathcal{B}_{R_{0}+1}\right) \cap\{u<\rho\}} \sqrt{1+|D u|^{2}} d x \leq \mathcal{L}^{n}\left(\mathcal{B}_{\rho}-\mathcal{B}_{R_{0}+1}\right) & +\int_{\mathcal{B}_{2 \rho}-\mathcal{B}_{\rho}} \frac{u_{\rho}|D u||D \eta|}{\sqrt{1+|D u|^{2}}} d x \\
& +\int_{\mathcal{B}_{R_{0}+1}-\mathcal{B}_{R_{0}}} \frac{u_{\rho}|D u||D \eta|}{\sqrt{1+|D u|^{2}}} d x
\end{aligned}
$$

Using $0 \leq u_{\rho} \leq u, 0 \leq u_{\rho} \leq \rho,|D \eta| \leq \frac{1}{\rho}$ on $\{\rho \leq|x| \leq 2 \rho\}$ and $|D \eta| \leq 1$ on $\left\{R_{0} \leq|x| \leq R_{0}+1\right\}$ we find

$$
\begin{aligned}
& \int_{\left(\mathcal{B}_{\rho}-\mathcal{B}_{R_{0}+1}\right) \cap\{u<\rho\}} \sqrt{1+|D u|^{2}} d x \\
\leq & \mathcal{L}^{n}\left(\mathcal{B}_{\rho}-\mathcal{B}_{R_{0}+1}\right)+\mathcal{L}^{n}\left(\mathcal{B}_{2 \rho}-\mathcal{B}_{\rho}\right)+|u|_{1, \mathcal{B}_{R_{0}+1}-\mathcal{B}_{R_{0}}} \\
\leq & c_{1}(n) \rho^{n}+|u|_{1, \mathcal{B}_{R_{0}+1}-\mathcal{B}_{R_{0}}}
\end{aligned}
$$

Thus we have

$$
\int_{\left(\mathcal{B}_{\rho}-\mathcal{B}_{R_{0}+1}\right) \cap\{u<\rho\}} u^{\alpha} \sqrt{1+|D u|^{2}} d x \leq|u|_{\infty, \mathcal{B}_{\rho}-\mathcal{B}_{R_{0}+1}}^{\alpha}\left\{c_{1}(n) \rho^{n}+|u|_{1, \mathcal{B}_{R_{0}+1}-\mathcal{B}_{R_{0}}}\right\}
$$

and in particular, with $M=\operatorname{graph} u_{\mid \mathcal{B}_{\rho}-\mathcal{B}_{R_{0}+1}}$

$$
\int_{M \cap B_{\rho}(0)} x_{n+1}^{\alpha} d \mathcal{H}_{n} \leq c_{1}(n) \rho^{n}|u|_{\infty, \mathcal{B}_{\rho}-\mathcal{B}_{R_{0}+1}}^{\alpha}+|u|_{\infty, \mathcal{B}_{\rho}-\mathcal{B}_{R_{0}+1}}^{\alpha}|u|_{1, \mathcal{B}_{R_{0}+1}-\mathcal{B}_{R_{0}}} .
$$

4. Proofs

We start with

Proof of Theorem 1. Suppose on the contrary to the statement of Theorem 1, there is a Lipschitz-solution $u \geq 0$ of the s.m.s.e. (*) which satisfies the growth condition

$$
u(x)=\mathrm{o}(|x|) \text { as }|x| \rightarrow \infty
$$

By Propositions 3 and 4, especially formula (12) applied to $M=\operatorname{graph}(u), d \mu=$ $d \mathcal{H}_{n}$ and $\xi=0 \in \mathbb{R}^{n+1}$ we get for all $0<\sigma<\rho<\infty$ the inequality

$$
\sigma^{-n-\alpha} \int_{B_{\sigma}(0) \cap M} x_{n+1}^{\alpha} d \mathcal{H}^{n} \leq \rho^{-n-\alpha} \int_{B_{\rho}(0) \cap M} x_{n+1}^{\alpha} d \mathcal{H}^{n}
$$

Since $\mathcal{L}^{n}(\{u=0\})=0$ there is some $\sigma_{0}>0$ with

$$
\sigma_{0}^{-n-\alpha} \int_{B_{\sigma_{0}} \cap M} x_{n+1}^{\alpha} d \mathcal{H}^{n}>0
$$

However, according to Proposition 8 we must have

$$
\lim _{\rho \rightarrow \infty} \rho^{-n-\alpha} \int_{B_{\rho} \cap M} x_{n+1}^{\alpha} d \mathcal{H}^{n}=0
$$

an obvious contradiction.
Proof of Theorem 2. Let $u \in B V_{+, \text {loc }}^{1+\alpha}\left(\mathbb{R}^{n}\right)$ be a local minimum of the variational integral

$$
E=\int u^{\alpha} \sqrt{1+|D u|^{2}}, \alpha>0
$$

in the class $B V_{+}^{1+\alpha}(\Omega), \Omega \subset \mathbb{R}^{n}$ arbitrary. Then we have $u \in B V_{\text {loc }}\left(\mathbb{R}^{n}\right)$ (in fact $u \in H_{1, \text { loc }}^{1}\left(\mathbb{R}^{n}\right)$ according to Tennstädt [TT1]) and the subgraph

$$
U:=\left\{(x, t) \in \mathbb{R}^{n+1} ; t<u(x)\right\}
$$

has locally finite perimeter in \mathbb{R}^{n+1}. By Theorem 10 in [BD], the supgraph U locally minimizes

$$
\mathcal{E}(U)=\int\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{U}\right|
$$

in \mathbb{R}^{n+1}. (In fact, in the paper $[\mathrm{BD}]$ only the case $\alpha=1$ is considered, however the generalization to arbitrary $\alpha>0$ is straight forward!). Now we are in the situation described in Proposition 6 with minimizing set U and arbitrary open set $\Omega \subset \mathbb{R}^{n+1}$. For $\xi=0$ and $0<\sigma<\rho<\infty$ arbitrary we get

$$
\sigma^{-n-\alpha} \int_{B_{\rho}}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{U}\right| \leq \rho^{-n-\alpha} \int_{B_{\rho}(0)}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{U}\right|
$$

By virtue of Proposition 7 and by letting $\rho \rightarrow \infty$ we finally arrive at

$$
\int_{B_{\sigma}(0)}\left|x_{n+1}\right|^{\alpha}\left|D \varphi_{U}\right|=0
$$

for every $\sigma>0$, hence $\partial U=\left\{x_{n+1}=0\right\}$.
Proof of Theorem 3. Theorem 3 follows from Propositions 6 and 7 analogously to the proof to Theorem 2.

Proof of Theorem 4. Suppose on the contrary to the statement of Theorem 4, that there is a non-trivial $u \in H_{1, \text { loc }}^{1}\left(\mathbb{R}^{n}\right) \cap C^{0}\left(\mathbb{R}^{n}\right)$ which solves the s.m.s.e. weakly in
$\mathbb{R}^{n}-\{u=0\}$ and which is of sublinear growth. By Proposition $3^{\prime} M=\operatorname{graph}(u)$ is stationary in \mathbb{R}^{n+1}. Proposition 4, formula (12) with $\xi=0$, Proposition 8 , and the assumption of sublinear growth imply that

$$
\sigma^{-n-\alpha} \int_{B_{\sigma}(0) \cap M} x_{n+1}^{\alpha} d \mathcal{H}_{n}=0
$$

for every $\sigma>0$ and $M=\operatorname{graph}(u) \subset \mathbb{R}^{n+1}$; whence we had $u=0$ on \mathbb{R}^{n}. This contradiction finishes the proof of Theorem 4.

References

[AF] Almgren, F. J., Jr. Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem. Ann. of Math. (2) 84 (1966), 277-292.
[BD] Bemelmans, J.; Dierkes, U. On a singular variational integral with linear growth. I. Existence and regularity of minimizers. Arch. Rational Mech. Anal. 100 (1987), no. 1, 83-103.
[BS] Bernstein, S. Über ein geometrisches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom elliptischen Typus. Math. Z. $2 \underline{6}$ (1927), no. 1, 551-558.
[BDG] Bombieri, E.; De Giorgi, E.; Giusti, E. Minimal cones and the Bernstein problem. Invent. Math. $\underline{7}$ (1969), 243-268.
[BDGM] Bombieri, E.; De Giorgi, E.; Miranda, M. Una maggioriazione a priori relativa alle ipersurfici minimali non parametriche. Arch. Ration. Mech. Anal. 32 (1969), 255-267.
[DG] De Giorgi, E. Una extensione del theorema di Bernstein. Ann. Sc. Norm. Super. Pisa, Cl Sci 19 (1965), 79-85.
[DU1] Dierkes, U. Minimal hypercones and $C^{0, \frac{1}{2}}$ minimizers for a singular variational problem. Indiana Univ. Math. J. $\underline{37}$ (1988), no. 4, 841-863.
[DU2] Dierkes, U. A classification of minimal cones in $\mathbb{R}^{n} \times \mathbb{R}^{+}$and a counterexample to interior regularity of energy minimizing functions. Manuscripta Math. $\underline{63}$ (1989), no. 2, 173-192.
[DU3] Dierkes, U. Über singuläre Lösungen gewisser mehrdimensionaler Variationsprobleme. Ann. Univ. Sarav. Ser. Math. $\underline{3}$ (1990), no. 2, 38-107.
[DU4] Dierkes, U. On the nonexistence of energy stable minimal cones. Ann. Inst. H. Poincaré Anal. Non Linéaire $\underline{7}$ (1990), no. 6, 589-601.
[DU5] Dierkes, U. Curvature estimates for minimal hypersurfaces in singular spaces. Invent. Math. $\underline{122}$ (1995), no. 3, 453-473.
[DU6] Dierkes, U. On the regularity of solutions for a singular variational problem. Math. Z. $\underline{225}$ (1997), no. 4, 657-670.
[DU7] Dierkes, U. Singular minimal surfaces. In: Geometric analysis and nonlinear partial differential equations, 177-193, Springer, Berlin, 2003.
[DHT] Dierkes, U.; Hildebrandt, S.; Tromba, A. J. Global analysis of minimal surfaces. Grundlehren der Mathematischen Wissenschaften, 341. Springer, Heidelberg, 2010. xvi +537 pp.
[DH] Dierkes, U.; Huisken, G. The n-dimensional analogue of the catenary: existence and nonexistence. Pacific J. Math. $\underline{141}$ (1990), no. 1, 47-54.
[EH] Ecker, K.; Huisken, G. A Bernstein result for minimal graphs of controlled growth. J. Differential Geom. 31 (1990), no. 2, 397-400.
[FW] Fleming, W. H. On the oriented Plateau problem. Rend. Circ. Mat. Palermo (2) 11 (1962), 69-90.
[GT] Gilbarg, D.; Trudinger, N. S. Elliptic partial differential equations of second order. Second edition. Grundlehren der Mathematischen Wissenschaften, 224. Springer-Verlag, Berlin, 1983. xiii +513 pp .
[GE] Giusti, E. Minimal surfaces and functions of bounded variation. Monographs in Mathematics, 80. Birkhäuser Verlag, Basel, 1984. xii +240 pp.
[MF] Maggi, F. Sets of finite perimeter and geometric variational problems. An introduction to geometric measure theory. Cambridge Studies in Advanced Mathematics, 135. Cambridge University Press, Cambridge, 2012. xx +454 pp.
[MJ] Moser, J. On Harnack's theorem for elliptic differential equations. Comm. Pure Appl. Math. $\underline{14}$ (1961), 577-591.
[OF] Otto, F. Zugbeanspruchte Konstruktionen Bd I,II. Ullstein Verlag 1962 \& 1966
[PS] Poisson, S. Sur les surfaces élastique. Mem. Cl. Sci. Math. Phys. Inst. France, deux. 167-225 (1812)
[SL1] Simon, L. Lectures on geometric measure theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, 3. Australian National University, Centre for Mathematical Analysis, Canberra, 1983. vii +272 pp.
[SL2] Simon, L. Entire solutions of the minimal surface equation. J. Differential Geom. 30 (1989), no. 3, 643-688.
[SL3] Simon, L. The minimal surface equation. Geometry, V, 239-266, Encyclopaedia Math. Sci., 90, Springer, Berlin, 1997.
[SJ] Simons, J. Minimal varieties in riemannian manifolds. Ann. of Math. (2) 88 (1968), 62-105.
[TT1] Tennstädt, T. Untersuchungen zur singulären Minimalfächengleichung. Dissertation, Universität Duisburg-Essen, 2016.
[TT2] Tennstädt, T. Mean Convexity of the zero set of symmetric minimal surfaces. Preprint, Universität Duisburg-Essen, 2016.
[TT3] Tennstädt, T. Hölder Continuity for continuous solutions of the singular minimal surface equation with arbitrary zero set. Preprint, Universität Duisburg-Essen, 2016.

Fakultät für Mathematik, Universität Duisburg-Essen, 45127 Essen, Germany
E-mail address: ulrich.dierkes@uni-due.de
E-mail address: tobias.tennstaedt@uni-due.de

IN DER SCHRIFTENREIHE DER FAKULTÄT FÜR MATHEMATIK ZULETZT ERSCHIENENE BEITRÄGE:

Nr. 769:	Mali, O., Muzalevskiy, A., Pauly, D.: Conforming and N Conforming Functional A Posteriori Error Estimates for Ellip Boundary Value Problems in Exterior Domains: Theory Numerical Tests, 2013
. 770:	Bauer, S., Neff, P., Pauly, D., Starke, G.: Dev-Div- and DevSym-DevCurl-Inequalities for Incompatible Square Tensor Fields with Mixed Boundary Conditions, 2013
Nr .771	Pauly, D.: On the Maxwell Inequalities for Bounded and Convex Domains, 2013
	On Maxwell's and Poincare's Constants 2013
Nr. 773:	Fried, M. N., Jahnke, H. N.: Otto Toeplitz's "The prob university infinitesimal calculus courses and their dema from infinitesimal calculus in high schools" (1927), 2013
Nr. 774:	Yurko, V.: Spectral Analysis for Differential Operato Variable Orders on Star-type Graphs: General Case, 2014
Nr. 775	Freiling, G., Yurko, V.: Differential Operators on Hedge Graphs with General Matching Conditions, 2014
Nr. 776:	Anjam, I., Pauly, D.: Functional A Posteriori Error Equalities for Conforming Mixed Approximations of Elliptic Problems, 2014
	Pauly, D.: On the Maxwell Constants in 3D, 2014
Nr. 778:	Pozzi, P.: Computational Anisotropic Willmore Flow, 2014
Nr. 779	Buterin, S.A., Freiling, G., Yurko, V.A.: Lectures on the The of entire Functions, 2014
780	Blatt, S., Reiter. Ph.: Modeling repulsive forces on fibres via knot energies, 2014
781	Neff, P., Ghiba, I.-D., Lankeit, J.: The exponentiated Hencky logarithmic strain energy. Part I: Constitutive issues and rank one convexity, 2014
7	Neff, P., Münch, I., Martin, R.: Rediscovering G.F. Becker's early axiomatic deduction of a multiaxial nonlinear stressstrain relation based on logarithmic strain, 2014
r. 783	Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: unifying perspective: the relaxed linear micromorphic continuum 2014
. 78	Müller, F.: On $C^{1,1 / 2}$-regularity of H-surfaces with a fr boundary, 2014
78	Müller, F.: Projectability of stable, partially free H-surfa in the non-perpendicular case, 2015
7	Bauer S., Pauly, D.: On Korn's First Inequality for Tangen or Normal Boundary Conditions with Explicit Constants, 2015
78	Neff, P., Eidel, B., Martin, R.J.: Geometry of logarithmi strain measures in solid mechanics, 2015
78	Borisov, L., Neff, P., Sra, S., Thiel, Chr.: The sum of squared logarithms inequality in arbitrary dimensions, 2015
78	Bauer, S., Pauly, D., Schomburg, M.: The Maxwell Compactness Property in Bounded Weak Lipschitz Domains with Mixed Boundary Conditions, 2015
Nr. 790:	Claus, M., Krätschmer, V., Schultz, R.: WEAK CONTINUITY OF RISK FUNCTIONALS WITH APPLICATIONS TO STOCHASTIC PROGRAMMING, 2015
Nr. 791	Bauer, S., Pauly, D.: On Korn's First Inequality for Mixed Tangential and Normal Boundary Conditions on Bounded LipschitzDomains in $\mathrm{R}^{\mathrm{N}}, 2016$
. 792:	Anjam, I., Pauly, D.: Functional A Posteriori Error Control for Conforming Mixed Approximations of Coercive Problems with Lower Order Terms, 2016
. 793	
r. 794:	Martin, R. J., Ghiba, I.-D., Neff, P.: Rank-one convexity implies polyconvexity for isotropic, objective and isochoric elastic energies in the two-dimensional case, 2016

Nr. 795:	Fischle, A., Neff, P.: The geometrically nonlinear Cosserat micropolar shear-stretch energy. Part I: A general parameter reduction formula and energy-minimizing microrotations in 2D,
Nr. 796:	Münch, I., Neff, P., Madeo, A., Ghiba, I.-D.: The modified indeterminate couple stress model: Why Yang et al.'s arguments motivating a symmetric couple stress tensor contain a gap and
	why the couple stress tenso may be chosen symmetric nevertheless,
	2016

[^0]: 2010 Mathematics Subject Classification. 49Q05,49Q10,49Q20,53A10,53C42.

