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Abstract

A projectability result is proved for surfaces of prescribed mean curvature
(shortly called H-surfaces) spanned in a partially free boundary configu-
ration. Hereby, the H-surface is allowed to meet the support surface along
its free trace non-perpendicularly. The main result generalizes known the-
orems due to Hildebrandt-Sauvigny and the author himself and is in the
spirit of the well known projectability theorems due to Radé and Kneser.
A uniqueness and an existence result are included as corollaries.

Mathematics Subject Classification 2000: 53A10, 35C20, 35R35, 49Q05

1 Introduction

Let us write BT := {w = (u,v) = u+iv : |w| <1, v > 0} for the upper unit
half disc in the plane. Its boundary is divided into

OBt =I1UJ, I:=(-1,1), J:=0Bt\I={we B+ : |w/=1}L

In the present paper, a surface of prescribed mean curvature H = H(p) €
C°(R3,R) or, shortly, an H-surface is a mapping x = x(w) : BT — R3 €
C?(B*,R?), which solves the system

Ax = 2H(x)x, A X, in BT, (L1)
|Xu|:|xv|v Xy Xy, =0 in Bt. ’

Here, y Az and y - z denote the cross product and the standard scalar product
in R3, respectively.

Observe that an H-surface is not supposed to be a regular surface, that
means, it may possess branch points wg € BT with x, A x,(wp) = 0.

We consider H-surfaces spanned in a projectable, partially free boundary
configuration, which means the following:

Definition 1. (Projectable boundary configuration)
Let S = ¥ x R C R? be an embedded cylinder surface over the planar closed
Jordan arc ¥ = 7(S) of class C®; here 7 denotes the orthogonal projection onto
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the x', 2%-plane. Furthermore, let T C R? be a closed Jordan arc which can
be represented as a C3-graph over the planar closed C3-Jordan arc T = =(T).
Finally, assume T N'Y = {m1, 2}, where w1, 72 are the distinct end points of T
as well as X2, and I’ and S meet with a positive angle at the respective points
p1,p2 € I'N S correlated by m; = w(p;), j = 1,2. Then we call {T', S} a
projectable (partially free) boundary configuration.

To be precise, in Definition 1, the phrase ”I" and S meet with a positive angle
at the respective points p1, p2 € I'N1S” means that the tangentential vector of
T" is not an element of the tangential plane of S at these points.

A partially free H-surface is a solution x € C?(B*,R3) N C°(B+,R3) of
(1.1), which satisfies the boundary conditions

x(w) € S forall wel,
x|y : J — T strictly monotonic, (1.2)
x(=1) =p1, x(+1) = p2

for a given projectable boundary configuration {I',S}. Roughly speaking, we
aim to show that any such partially free H-surface is itself projectable. This is
in the spirit of the famous projectability result for minimal surfaces by Radé
and Kneser and will be proved under additional assumptions on the H-surface
and the configuration {I', S}, namely: The boundary configuration shall be R-
admissible in the sense of Definition 2 below and the H-surface shall be Holder-
continuous on BT, stationary w.r.t. some energy functional Eq and stable
w.r.t. the corresponding generalized area functional Aq. Here Q is a given
vector field which satisfies a natural smallness condition and which possesses a
suitable normal component w.r.t. S as well as the divergence divQ = 2H; see
Section 2 for details.

The first results of this type were given by Hildebrandt-Sauvigny [HS1]-
[HS3]. They considered the special case of minimal surfaces; a generalization
to F-minimal surfaces can be found in [MW]. Concerning partially free H-
surfaces the only projectability result known to the author was proved in [M3].
There, the above mentioned vector field Q was supposed to be tangential along
the support surface S, which forces the corresponding stationary H-surface to
meet S perpendicularly along its free trace x|;. This condition was essential
at many points of the proof in [M3], in particular, while deriving the second
variation formula for Aq and establishing a boundary condition for the third
component of the surface normal of our H-surface. One motivation for writing
the present paper was to drop this restriction and to study H-surfaces which
meet S non-perpendicularly.

Methodically, we orientate on [M3] which in turn is based on the work of
Hildebrandt and Sauvigny in [HS3] and on Sauvigny’s paper [S1], where a cor-
responding projectability result for stable H-surfaces subject to Plateau type
boundary conditions has been proven.

The paper is organized as follows: In Section 2 we fix notations, specify our
assumptions and state the main projectability result, Theorem 1, as well as some
preliminary results on the H-surface and its normal. The consequential unique
solvability of the studied partially free problem is captured in Corollary 1. In
Section 3 we derive the second variation formula for the functional Aq allowing
boundary perturbations on the free trace x|;. Then, Section4 contains the



crucial boundary condition for the third component of the surface normal and
the proof of Theorem 1. We close with an exemplary application of Theorem 1
to the existence question for a mixed boundary value problem for the non-
parametric H-surface equation, Corollary 2.

2 Notations and main result

We start by specifying our additional assumptions on the boundary configura-
tion: Let {I', S} be a projectable boundary configuration in the sense of Def-
inition1. Let o = o(s), s € [0, sp], parametrize ¥ = 7(S) by arc length, that
is,

o€ C*([0,50],R?), |o'|=1o0n[0,s0], and so= length(¥) > 0.

Setting ez := (0,0,1) we define C?-unit tangent and normal vector fields t,n
on S as follows:

t(p) := (¢/(s),0), n(p):=t(p)Aes forpe{o(s)} AR, s€]0,s0]. (2.1)

Furthermore, we can write I' = {(z!, 2%, v(z!,2?)) € R® : (2!,22%) € L'}, where
L = 7(T) is a closed C3-Jordan arc and v € C3(L) is the height function. For
the end points p1, p2 of I' we assume to have representations

P1 = (0(0)77(0(0))a P2 = (0—(80)77(0—(80))'

The set [ UX bounds a simply connected domain G C R2, that is, 0G =T UX,
and we have ' N X = {my, m} with m; = m(p,), j = 1,2. With a; € (0,7) we
denote the interior angle between I' and ¥ at m; w.r.t. G (j = 1,2). Finally, we
assume that 3 is parametrized such that v := 7(n) points to the exterior of G
along X.

Definition 2. A projectable boundary configuration {I",S} is called R-admis-
sible, if the following hold:

(i) TUS C Z:={(p',p*,p®) € R® : |(p*,p?)| < R} for some R > 0.

(i) G is %wonvex, i.e., for any point & € OG there is an open disc D¢ C R?
of radius R such that G C D¢ and € € 0Dg.

For a given R-admissible boundary configuration {T', S}, we define the class

C(T', S; Z) of mappings x € Hi(B*,Z), which satisfy the boundary conditions
(1.2) weakly, i.e.,

x(w)e S foraa wel,
x|s : J = T continuously and weakly monotonic, (2.2)

x(—1) = p1, x(+1) = pa.

For arbitrary p € [0, 1), we additionally define its subsets

(T, 8;7) = {x cor, sz . XECBLD), } . (2.3)

x| : J — T strictly monotonic



Now let Q = Q(p) € C*(Z,R?) be a vector field satisfying

sup |Q(p)| < 1,
peZ (2.4)
divQ(p) =2H(p) forallpe Z.

Here the function H = H(p) belongs to C1*(Z) for some a € (0,1) and fulfills

1
sup [H(p)| < o (2.5)
pPEZ
We introduce the functional

Eq(x) = //{%|Vx(w)|2+Q(x)~xu/\xv(w)}dudv, x € HN(B*,Z), (2.6)
B+

and consider the variational problem
Eq(x) - min, x¢€C(T,S;Z). (2.7)

The following lemma collects some well known results concerning the existence
and regularity of solutions of (2.7) as well as stationary points of Eq.

Lemma 1. (Heinz, Hildebrandt, Tomi)

Let {T", S} be an R-admissible boundary configuration {T',S} and assume Q €

CY(Z,R3), H € CY*(Z) to satisfy (2.4) and (2.5). Then there exists a solution

x = x(w) of (2.7). x belongs to the class C,(T',S; Z) N C3*(B*,Z) for some

w € (0,1) and satisfies the system (1.1), i.e., x is a partially free H-surface.
More generally, any stationary point x € Co(T, S; Z) of Eq solves (1.1) and

belongs to the class C**(B*t,Z). Here, stationarity means

. 1
Jim —{Eq(x.) — Eq(x)} 20
for all inner and outer variations x. € Co(I',S;Z), € € [0,&0) with sufficiently
small g > 0; see Definition 2 in [DHT] Section 5.4 for the definition of inner
and outer variations.

We also associate the generalized area functional to Q:

Ag(x) = //{|XUAXU|+Q(X)~xu/\xv(w)}dudv, x € HY(B*,Z). (2.8)
B+

A stationary, partially free H-surface x € Co(T',S; Z) is called stable, if it is
stable w.r.t. Aq, that means, the second variation %AQ (%(-,€))|e=0 of Aq
is nonnegative for all outer variations %(-,&) € Co(T,S;Z), € € (—¢0,20), for
which this quantity exists; note that x has its image x(B%) in Z, according
to Lemmal. Since the first variation of Aq w.r.t. such variations X vanishes
for stationary x, any relative minimizer of Aq in Co(I', S; Z) is stable. In Def-
inition4 below, we give an exact definition of stability, which is used in the
present paper and which is somewhat less stringent than the above mentioned
requirement.
We are now in a position to state our main result:




Theorem 1. Let {T', S} be an admissible boundary configuration and let Q €
CY2(Z,R3) be chosen such that (2.4) is fullfilled with some H € C»*(Z), a €
(0,1), satisfying (2.5). In addition, we assume

0 _
— > Z 2.
GpSH(p) >0 foralpe (2.9)

as well as
(Q-n)(p) = (Q-n)(p',p*,0) forallp = (p',p*p°) €S,

(Q-n)(pj)| <cosa;, j=1,2.

(2.10)

Then any stable H-surface x € C,(T,S;7Z), u € (0,1), possesses a graph rep-
resentation over G. More precisely, x is immersed and can be represented as
the graph of some function ( : G — R € C>%(G) N C%*(G \ {m1,m}) N C°(G),
which satisfies the mized boundary value problem

. V¢ B .
d“}(\/ﬁ) = 27‘[(7 C) m G7 (211)
V(- v

VI+ V(P

Here v = w(n) denotes the exterior unit normal on X w.r.t. G and we defined
P =Q- n‘z S 01(2).

As a consequence of Theorem 1 we obtain the following

=¢ on¥\{m,m}, (=7 onl.  (212)

Corollary 1. Let the assumptions of Theorem 1 be satisfied. Then, apart from
reparametrization, there exists exactly one stable H-surface x € C,,(I', S; Z) with
some p € (0,1).

Proof. The existence of a stable H-surface x € C,,(I', S; Z) for some p € (0,1) is
assured by Lemma 1. Acccording to Theorem 1, we can represent x as a graph
over GG, and the height function ¢ solves the boundary value problem (2.11),
(2.12).

If there would exist another stable H-surface x € Cz(I',S;Z) with some
i € (0,1) and if ¢ denotes the height function of its graph representation,
which also solves (2.11), (2.12) by Theorem 1, we consider the difference function
f = ( — (. As is well known, f solves an elliptic differential equation in
G, which is subject to the maximum principle according to assumption (2.9);
cf. [S2] Chap. VI, §2. Consequently, f assumes its maximum and minimum on
0G =X UL.

Assume that f has a positive maximum at py € 3\ {m1,72}. Then Hopf’s
boundary point lemma implies

Vf(po) = (Vf(po) - v(po))v(po) with Vf(po)-v(po) > 0.

On the other hand, the first boundary condition in (2.12) yields (M (po)V f(po))-
v(po) = 0, where we have abbreviated

1

M(p) = / Dh(tVGi(p) + (1 - )VG(p)) dt, pe S,
0



with h(z) == —= z € R2. If we finally note

14|22

_ 1P — (€-2)°
(1+212)2

(Dh(2)€) - € >0, £eR?*\{0}, zeR?

we deduce that M is positive definite on X and arrive at the contradiction

0= (M(po)V f(po)) - v(po) = (Vf(po) - v(po))(M(po)v(po)) - ¥(po) > 0.

Hence, we conclude f < 0 on G and, similarly, one proves f > 0 on G. This
gives ¢ = ( on G, which yields x = xow with some positively oriented parameter
transformation w : B* — B7*. This proves the corollary. O

We complete this section with a preparatory lemma, which collects some
analytical and geometrical regularity results and first important informations
towards the projectability of our H-surfaces:

Lemma 2. Let the assumptions of Theorem 1 be satisfied and let x = x(w) €
C.(I',8;7Z) be an H-surface which is stationary w.r.t. Eq. Then there follow:

(i) x € C3*(B*,Z)nC**(BT\ {~1,+1},Z), and there holds
(%0 + Q(x) Axy)(w) L TS for all w e I, (2.13)
where T, S denotes the tangential plane of S at the point p € S.
(ii) f(B*) C G for the projection mapping f := 7(x).
(11i) Vx(w) # 0 for allw € OBT \ {—1,+1}, and Vx = 0 for at most finitely

many points in B,
(v) Set W := |xy, A Xy|, B := {w € Bt : W(w) > 0}, and define the
surface normal N(w) := Wx, A x,(w) as well the Gaussian curvature

K = K(w) of x for points w € B'. Then N and KW can be extended to
mappings

N e C?*%(BT, R} nCh(BF\ {-1,+1},R*) N C°(BF,R?),
KW € CY*(B™),
and N satisfies the differential equation
AN+2(2H(x)? — K — (VH(x)-N))WN = 2WVH(x) in Bt. (2.14)

Proof. (ii) Due to Lemmal, x is a stationary, partially free H-surface of class
C3*(B*,Z). In addition, we have f(OB*) = 9G due to the geometry
of our boundary configuration. An inspection of the proof of Hilfssatz 4
of [S1] shows, that this boundary condition, the smallness condition (2.5)
and the £-convexity of G imply f(BF) C G.

(i), (iii) A well known regularity result according to E.Heinz [He] implies x €
C>*(B* U J, Z). And from Theorem 1 in [M6] we obtain x € C2 (Bt U
1,7). Setting

I''={wel: fw)=(rox)(w) ¢ {m,m}},



the stationarity yields the natural boundary condition (2.13) on I’.

Due to (ii), the arguments from Satz 2 in [S1] yield Vx(w) # 0 for all
w € J. Assume that wy € I is a branch point of x and set By (wg) =
{w € BT : |[w—wg| < 6}. Then the asymptotic expansion from Theorem 2
in [M6] imply that x|B;r (wo)? 0 < 0 < 1, looks like a whole perturbed disc.

Consequently, the projection f| B} (wo) would meet the complement of G,

in contrast to f(B) C G. Indeed, for wy € I’ this effects from the natural
boundary condition (2.13), which can be rewritten as (Q - n)(x) = —N -
n(x) on I’; see Remark 1 below. And for wg € I\ I, i.e. f(wg) € {m1, 72},
this is trivial by geometry. Consequently, we have a contradiction and
Vx(w) # 0 for w € I follows; this completes the proof of the first part of
(ii).

Next we show I' = I, i.e. f(I) =%\ {m,m2}. From [HJ] or [M5] we then
obtain x € C%%(B* UI,Z) and (2.13) holds on I; this will complete the
proof of (i).

Assume there exists w* € I with f(w*) = m. Then there would be a
maximal point wy € I with f(wg) = m and f(w) € ¥\ {m,m} for
w € (wo,wp +¢) C I, 0 < e < 1. Consequently, the boundary condition
(2.13) holds on (wp,wp + €) and, in particular, we get

(xp + Q(x) AXy) - t(x) =0 on (wp,wp + €). (2.15)

By continuity, (2.15) remains valid for w = wp. In addition, the geometry
of S yields x,, = +|x,|es. This and the relation n = t A e3 on S imply

Xy - t(X) = £|x,| Q(x) - n(x) in wp. (2.16)

According to the conformality relations and Vx # 0 on I, we have |x,| =
|xy| # 0 in wgy. Denote the angle between x,(wo) and t(x(wp)) by Bi.
Then (2.16) and condition (2.10) imply

|cos 81| = |Q(x(wp)) - n(x(wp))| < cosay; or fi € (a1, 7 — aq),

where a; € (0,%) denotes the interior angle between I' and ¥ at 7
w.r.t. G. A simple application of the mean-value theorem then yields
a contradiction to the inclusion f (?) C G. Analogously, one shows that
there cannot exist w** € I with f(w**) = me. In conclusion, we have
I' =T and (i) is proved.

We finally show the finiteness of branch points in BT, completing the proof
of (iii): Hildebrandt’s asymptotic expansions at interior branch points [Hi]
imply the isolated character of these points. By Vx # 0 on U J, the only
points where branch points could accumulate are the corner points w =
+1. But this is impossible, too, according to the asymptotic expansions
near these points proven in [M4] Theorem 2.2; see Corollary 7.1 there. We
emphasize that the cited result is applicable, since I' and S meet with
positive angles v; € (0, ;] at p; by Definition 1, and since we assume

|Q(p;) - n(pj)| < cosa; <cosvy,, j=1,2.

(Note that a simple reflection of S can be used to assure {I', S} and x to
fulfill the assumptions of [M4] Corollary 7.1.)



(iv) The interior regularity N € C%%(BT ,R3), KW € CL%(B*) as well as
equation (2.14) were proven by F.Sauvigny in [S1] Satz 1. The global
regularity N € C1*(BT\ {~1,+1},R3) follows from (i) and (iii). Finally,
the continuity of N up to the corner points w = £1 was proven in [M4]
Theorem 5.4; see the remarks above concerning the applicability of this
result. O

Remark 1. By taking the cross product with x,, € T%S, the natural boundary
condition (2.13) can be written in the form

Q(x) n(x)=—-N-n(x) onl. (2.17)

This relation describes the well known fact that the mormal component of Q
w.r.t. to S prescribes the contact angle between a stationary H-surface and the
support surface S.

3 The second variation of Aq, stable H-surfaces

Let us choose an H-surface x € C,(I',S;Z), u € (0,1), which is stationary
w.r.t. Eq (and thus belongs to C*(B*, Z)NC%*(BT\{~1,+1}, Z) according
to Lemma?2 (i)). Consider a one-parameter family X = %(w, ), which belongs
to the class C*(T',S;Z) N C*(B+ \ {—1,+1},R?) for any fixed ¢ € (—¢&¢,¢0)
and which depends smoothly on ¢ together with its first and second derivatives
w.r.t. u,v. We call X an admissible perturbation of x, if we have:

(i) %(w,0) = x(w) for all w € BT,
(ii) supp(x(-,e) —x) C BT U for all £ € (—&o, £0),

(iii) y := £x(-,e)|._, € CABTULR?), z := Z5%(,¢)|__, € CH(BTUILR?).

The direction y = %5{(-, 5)|E:0 of an admissible perturbation X satisfies
y(w) € TypyS for allw e I. (3.1)

On the other hand, choosing an arbitrary vector-field y € C2(B* U I,R?) with
the property (3.1), one may construct an admissible perturbation % as described
above by using a flow argument (compare, e.g., [DHT] pp. 32-33).

In the present section, we compute the second variation j—;AQ (x(-, 5))‘620
for admissible perturbations. To this end, we have to examine the quantity

0%, . SN
@(|xu/\xq,|—|—Q(x)~xu/\xv) 0T 92

We first compute (3.2) on B’ U I with
B' ={weB": W) >0}, W=[x,A%|= x> =|x,]%

and then observe that the resulting formula can be extended continuously to
Bt U I. We start with the first addend on the right-hand side of (3.2):



Proposition 1. Let x be an admissible perturbation of a stationary H-surface
x € C,(',S,Z) as described above. Define ¢ :=y-N € C*(BTUI,R3). Then
there holds

0% . -
7(‘)(" A X”D’ O: |V(P|2 + 2KW302 - 2H(X)y ’ (Yu AXy + Xy A yv)]

" 8 F2H(X)[(Xu - Yu) + ©(X0 - ¥o) + (Xu - ¥)Pu + (X0 - )4
—[p(Ny + 2H(x)x4) - ¥],, — [¢(Ny + 2H(x)x,) - ¥],
+[N-(y Ay, + [N (yuAy)],

—2H(x)z - (Xu AXy) + (2 Xy )u + (2 Xp)» on B,

where K denotes the Gaussian curvature of X.

Proof. 1. We start by noting the relation

0? 1 02 1 70 2
) ~u/\~v ’ = 5T1ir a9 ~u/\~v2 ‘ *7[7 ~u/\~v2 i| ’
Oe? (Funxe]) e=0 2W 0e? (Funsl) e=0 4W3 85(|X %) e=0
(3.3)
on B’. Expanding X w.r.t. €, we infer
&2
x(-¢€) :x+5y+5z+0(52) on Bt (3.4)
and, consequently,
Xy AXy = WNHe(Xy AYyy +YuAXy) + 250 A Yo
2 (3.5)
+5 (u A2y + 20 AXy) +0(e?) on B
as well as
X AXy|? = W24 2eWN - (X4 A Yy + Yu AXy)

+2xy A Yo + Yu AXy |2 +282WN - (yu Ays)  (3.6)
+E2WN - (X4 A 2oy + Zy A Xy) + 0(2).
Combining (3.3) with (3.6) gives
2

0° . -
@(‘Xu A XU|)

Wy A Yy 4 Yu A X2+ 2N - (yu Ayy)
+N - (x4 A Zy + 24 A Xy)

e=0

—w-1 [N. (Xu AYo +Yu A xv)]2
= (yu NP+ (yo NP> +2N- (yu A o)
AN - (x4 A Zy + 24 AXy).

And since x is a conformally parametrized H-surface, we have

N (x4 A2Zy + 2y AXy) Zy - Xy + Zy - Xy

= (2 -Xu)u+ (2 %)y — 2H(x)Wz-N on B,



arriving at
32

(%)) = NP (v N 42N (7 A

) +(z xXy)u+ (2 %Xy)p —2H(x)Wz-N on B'.
(3.7)

. In the following, we sometimes write u! := w, u? := v and use Einstein’s
b b

convention summing up tacitly over sub- and superscript latin indizes from
1 to 2. Furthermore, we set A/ := W~!x,, -y for j = 1,2 obtaining
y = NMx,  +¢N on B.

Writing gjz 1= Xyi - Xk, 7", Fék, and hji 1= Xyiyue - N = =X, - Ny» for
the coefficients of the first fundamental form, its inverse and Christoffel
symbols, and the coefficients of the second fundamental form, respectively,
we then infer

Yuk = ()‘ik + )\ZF{k — Lphklglj)xuj + (/\jhjk + @uk)N on B’. (3.8)

Due to the conformal parametrization of the H-surface x, we have

. §ik
gjk = WJ]]W g]k = W7
W,
Fh = _F%Q = F%2 = Fgl = ﬁ, (3.9)
W,
3, =-TI =13, =T, =-——
22 11 21 127 op

h11 + h22 = 2W7‘[(X), hllhgg — (h12)2 = W2K on B/,
where 0, = §7% denotes the Kronecker delta.

. We now evaluate the first line of the right-hand side in (3.7): Using (3.8)
and (3.9), the first two terms can be written as

(Yu - N2+ (yo - N)? = (N Ay 4+ XNhag 4 0u)? + (M hig + Ahoy + @,)?
= |Vo|? + [(AN)? + (A2)?] (h12)? + (A1)?(h11)? + (A?)?(ho2)?
FANDN2R s WH (%) + 4\ pu + A2, )WH(x)

+2(>\2h12 — /\1h22)g0u + 2()\1h12 — >\2h11)g01) on B'.
(3.10)
We next write the third term on the right-hand side of (3.7) as

2N - (YU A Yv) = [N ’ (y A yv)]u + [N ’ (yu A Y)]v
—Ny, - (yAys) =N, - (yuAy) on B.
Using the relations N A x,, = x,,, N A x, = —x,,, we get from (3.8):

(3.11)

YAV = —o(A20 + AT, + N°T3, — phpe W Y)x,
+o (AL + AT, + NT — eha W x,
AN (N hag 4+ A2hog, + o0 ) Xy
A (Ahag 4+ Xhog + @ur )%y + (.. )N on B,

10



where (...)N denotes the normal part of y A y,». This identity, formula
(3.9), and the Weingarten equations N,; = —h;rg*'x,. on B’ yield

“Nu-(yAyo) =Ny (yu AY)
=W [(h1i1xu + h12xy) - (¥ Ayo) — (ha1Xy + hoaxy) - (y A ya)]
=2(0)’WK + (A hay — Nh12)ou — (A hia — Ahi1) gy
+o[Abhiz — Abhas — MW, H(x)] — o [A2hi1 — A2z + N2W,H(x)]

+[(AD? + (A*)?] [ha1ha2 — (R12)?] on B'.
(3.12)
According to the Codazzi-Mainardi equations

hotyw —hooy + W H =0, hi1y —higy —WoH =0,
we infer
Mhig — A hoy — MW, H(x) = (M hi2)y — (A haz)a,
Mhip — M hio + NPW,H(x) = (A2h11)y — (A%hi2), on B'.

Inserting these identities into (3.12) and the resulting relation into (3.11),
we arrive at

2N - (Yu AYyo) = [N- (Y AY)]u + [N (yu AY)lo
+2(0)2WK + (Ahga — A2hi12)ou — (A'haa — A2ha1) e,
—o(Mhag — A2h12)y + (A hia — A2h11),

+[(AH)2 + (A?)?] [h11ho2 — (h12)?] on B
(3.13)
Adding (3.10) and (3.13) we now find

(yu N)* + (yo - N)? + 2N - (yu Ayo)
= |V<p|2 + 2(90)2KW + [N ’ (y A YU)]U + [N ’ (Yu A Y)]U
- [@(Alhgg — /\2h12)}u + [@(Alhlg - /\2h11)]v

+F2WH(x) [(A1)2h11 + (A%)?hog + 22X\ 2hys + 2(M o + A20,)]
(3.14)
on B’. Finally, we calculate via the Weingarten equations and (3.9)

>\1h22 — /\2h12 = Wﬁl(hzzxu — hlng) Yy = (Nu + QH(X)XU) -y,

Mhiz — A2hyp = Wﬁl(huxu —hiixy) y = —(Ny + 2H(x)x,) - ¥
(3.15)
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as well as
(AD2h11 + (A2)2hag + 2201\ %R1o + 2(A Lo, + A20,)
= M\ hyy + A2his) + A2(A hig 4+ A2has) + 2(M oy + A20,)
= A (Ny - y) = M(N, - y) +2(M o + Np,)
=W (xu - y)(N-yu) + (%0 - y) (N y0) ] + (Mo + A200)
=W p(%u - Yu) + 9(X0 - X0) + (Xu - ¥)Pu + (X0 - y) 0]
Wy - (yu Ax) +y - (Xu AYo)]

(3.16)
Inserting (3.15) and (3.16) into (3.14), the asserted identity follows from
the resulting relation and formula (3.7). O

Proposition 2. Under the assumptions of Proposition 1, there holds

82
de?

[Q(%) -+ (%u A %))

= QW()OQ [VH(X) "N — 2H(X)2] + 2/H(X)y : (Xu ANYo +Yu A Xv)

e=

—2H (%) [@(Xu - Yu) + @(Xo - Vo) + (Xu - ¥)Pu + (X0 - ¥)o0]
F2[pH(x) (% - ¥)], + 2[pH ) (%0 - y)], + 2H(x)z - (x4 A Xy)

DQ(x) ) v Ax)], + [Qx) - (zAx0)], + Q) (y Ay,

DQX)y) - (xu Ay)], + [QX) - (xu A2)], +[QX) - (yu AY)],

+{

(

+[(

on B'.

Proof. Using (2.4) and the general relation
[Ma]-(bAc)+a-([Mb]Ac)+a-(bA[Mc]) = (trM)a-(bAc) (3.17)

for arbitrary vectors a,b,c € R? and matrices M € R3*3 with trace tr M, we
first compute

on BT. Having (3.4) and (3.5) in mind, a second differentiation yields at e = 0:

82

922 = Q[VH(X) 'y]y (X AXy) +2H(X)Z - (x4 A Xyp)

F2H(X)Y - (Xu A Yo + Yu A Xy)

+[(DQX)Y) - (v Axw)], + [QX) - (2 Ax,)],
+Qx) - (y Ayw)], + [(PQX)y) - (xu AY)],
+Q) - (xu A2)], + Q) - (yu AY)],-

[Q(i) ’ (iu A iv)] £=0

(3.18)
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Writing again y = Mx,, + ¢N on B’ with M = W~!x,, - y and employing
(1.1), the assertion follows from (3.18) and the identity

2[VH(X) - y]y - (%u AXy)
= 2W*VH(x) - N + 20N WH (),
= 2W?VH(x) - N+ 2[pH(x) (x4 - ¥)], + 2[pH(x)(xs - ¥)],
—2H(x) [p(%u - Yu) + ©(%0 - o) + (Xu - ¥)pu + (X0 - ¥)P0]

— AW H (x)2.
O

As already announced, the right-hand sides in the results of Propositions
1 and 2 can be extended continuously onto BT U I, according to Lemma 2.
Hence we can compute the second variation via the divergence theorem for
any admissible one-parameter family X(-,e) with direction y € C2(BT U I,R?)
satisfying (3.1). Nevertheless, we concentrate on directions of the form

= <p(w) x(w w
Y0) = ey NGy QK + N ), (3.19)

with some function ¢ € C?(B* U I). Note that y is well-defined according to
assumption (2.4), belongs to C?(B* U I,R3), and satisfies y - N = ¢ as well as
(3.1); for the latter, see Remark 1.

Definition 3. For given ¢ € C*(BY U 1) we definey € C*(BT UI,R?) by
(3.19) and consider the admissible perturbation X(-,&) with direction y. Then
we set

52AQ(X, )= %AQ (5((7 5)))

for the second variation of Ag(x) with dilation ¢.

e=0

In order to compute 62 Ag(x, ¢), we introduce the curvature of the cylindrical
support surface S defined by

k(p) :=—(0"(s),0) -n(p) for p € {o(s)} xR, s € [0,s0], (3.20)

compare Section 2. Note that, due to the cylindrical structure of S, we have the
relation

[Dn(p)¢1] ¢y = £(P)[¢1 - t(P)][¢y-t(P)] forall €1, ¢y € TS, p €S, (3.21)

interpreting Dn as the Weingarten map of S.

Lemma 3. Let x € C,(I',5;Z), p € (0,1), be a stationary H-surface w.r.t. Eq
and let o € C2(BT UI) be chosen. Setting

q(w) == [2H(x(w))? — K(w) — VH(x(w)) - N(w)|W(w), we BTUI, (3.22)
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we then have

52 Aq(x, ) // |Vp|? — 2q¢* dudv+/g021+Q du
Q@)+ 1) 1)
+J¢{ 1+Q

k() [ (30 + Q(x) Axu) - 1 H( x) + N) - t(x)]”

~

! 1+ Qx) - N -
(3.23)
Proof. We add the results of Propositions 1 and 2 obtaining
g—;(\iu A K| + Q(X) - Xy A Xy) e
= |Ve|* = 2¢9% — [p(Ny - y)], — [¢(N, - y)],
+H[(DQX)y) - (y Ax0)], + [(DQ ()) (xu AY)],
Q) +N) - (yAyo)], + [(Qx) +N) - (yu Ay)],

[z (xu + %0 A Q(X))]u + [z (xv + Q(x) /\X“)]v'
Having y || (Q(x) + N) on [ in mind, the divergence theorem yields

0* o\ e A=
52AQ(X7 99) = //@Oxu /\Xv‘ + Q(X) * Xy /\Xv) 0
B+

//{\V90I2—2qs02}dudv+/so(Nv-y)du
B+ I

—/{(DQ(X)Y)'(Xu/\Y)+Z' (%0 + Q) A ) | du.

I

(3.24)
Due to the special choice (3.19) of y, the first three terms on the right-hand side
of (3.24) are identical with those in the announced relation (3.23). In order to
identify the fourth terms of (3.23) and (3.24), we recall Lemma2 (i) and deduce

z- (xy + Q(x) Axy) = (z-n(x))[(x0 + Q(x) Axy) n(x)] onl. (3.25)

Similar to [HS3] p. 431, we compute z-n(x) on I: Since X(w,e) € S holds for all
w € I and € € (—¢p,&p), we have %i(w,s) -n(X(w,e)) = 0 and, consequently,

2
gzgi(uue)-n(i(uas))+f§Zi(uys)-[l)n(i(uus))é%i(w,eﬂ =0

for w € I and € € (—¢eq,&0). For € =0 we employ (3.21) and infer
z-n(x) = —k(x)[y - t(x)]2 on [.

Together with (3.25), we arrive at

2

z- (% + Q(x) Axy) = —r(x)[(x0 + Q(x) Axy) -n(x)] [y - t(x)]” on I
Putting this relation into (3.24), proves the assertion. O
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Remark 2. By a standard approzimation argument, dilations ¢ € Hi(B*) N
CO(BT UI) are admissible in the second variation §>Aq(x,¢) due to formula

Definition 4. A partially free H-surface x € Cu(T,S;Z) with 5 Aq(x,¢) >0
for any dilation ¢ € H3(BY) N C%(B*) is called stable.

4 Boundary condition for the surface normal
and proof of the theorem

In order to deduce the crucial relation N > 0 on B+ for the third component
of the surface normal of our stable H-surface, we will combine formula (3.23)
with the following boundary condition:

Lemma 4. Let the assumptions of Theorem 1 be satisfied and let a stationary
H-surface x € C, (T, S; Z), p € (0,1), be given. Then, the third component N3
of the surface normal of x fulfills the boundary condition

{ N, - Q(x) I [DQ(X)(Q(X) + N)] . [xv + Q(x) /\xu}
1+Q(x) N (1+Q(x) N)?

L) [(x0 + Q(x) A x,) - n(x)][(Q(x) + N) - t(x)]”
(1+Q(x)-N)?

N3

v

}N3 on I,

(4.1)
where t, n, and k were defined in (2.1), (3.20).

Proof.
1. From (1.1) and Lemma 2 (iv) we get the well known relations
N, = NAN, —2H(x)x,, N, =-NAN,—-2H(x)x, onBtUI. (4.2)

Writing H = H(x), Q = Q(x), k = £(x) etc. and employing (4.2) as well
as (2.17), we compute

(N, - QN? = {[(Q+N)-N,N} - es
= —{(NAN) A (Q+N) = N- (Q+ N)N. | - e
= N, A Q+N) + 2Hx, A (Q+N) — [1+(Q-N)N, } - e
= (NAes), - (Q+N)+[14+(Q -N)N? on I
Consequently, the asserted relation (4.1) is equivalent to the identity
(NAes), - (Q+N) = —{[DQQ+N)]- (x, + QAx,)

3
ol + QA% ul((Q 4 N) 87 b
(4.3)

on I.
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2. Next, we manipulate the left-hand side of (4.3): Having (2.17) in mind,
we find

(Q+N)Ae3=(Q+N)A(nAt)=[(Q+N)-tjn onI.
Together with (3.21), we infer

(Q+N)Aes]y- (Q+N) = [(Q+N)-t|{[(Dn)x,] - (Q+N)}

= K[(Q+N)-t]*(x,-t) onlI.
(4.4)
On the other hand, we calculate

(xu - t)(1+Q-N) = (x4-t)[N-(Q+N)]

[xu AN (Q+N)]- (EAN) — (xy - N)[t- (Q + N)]
= {xuA(Q+N)] n}n-(tAN)]
—[(xy + QAx,) -n]N® on I

or, equivalently,
N3

From (4.4) and (4.5) we now deduce
(NAes)  (Q+N) = [(Q+N)Aesu (Q+N) - (QAes3)u (Q+N)

N3
1+Q N

_K“[(X'u +QAX,) - n][(Q +N) - t]2

—(QAe3), - (Q+N) onl.
(4.6)
By inserting (4.6) into (4.3), the claimed relation (4.1) becomes equivalent
to

3

(QAes)u (Q+N) = [DQQ+N))-(xe + QA% T g

onl. (4.7)

3. In the next step, we observe that (4.7) is equivalent to the identity
[(DQ)x,] [es N (Q+N)] +x,y - {e3 AN(DQ)(Q+ N)}} =0 onl. (4.8)
Indeed, the left hand side of (4.7) can be written as
(QAes)u (Q+N) = {[(DQ)xu]Aes}-(Q+N) = [(DQ)xu]-[esA(Q+N)],
whereas we compute in the right hand side
[DQ(Q + N)J - (x, + Q Ax,)N?
= [(x0 + QAxy) AN]- {[DQ(Q + N)| A es}
=(1+Q -N)x, {[PDQ(Q+N)]Aes} onl.

This proves the claimed equivalence.
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4. It remains to prove (4.8). Applying the relation (3.17) with a = x,,
b=e3,c=Q+ N, and M = DQ, we obtain

[(DQ)xu] - [es A (Q + N)] + xu - {es A [(DQ)(Q + N)]}
= —x,  {[(DQ)es] A (Q+N)} + (tr DQ) {xu - [es A (Q + N)]}
— [(DQ)es] - [xu A (Q+N)] on I,

where we also used Q + N || TxS. For the same reason, x, A (Q + N)
is normal to S along I and, as a consequence, the right hand side of the
above identity vanishes. Indeed, we have

9
op?

0

DQ(ples] n(p) = |5 5Q(p)]| -n(p) = 55 [Q(P) m(p)] =0 on's,

by assumption. This completes the proof of (4.8), and (4.1) is confirmed.
q.e.d.

We are now able to give the

Proof of Theorem 1. 1. According to Lemma 2 (iv), the surface normal N =
(N, N2, N?3) of x belongs to C2*(BT)NC*(B+\{~1,+1})NC°(BT). In
addition, the inclusion f(B) C G and the &-convexity of G imply N® > 0
on J\ {—1,+1} as was shown in [S1] Satz 2. The behaviour of the surface
normal near the corner points £1 was studied in [M4] Theorem 5.4; the
applicability of the cited result follows — after reflecting S and rotating
appropriately in R® - from the assumption |(Q - n)(p;)| < cosa; < cosv;
for j = 1,2, where v; denote the angles between I and S at p; (j =
1,2). In particular, N3(41) cannot vanish and, by continuity, we infer
N3(£1) > 0. Consequently, the dilation w := (N3)~ = max{0, —N3} €
Co(B* UI)N HY(B") is admissible in the second variation of Aq(x).
Writing w? = —w N? and |Vw|? = —Vw - VN3, we obtain from Lemmas
3 and 4:

62 Aq(x,w) / {|Vw|? — 2qw?} dudv — /oJN3 du
T

//{dw WVN?) +w(AN? +2gN?)} dudv — /wN3 du
I

// (AN® 4 2gN?) dudv——Q//w’H, X)W dudv < 0,

where we have applied Gauss’ theorem, equation (2.14), and assumption
(2.9) in the last line. The stability of x thus yields §?Aq(x,w) = 0.

2. Now we choose £ € C2°(B™) arbitrarily. Then also w + &£ is admissible in
§2Aq(x,) for any £ € R. The function Z(¢) := §2Aq(x,w + €£) depends
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smoothly on € € R and satisfies E > 0 as well as Z(0) = 0. Consequently,
we have Z'(0) = 0, which means

/{Vw-V£—2qw£}dudU:0 for any ¢ € C°(B™),
Bt

according to formula (3.23). From w = 0 near J, we conclude w = 0 by
means of the weak Harnack inequality. Hence, we have N3 > 0in B+. Due
to assumption (2.9) and equation (2.14), we further have AN3+2¢N3 < 0
in B*. Therefore, Harnack’s inequality, in conjunction with N3 > 0 near
J, yields N3 > 0 in BT U.J. Finally, we have N3 > 0 on I and hence
everywhere on the closed half disc B*. Indeed, if N3(wg) = 0 would be
true for some point wy € I, relation (4.1) would imply N2 (wg) = 0. But
this is impossible due to Hopf’s boundary point lemma.

. Since we have no branch points on 9B \ {—1,+1} according to Lemma
2 (iii), the relation N3 > 0 on BT implies 122 — 222! > 0 on BT \
{—1,4+1}. Consequently, the projection f = 7(x) = (x',22) : BT — R?
maps 0BT topologically and positively oriented onto dG. As in [S1] Hilfs-
satz7, an index argument now shows that f : B¥ — G is a homeo-
morphism, x has no branch points in BT, and Jr > 0 is satisfied in
B+\ {—1,+1}. By the inverse mapping theorem and the regularity of x,
the mapping f : G — B¥ belongs to C%(G \ {p1,p2}) N C°(G), where we

abbreviated p; = 7(p;), j =1,2.

Now we consider ¢ := 2%0 f~1 € C%(G \ {p1,p2}) N C°(G). Since we have
(2,2, ¢(a!, 2%)) = x o f~'(2',2?), C is the desired graph representation
over (G satisfying the differential equation (2.11) and the second boundary
condition in (2.12). In addition, we compute

¥(x) = Q(x)-nx) 2 —N.n(x)
- m@,czz, 1) (v(x),0)
V¢ v(x)

- VSTV (gl g2 1,2 1.2y ey
W, (4,2, ¢(x,27)), (x,2%)¢€
Hence, ¢ is a solution of the boundary value problem (2.11), (2.12), and
standard elliptic theory yields ¢ € C%%(G) N C%%(G \ {p1,p2}) according
to the regularity assumptions on Q, H, S, and I'. This completes the
proof.
O

We finally give an example of how to apply Theorem1 to the existence

question for the mixed boundary value problem (2.11), (2.12).

Corollary 2. Let G C Bg := {(2',2%) € R? : |(z!,2?)| < R} be a &-convez
domain with boundary 0G = T UX, where I',Y € C? are closed Jordan arcs,
which satisfy T N'Y = {71, ma} and which meet with interior angles a; € (0, 3]
w.r.t. G at the distinct points m; (j = 1,2). In addition, assume that ¥ can be
written as a graph

2= {(z"2%) eR?: 2® =g(z'), a <z <b}, —R<a<b<R,
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with some function g € C3([—R, R]). Moreover, let H € C1*(Bg), ¢ € CH*(X)
and v € C*() be given functions and abbreviate ho = supp, |H|, ¢y =
supy, ¥, go = SUD[_R,R] |g'|. Finally, suppose the conditions

4Rho + oy/1+ g3 < 1, [Y(mj)| < cosay, j=1,2, (4.9)

to be satisfied. Then, the boundary value problem (2.11), (2.12) has a unique
solution ¢ € C>*(G) N C*%(G \ {m,m=2}) N C°G).

Remark 3. Note that the prescribed mean curvature function H in Corollary 2
does not depend on the hight p®. If one wants to allow such a dependence, one
has to use estimates for the length of the free trace as given in [M2]; see [M3]
sec. 6 for a description of the required arguments.

Proof of Corollary 2. We assume w.l.o.g. that the exterior normal v w.r.t. G is
given by v = (1 + (¢/)2)"2 (g, —1) along ¥ and set

2
p —_

Qa(p*,p?) =2 ( )H(pl,n) dn—(p'.g(')V1+9g (@), (',p?) € Br.
g(p?
We use the notations Z = Br x R, I' = graphp, § = ¥ x R,n = (1,0), ...
from above and set Q(p) := (0,Q2(p*, p?),0) for p = (p*,p?,p?) € Z. Then, Q
belongs to C1%(Z,R?) and satisfies

divQ = Q2 p2 = 2H in Z, Q-n=19¢Y on.

In addition, Q fulfills relations (2.10) and sup, |@| < 1, according to our assum-
tions (4.9). Consequently, the preconditions of Theorem 1 and Corollary 1 are
satisfied. The graph representation of the existing (and unique) stable H-surface
x € C, (I, S, Z) yields the desired solution of (2.11), (2.12). O
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