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Abstract

We consider the three-dimensional Cosserat model and two-dimensional
Cosserat thin plate model provided by Neff for a specific case. In order to
find minimizers of the energy function, we derive the corresponding Euler-
Lagrange equations. That is done subject to a specific situation treated.
After the derivation, we consider the pure bending problem by skipping
the membrane factor. In this fashion, we obtain a simplified system of
differential equations. Finally, a simple solution is found for the simplified
system.
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1 The underlying three-dimensional Cosserat model

In [?] a finite-strain, fully frame-indifferent, three-dimensional Cosserat micropo-
lar model is introduced. The two-field problem has been posed in a variational
setting. The task is to find a pair (¢, R) : Q@ C R® — R® x SO(3,R) of deforma-
tion ¢ and independent microrotation R € SO(3,R) minimizing the energy
functional I,

16,0 = [Wan(B'V0) + Wouns B D) = (o) - M@V (L)

—/HN(QO) dS — [, (R)dS + min. w.r.t. (¢, R),
I's I'e
together with the Dirichlet boundary condition of place for the deformation ¢

on I ¢, = gq and three possible alternative boundary conditions for the
microrotations R on I,

o Ed ) (CI/)
Ry = { polar(Vip), (b) (1.2)
no condition for R on T, (c)

(a) - the case of rigid prescription
(b) :  the case of strong consistent coupling

(c): induced Neumann-type relations for R on I'.

The constitutive assumptions on the densities are

— — — A — 2
Winp(U) = pe[lsym(U = D)|* + pie [| skew (D) |[* + 5 tr [sym(T = )], (1.3)
U=RF, F=Vp,
L1+P 9 9 9 1+p
Weure(R) = 1 lc2 (14 as LK) (o5 || sym R[]* + e || skew R]|* + a7 tr [8R]7)

A=R'DR = (ETV(E.el),ETV(ReZ),ETV(E.eg,)) :
the third order curvature tensor

under the minimal requirement p > 1, ¢ > 0. The total elastically stored energy
W = Wmp + Weury 1s quadratic in the stretch U and possibly super-quadratic in
the curvature K. The strain energy W, depends on the deformation gradient
F = Vi and the microrotations R € SO(3,R), which do not necessarily coincide
with the continuum rotations R = polar(F'). The curvature energy We,, de-
pends moreover on the space derivatives D, R which describe the self-interaction of
the microstructure.’ In general, the micropolar stretch tensor U is not sym-
metric and does not coincide with the symmetric continuum stretch tensor
U = RTF = VFTF. By abuse of notation we set || sym &> := 327 || sym £||?

!Observe that ETV(R.ei) # ETGIZ,E € 50(3,R).



for third order tensors &, cf.(??). Here Q C R® is an open domain with boundary
0Q and I' C 09 is that part of the boundary, where Dirichlet conditions g4, Rg
for deformations and microrotations or coupling conditions for microrotations,
are prescribed. T'g C 0€) is a part of the boundary, where traction boundary
conditions in the form of the potential of applied surface forces I1y are given
with TN Ty = (. In addition, ' C 99 is the part of the boundary where the
potential of external surface couples II,;, are applied with ' N T'c = (). On the
free boundary 0Q \ {I' UT's UT'¢} corresponding natural boundary conditions
for (¢, R) apply. The potential of the external applied volume force is IT s and
IT); takes on the role of the potential of applied external volume couples. For
simplicity we assume

Hi(p) = (f,9), Tu(R) = (M, R), (1.4)
HN(QO) = <Na (:0> ) HMc (E) = <Mcaﬁ> )

for the potentials of applied loads with given functions f € L*(Q,R*), M €
L2(Q,M*3) N € L*(I's,R3), M., € L*(I'c,M**3). The parameters p, A > 0
are the Lamé constants of classical isotropic elasticity, the additional parameter
te > 0 is called the Cosserat couple modulus. For p. > 0 the elastic strain
energy density Wy, (U) is uniformly convex in U. Moreover V F' € GL*(3,R)

— =T : —T : =
Winp(U) = Wnp(R F) > min(p, 1) |R° F — 1||* = min(p, pe) | F — R|”

> . . . ) _ . )

> min (4, ) L. |F = R[|* = min(u, p1) dist*(F, O(3, R))

= min(p, 1) dist*(F, SO(3, R)) = min(g, 11.) || F' — polar(F)||*

= min(y, p.) |U — 1|7 (1.5)

In contrast, for the interesting case p. = 0 the strain energy density is only
convex w.r.t. F and does not satisfy (1.5).? The parameter L, > 0 (with
dimension length) introduces an internal length which is characteristic for the
material, e.g. related to the grain size in a polycrystal. The internal length L. > 0
is responsible for size effects in the sense that smaller samples are relatively
stiffer than larger samples. We assume throughout that ay, as,a > 0,a7 > 0.
This implies the coercivity of curvature

et >0 VARETB): Wen(8) > ¢ ||8)HPH, (1.6)

which will be a basic ingredient of the mathematical analysis. The non-standard
boundary condition of strong consistent coupling ensures that no unwanted
non-classical, polar effects may occur at the Dirichlet boundary I'. It implies for
the micropolar stretch that U, € Sym and for the second Piola-Kirchhoff stress
tensor Sy 1= F_IDFme(U) € Sym on I as in the classical, non-polar case. We
refer to the weaker boundary condition U‘F € Sym as weak consistent cou-
pling. It is of prime importance to realize that a linearization of this Cosserat
bulk model with g, = 0 for small displacement and small microrotations com-
pletely decouples the two fields of deformation ¢ and microrotations R and leads

2The condition F € GL™(3,R) is necessary, otherwise | F — polar(F)||> = dist*(F, O(3,R)) <
dist?(F,S0(3,R)), as can be easily seen for the reflection F' = diag(1, —1,1).
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to the classical linear elasticity problem for the deformation.> For more details

on the modelling of the three-dimensional Cosserat model we refer the reader to
the original work of Dr.Neff.

2 The Cosserat thin plate model

Now we introduce a two-dimensional minimization problem for the deformation
of the midsurface m : w C R? — R® and the microrotation of the plate (shell)
R:w CR* — SO(3,R) solving on w:

— h3
i / B Wonp () + B W (8) + 15 Woena(8) do -+ min. (2.7)
wr.t. (m,R), wCR.
U= ETﬁ’, F = (Vm|R;), (reconstructed deformation gradient),
_ _ _ A _
Wap(U) = pll sym(U — L)||* + pic|| skew (U) ||* + QMMJF T trlsym(U — 1)),
L¢*? 2 2
Weury (Rs) = p—5~ (1 + aa L[| K[|*) (s || sym £5]|” + a || skew ()

1+p

+ az tr(ﬁs)Z)T )
R, = (ET(V(§61)|0),FT(V(R‘BQ)|0),§T(V(§€3)0)) :

(reduced third order curvature tensor),

Whena (Re) = pill sym (Re) [|* + peel| skew (85) || + tr(sym(&))”

7

2u+ A
R = ET(V§3|0) = &,%, (second order , non-symmetric bending tensor).

Here e; denote the standard Euclidian basis vectors. This problem has been

derived by Neff based on (1.7) by a formal asymptotic ansatz. We want to treat
this problem mathematically in a simplified setting.

3 Basic theorems of the calculus of variations

In order to construct a system of differential equations with Dirichlet bound-
ary conditions from the minimization problem stated here above, we introduce
the fundamental lemma of the calculus of variations and the derivation of the
corresponding FEuler-Lagrange equation.

Theorem 3.1 (The Euler-Lagrange equations)
Let F € C*(R*,R) be given and consider the minimization problem,

b
/F(a:,y,y') dx —min. wrt. y, yla)=«a, yb) =4 (3.8)

a

3Thinking in the context of an infinitesimal-displacement Cosserat theory one might erro-
neously believe that p. > 0 is strictly necessary also for a ”true” finite-strain Cosserat theory.
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If y is a solution of (3.8), it is necessary that the following Euler-Lagrange
equations hold,

d

B y(2),¢/(2)) = B, y(2),y' (). (3.9)

(Here Fy and Fj denote partial derivatives w.r.t. the corresponding slot).

Proof. Let us consider a test function v € C'[a,b] with u(a) = u(b) = 0. As-
sume that y is a solution of the minimization problem. For all # € R, the function
y + 0u is a competing function with satisfies the boundary condition. Hence, the
stationarity condition is

b

d
@ /F(x, y(2) + Ou(z), o (x) + 0 (x)) dx = 0 (3.10)
=0
Since we deal with smooth functions, we may take the derivative d% inside and
obtain
/ d
/@F(x,y(az) + u(z), ' () + 0u'(z)) dx = 0, (3.11)
which for § = 0 turns into
b
/(F2~u+F3~u')dX:0. (3.12)

a
The second term can be integrated by parts. The result is

/ (F2<m,y(x>,y'<a:>> - %Fgu,y(x),y'(x))) W(@)ds=0,  (313)

a

where we used the zero boundary values for u. By invoking the following lemma,
the proof is finished.

Lemma 3.2 (The fundamental lemma of the calculus of variations)
If v is piecewise continuous on [a, b] and iff; u(x)v(z)dx = 0 for every u in C'|a, b]
that vanishes at the endpoints a and b, then v = 0.

Proof. We proceed by contradiction and assume that v # 0. Then there is a
nonempty open interval («, ) contained in [a, b] in which v is continuous and has
no zero. Without loss of generality, we may assume that v(z) > 0 on («, 5). We
can find easily a function u in C''[a, b] such that u(x) > 0 on (a, 3) and u(x) =0
elsewhere in [a, b]. Since f; wodx = faﬁ wvdx > 0, we have a contradiction, hence
v=0.



4 Calculation of building blocks of the mini-
mization problem

In the following section all necessary building blocks for the minimization prob-
lem will be calculated and the integration involved in (2.7) will be reassembled
by those blocks.

First of all we consider the problem (2.7) in a very special setting. We assume
a basically one-dimensional situation (bending in one plane) such that we can
assume,

m:R?— R, R:R*~ SOB3,R), (4.14)
to be given by
my () B cosa(z) 0 sina(z)
mzy)=| y |, Ry = 0 10 , (4.15)
ms(x) —sina(z) 0 cosa(x)

where @ is a continuous differentiable function from R to R. Looking at Wyend, Weurv
and Wy, we need in the first place the following matrices:

L sina(x) B cosa(z)a'(x) 0
R3 = R€3 = 0 , VR:J,(.I', y) = 0 0 y
cos a(x) —sina(xz)a'(x) 0
Y (cosa(z) 0 —sina(z) cosa(z)a’'(z) 0 0
R(VEl)=[ o 1 0 : 0 0 0| (4.16)
sina(z) 0 cosa(x) —sina(z)a'(z) 0 0
( cos’a(z)d (x) + sin® @(x)d (z) 00
= 0 0 0
sina(z) cosa(z)a’ (z) — sina(z) cosa(z)a’(z) 0 0
a(x) 0 0
—| 0o o0 o0],
( 0 00
(m’l(az) 0 B mi(z) 0 sina(z)
Vm(z,y) = 0 1], (Vm|R;)= 0 1 0 :
my(z) 0 mi(z) 0 cosa(x)



Moreover,

. B (COS a(zr) 0 —sin a(:v)) (m’l () 0 sin a(x))
R (Vm|Rs) = 0 1 0 o0 1 o (4.17)
0

sin a(x) cos a(x) mi(x) 0 cosa(r)

0 0

m} (x) - sina(x) + mjs(x) - cosa(z) 0 sin® @(x) + cos® a(x)

—_

(m’1 (x) - cosa@(x) — mi(z) -sin@(z) 0 sina(z)-cosa(z) — sina(z) - cos a(:v))

0

m/ (z) - sina(z) + m4(z) - cosa(zr) 0 1

—_
)

(m’1 (x) - cos@(z) —mh(z) -sina(zx) 0 0)

By definition sym U = ﬁg—ﬁT, hence,
. B 1 m(z) - cosa(x) — mh(z) -sina(x) 0 0
sym R (Vm|R3) = = 0 10
2 0 1

m' (z) - sina@(z) + my(z) - cosa(x)

WAL (z) - cosa(x) — mh(x) - sina(x) 0 mi(x)-sina(x)+mi(z) - cosa(x)
+ = 0 1 0
0 0 1

1 <2m’1 (z) - cosa(x) — 2mi(x) - sina(x) 0 mi(x)- sina(x)+ ms(x) - cos a(:v))
=3 0 2 0
m/(z) - sina(z) + mh(z) - cosa(z) 0 2

( m} (z) - cosa(x) — mj(x) -sina(x) 0 3(mi(z)-sina(z) + mj(x) - cos a(:v)))
= 0 1 0
5 0

(m)(z) - sin@(z) + mj(z) - cosa(x))

Therefore, with sym(U—11) = w = %(U—]l—i—UT—]l) = %(U+UT)—]1
we obtain
sym(R' (Vm|R;) — 1) (4.19)
m} (x) cosa(x) — mi(x)sina(z) —1 0 (m)(x)sina(x)+ mi(z) cosa(z))
= 0 0 0
s (m) (z) sina(z) + mj(z) cosa(z)) 0 0



Now we calculate the skew-symmetric part of a matrix by skew(U) = Y=7-.
Hence,

1 m)(x) - cosa(x) —mb-cosafz) 0 0
skew (R (Vm|R3)) 0 10 (4.20)
2 m}(x) - sina(x) + m4(z) - cos@(z) 0 0

1 m/(z) cosa(x) —mi(x)sin@(z) 0 mi(zr)sina(z) + ms(x)cosa(x)
- — 0 1 0
2 0 0 1
1 0 0 —mf(z)sina(z) — mj(x) cosa(x)
=5 0 0 0
mi(z) sin@(z) + mf(x) cosa(zx) 0 0

Now we compute the trace of the matrix. For the sake of simplicity we introduce
the second order approximation of the sin and cos functions, i.e.

3 3 2
7 v ~1_
siny ~ Vg =TT 6 cosy ~ 1 5 (4.21)
This implies
3 2 3 3 5
: gl gl oL 2
smv~cosy%(fy—g)(l—g):7—5—€+1—%7—§73. (4.22)

Hence, using these simplifications

tr(sym(R (Vm|R3) 1)) = (m)(z) cosa(z) — mj(z) sina(z) — 1)

~ (mly(2)(1 — %) —mj(z) (@~ %) -1y’
= (m}(x))*- (1 + %4 —a@)
+(m’(1’))2'(52+§—;—%3)+1
~ 2 (@)1~ ) - D)
— 2mf (x)(1 %2) + 2mi () (@ — %3)

) + dm) ()mi(x)

)
+ (m5(2))* +mi(x))
)

+ (mi(2))” — 2mi (z) + 1,

| sym(R (Vm|R3) 1)[]? = (m)(z) cosa(z) — mh(z) sina(z) — 1)? (4.23)

+ i(m'1 (z) sin@(x) + mj(z) cosa(r))?



+ —(m () sina(z) + mj(x) cosa(x))?

A~

2

(z) cosa(z))? — m/(x)m3(z) sin@cosa

—_~

=(m

— 2mj(z) cos@ + (mj(z) sina(x))” + 1

[N
—~ N
N

I
| Q

+
NI~ Nol—= QO o

()

+
ws\
|
DO

3
&

In addition

| skew (R (Vin|Rs))|? = %(mg () sin@ + m)(z) cos @)? (4.24)

= 5 (0, (@) (sin ) + () (cos )’

1 ’ 2 /— 63 2 1 2 62 2

S ()@ — )+ (ma()2(1 -~ )

+ 2 () () (@ — 20°))

Ly , a 2 ! 2, & 2
:5(04 (my(z)) —E(Tfh(ﬂ?)) + (m3(2))” + —(m3(x))

o (1)) 20 () ) — S (o )

10



Now we can reassemble Wy,,(U) for this particular situation. Physically it makes
sense to set . = 0. Hence,

Wip(R' (Vin|Ry)) = ul|sym(R' (mV|Rs) — 1)|]? + pel| skew (R’ (mV|Ry))|?

M)\ —T - 2
+ T tr(sym(R (Vm|R;) — 1))
~ (G m (@) = i) = 5 0))° = ok ()°

4p ,
mL(xr)m
32p+A)

_ 3(2;;1 5 (76 @) + @ (=G ) + i () + 5 o (2

b pA pA
- §m3($) - (m' (x))* + T A(mg(%))2
2uN

i (x)my () + pa(m (2))” + p -+ Sy () = 2 ()

_HA () + Ty () () +

PA e 2pA 2

/ 2 M .y 2
)(mi (2))” = Smi(2) — 5 (ms(2))

2p 4p\

4o A

2 42u+ A)
/

3

my () + @ (m (z)mj (z)(

,U)‘ / 2
3 Y 3@t " 3zt @)

! l/«)\ =20, 1 . __:u :u)‘ :u)‘
M) s gy T M) (m g T ) T 5 o

11



UA

+ (my())*(u+ ) () - (2= Py )

20+ A 2 2u+ A 2
_ 20U\ 20
i oy (o) (= = 5 2) )5
UA I 20U\
+ (m (@) e+ 3255) + () +mi @) (2= ) + .

In order to build up Whenq(Rs) we need the following blocks |

a(z) 0 0
0], (4.26)
0

0
sym(RT(VRgo))( 0 0
0 0
Isym(R' (VR3|0)|* = (@'(2))?, skew(R' (VE3]0)) =

0 =0,

DO | =

| skew (R (VR3]0)[2=0, tr(R (VEs|0)) =a(z),

- @ (@)
tr(sym(R" (VR3/0)))? = tr 0

0
Now for the bending term Wyenq (8Rs),

Whena(R' (VER3]0)) = pl| sym(R' (VE3]0))|2 + pic|| skew (sym(R' (VR5]0)))||?
+

A 2 lAvar) 2
3y (R (VRs[0)))
= (@ () + pe - 0+

_ 2p(p+A)
2+ A

pA 2
e @)
. (6'(:1;))2 . (4.27)

For Wy (Rs) we need the following blocks,

B ( cosa(x) )
R€1 = 0 s
— sina(z)

L (cos @(r) 0 —sin a(x)) ( sina(zx)a’(z) 0
R (VE|0) = 0 1 0 : 0 0
0

sina(z) 0 cosa(r) —cosa(x)a (x)

o O O

) s
|

- ( sin@(x) cos &(m)&’(:ﬂ)o—l— sina@(zr) cosa(x)a (x)

o O O
o O O

—sin*@(z)a/ (z) — cos? a(x)a (v)

12



L 00 0
R (VRy0)= [0 0 0
00 0

The third order tensor ks € ¥(3) is given by

ks = (R (VR1|0), R (VR,|0), R (VERs/0)) (4.29)
0 00 00 0 a'(z) 0 0
= 0O 00}),{fo0o0],l 0 00
—~a'(x) 0 0 00 0 0 00
Hence,
1ks|* = =" + [a'|,
sym(ks) - = (sym(k}), sym(k?), sym (k) , (4.30)
0 00 00 —a
sym(kl) = = 0 00J+[00 O
—a 0 0 00 0
0 0 —a
=—-1 0 0 0|,
-a 0 0
000 2@’ 0 0
sym(k2)=10 0 0), sym(k==10 0 0],
000 0 00
0 0 —io 000 a 00
sym(k,) = 0o 0 0 |,[o0oo0),{0 00 :
—& 0 0 000 000
0 00 00 —a
skew (kl) = = 0 00|]—-100 0
—a 0 0 00 0
0 0 o
=1 0o 0 0],
—3a 0 0



000 000
skew(k2) =10 0 0], skew(k3)=[0 0 0],
000 000
0 0 ia 000\ /000
skew (k) = 0 0 0 |,{000)[0O0O0O]],
—3a 0 0 000/ \0O OO
3
[LAEEDILA
=1
2 1 —1\2 —I\2 1 —I\2 3—/2
|sym(k)I? = (@) + @)°) +0+ 7 - 4(@)* = S (@), (4.31)
1 1 1
| skew(k)|* = ;@) + ;@) = S (@)

tr(hs) = tr(k?) + tr(k?) + tx(k?) =0+ 0+ = .

In the following we substitute: a5 = u, , a5 = p., a7 = —25::,\’ a, =0, 1+p=p,
and we obtain for W, (Rs),

L1+p
Weure (Rs) = 1t - 102 (1 4+ @y LY|ky||?) - (a5 || sym (k)| (4.32)
+ | skew (k,)|| + a7 (tr(ks)?)) 2"
- L2 32 L [T
S el B (2 2 A
L 0) (i (@) + ey @+ (@)’
I I S R U
With Wiy (U), Weury (8s) and Wiena(&s) now at hand, we can reassemble the
integrand in the minimization problem (2.7), abbreviating \* := 25%, p =
1+p,
_ h3
I= / (- Wong ) + B+ Wearn () + 1+ Woena (R0)) o (4.33)
= [ (@m0 = 5+ P X + 25 = 30 = o)

(M

; 3 1 -
+h- <L’g-ﬂ-(—u+—uc+A*)‘ -|a’|”>

12 "2 2
h3 202
— 20 - (@) d

14



-3 (a) (] ()5~ X) — S(mi2))

+ @) () - (2) - (—p+ A7)+ X ()
b (I ()2 (54 A) + S ()]
+ h(my(x)(=2u + X)) + p+ X")

5 M 3 1 *\E = P
hoo (LP - 2y (24 =, + 29) 8
w2 Gt a0t @)
h? 2u?

2\* - (@ (z))* dxdy,

12 20+ A '
where w = [0, L] x [0, L], for we may assume the paper to be a rectangle. Note

that the integrand is independent of y such that the integration w.r.t. y can be
performed immediately and we obtain

L

I=L-/h@f@»hmuw—§+Av+0%mw%u+M0 (4.34)

+ @) ((mh (@2)*(5 = 2) = S(mi (@)

o+ h (@) mh (@) - () + (= A) X ()
b ([mh ()% - (4 \) + St ()

+h(my (@) (=20 4+ X*) + p+ X)

. 3 1 b 5
the (LB Cut S )R @ (@)

¢ 127 2" T g
h3  2u?
. N (e 2x.
+12 ST A" - (@ (x)) dx

5 Derivation of Euler-Lagrange equations

With respect to the result from the last sections we can now derive a system of
differential equations by the methods of the calculus of variations. However, in
this particular problem it will be easier to find out the Euler-Lagrange equations
via direct derivation as used in the proof of the theorem of the Euler-Lagrange
equation rather than apply the Euler-Lagrange equations formally.

Let us therefore define the constants :

) 3 1 )
Koy :=h- (LY —) (2 —fhe +AT)2 | .
h*  2u?
Kbend::_' a C2N".
12 2u+ A

15



a(x)
t:[0,L]CR =Rz t(x) = (ml(x))
ms(z)
Hence,
a'(x)
t'(x) = | my(z)
my ()
Therefore,
I= /F(:E,t(:v),t'(:v))dx, (5.36)

where F has the same analytical expression as in (4.33). Suppose that ¢ is a
minimizor of 7. We can construct a competing function ¢, with u € C"([a, b], R?)
and 0 > 0 (as before), such that #(x) = t(v)+0-u(x), and u(a) = u(b) = (0,0,0)7,
with

L

dilewzo / F(z, t(z) + u(z), t'(x) + 0u'(x))dx = 0. (5.37)

Let

Then the derivative is

dF . 8F dUl 8F dUg 8F dvg

90 " 9v, d0 T ow, d0 0w, db (5.38)
OF da | OF dz | OF dz
821 df 822 do 82’3 df

N avl ! 802 2 61;3 K 0,21 !
oF , OF

+ o+ —— -,
82’2 2 823 3

16



For # = 0, we get

oF
81}1

or _
31}2_

OF
8,21

OF

02

OF

023

= 98— on (i) (-2 + x9) ()
+ 2k (mh () + X)) ()
+ 2k (m) @)+ (5 =A%) = § - mi (@) @la)
+ h(my(x) - mi(2) - (—p+A") + A" - ms(x)) |
OF _ OF _0F
am, ovs  Omy
SF P Ky - [ (2)]P - E@ + 2K pena - @ () (5.39)
oF . u .
o =h-« (x)(—E—f—)\ )
+2h - @ (x )(— — X)mi(z) + h-a(x)my(z)(—p + A7)
+2h - (p+ A )ml( )+ h-(=2p+ X
= h ((ua(z) — 2X"@°(z) + 2 + 2\")m (x))
+h (Aa(z) — pa(z))ms(z))
—h- (g&Q(:E) “aF(x) + 2+ )\*)
aa:; —h (2(M F ) @2 (@) - ma(a) — g @2(9;))

3

+h ((—M T A

1

)

) -mi () + X - a(z) +

By the stationarity condition (1.33), we obtain

Hence,

:>/—'U,1

]

:,/(

a

Bl &@)m(@ + (—&a—m,l)uz(x) + (—&a—mg)ua(x)
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b

oF  OF , OF , OF B

%U,l %U’l + a—u am U3 dx=0. (540)

oF
8m1 'LLQ(I') + 8—WL3'LL3(£E) dx

d OF d OF d OF
el it it - 41
dz a&’ul(x)+ dx Om/ 2(2) dx Om/ () dx =0 (5.41)
oF d OF d OF d OF dx =0,



b (o= s ow uy ()
= /( KT E up(r) | )dx =0. (5.42)
a _% aml U3(ZE)

Since u is arbitrary in C"([a, b], R?), by the fundamental lemma of the calculus
of variations (Lemma 3.2), we must have for each component
d OF OF d OF d OF

o7 gm moml " awamr (5.43)

Hence, we finally get a second order differential system of 3 equations for the
three unknown functions a, my, ms given by

OF =5 K (0D @@ @) + B WP 0)) + 2K 0),
0= 2h(—g + \*) -a(z) - @ (z) + 4h(g —\*)-a@(x) - () - mi(x) (5.44)

+2h(5 = X)) - (&) + h(—p + X) - @ () - ()
+h(—p 4+ A7) (@) - my () + 2h(p + A7) - my (@)

0 =4h(p+ X -a(z) - @' (z) - my(x) + 4h(p + X\*) - @*(x) - my(x)
—h-p-a@)-a(x) +h(—p+ ) & (x)  m(z)
+ h(—p+ N) -a(z) - m(x) + e (2) .

6 Further simplified problem

As we can see from the result of the preceding section, the system of equations
(1.40) is still very difficult to solve, even in view of the preceding simplification.
In order to demonstrate ”some visible result”, we make a further simplification

on I by eliminating Wy,,(U). This is justified for pure bending situations (no
membrane action, viz. Wy, := 0).

After this simplification, we only maintain W, and Wyenq. Hence, the problem
turns into

h3
I = /(h . Wcurv(ﬁs) + E . Wbend(ﬁb)) dw, w C R2

s 31 o), P 2p”
= (P (St S+ A -
/( (GH+ e+ A)2 [@] +12(2M+>\

2*—/2 .
D 5 )2\ (@')” dw

w
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Hence ,

/ o [@ (@) + Kiena (@ (2))? d(x, y) (6.45)

_ / / Ko [ (2) + Kpena (@ (2))2 dx dly .
0 0

Since, @ depends only on x, the minimization of I is equivalent to the minimiza-
tion of the inner integral, which, for the sake of simplicity, will still be denoted
by I.

[= / Koy | (@)]° + Kpena(@ (2))?dx; @(0) =0, and a(L)=45. (6.46)

Let v € C'([0,L],R),u(0) = 0,u(L) = 0 and # > 0. Construct a competing
function @(z) := @(x) 4+ Ou(z). Thus we must have

G O/Km 2) + 0u(@)) | + Kiena (@(2) + 0u(2))')> dx = 0. (6.47)
Therefore

/ Keure - % (@) + Ou(z))' ]’ + Kpona - d%((a(x) + Gu(x)))? dx|ps =0,
(6.48)

az) +0u'(z) i(x),

[ () + Ou'(x)]

@\ @) + 0u(@) P = p - [ (x) + 0/ ()

d _ n2 __ — li li
(@) + 0u(@) P =2 [@ (@) + 00/ ()] - ()

Hence, by evaluate the equation (6.47) at 6 =0

L
R —
/ Kous - @ ()" - éﬁ (@) + 2Kpena - @ (1) (@) dx = 0, (6.49)

0
L

. —
B @I 2B )]/ ) =0

0
[d @(z)
N — p— a (T —
= - /&[Kcurv P |al(l,)|l7 t ﬂ + 2Kypend - CY,(ZL’)] ’ U(ZL’) dx =0,
0
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Since u is arbitrary in C'([0, L], R), it follows by the fundamental lemma (3.2) of
the calculus of variations

% <Kcm e (@) P ;,g;' + 2Kbend ~a’(az)> =0, a(0) =0, a(L) = p.
(6.50)
Therefore

Keues -0 (0 =2 @ @™ @(@))8"(@) + @ @) @'(2) + 2Kiena" () = 0.
(6.51)

Finally the equation to be solved is

(Koo -5 (0= 2 [@@)F" @ (@) + [0 (@) ) + 2Kiena ) 7'(2) = 0,

The equation(6.51) is the differential equation we derived with the elimination of
Wi (U).
7 Analytical solution

As we can see from equation (6.51), the items in the bracket are always positive,
for, in particular, the constants in the bracket are built up with positive factors.
Hence, we can only have @”(x) = 0. It follows @ (z) is a constant, say C3 . Hence,
a(z) = C3x . With the boundary condition, the solution is

which shows that the microrotation angle @ varies linearly over the length in this
simplified setting.

8 Existence of minimizers in the general case

In this section we will identify some conditions on the Lagrangian L which ensure
that the function /[-] does indeed have a minimizer, at least within an appropriate
Sobolev space.

8.1 Coercivity, lower semicontinuity

Let us start with some largely heuristic insights as to when the functional

I[u] ::/QL(Du(x),u(x),x) dx, (8.53)

20



defined for appropriate functions u : 2 — R, satisfying
u =g on oS, (8.54)

should have a minimizer.

a. Coercivity.

We first of all note that even a smooth function f mapping R to R and bounded
below need not attain its infimum. Consider, for instance, some hypothesis con-
trolling I]u| for "large” arguments u. Certainly the most effective way to ensure
this would be to hypothesize that I[u] ”grows rapidly as |u| — o0”.

More specifically, let us assume that

l<g<oo, (8.55)
is fixed. We will then suppose

there exist constants C; > 0, Cy, > 0 such that
L(p,Z,.I') > Ol|p|q_02 (856)
forallpeR", ze R, z €.

Therefore
Iu] > C1||DU||qu(Q) -, (8.57)

for r := Cy|2|. Thus I[u] — oo as ||Du||p« — oo. It is customary to call (8.57) a
coercivity condition on [[:].

Turning once more to our basic task of finding minimizers for the functional
I[-], we observe from inequality (8.57) that it seems reasonable to define I[u] not
only for smooth functions u, but also for functions u in the Sobolev space W14((2)
that satisfy the boundary condition (8.54) in the trace sense. After all, the wider
the class of functions u for which I[u] is defined, the more candidates we will have
for a minimizer.

We will henceforth write

A= {ueWhH(Q) |u = gon 09 in the sense of trace }, (8.58)

to denote this class of admissible functions w. Note in view of (8.56) that I[u] is
defined for each u € A.

b. Lower semicontinuity.

Next, let us observe that although a continuous function f : R +— R satisfying a
coercivity condition does indeed attain its infimum, our integral functional I[-] in
general will not. To understand the problem, set

m = ;IEIEI[U] : (8.59)

and choose functions u;, € A(k =1, ...) such that

Ifug) > m ask — co. (8.60)
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By (8.56) it is clear that the infimum exists. We call {u;}52,; a minimizing
sequence.

We would now like to show that some subsequence of {u;}{>, converges to an
actual minimizer. For this, however, we need some kind of compactness, and this
is definitely a problem since the space W4(Q) is infinite dimensional. Indeed, if
we utilize the coercivity inequality, it turns out that we can only conclude that
the minimizing sequence lies in a bounded subset of W1¢(Q). But this does not
imply that there exists any subsequence which converges strongly in Wh4($2).
We therefore turn our attention to the weak topology. Since we are assuming
1 < ¢ < 00, so that L?(€2) is reflexive, we conclude that there exists a subsequence
{ur; }32, C {ur}3, and a function u € WH9(Q) such that

up; — v weakly in L7(£2) (8.61)
Duy, — Du  weakly in L¢(€; R"). .
We will hereafter abbreviate (8.61)by saying
uk, — u  weakly in WH9(Q). (8.62)

Furthermore, it will be true that v = ¢ on 02 in the sense of trace, and so for
the weak limit u € A.

Consequently by shifting to the weak topology we have recovered enough com-
pactness from the coercivity inequality (8.57) to deduce (8.62) for an appropriate
subsequence. But now another difficulty arises, for in essentially all cases of inter-
est, the funtional I[-] is not continuous with respect to weak convergence.
In other words, we can not deduce from (8.60) and (8.62) that

Tu] = lim T{uy,], (8.63)
]*)OO
and thus we cannot directly deduce that u is a minimizer. The problem is that
Duy; — Du does not imply Duy;, — Du a.e. It is quite possible for instance
that the gradients Duy,, although bounded in L?, are oscillating more and more
rapidly as k; — oo.
What saves us is the final, key observation that we do not really need the full
strength of (8.63). It would suffice instead to know only
Tu] < liminf ITuy,]. (8.64)
j—oo
Then from (8.60) we could deduce I[u] < m. But owing to (8.59), m < I[u].
Consequently u is indeed a minimizer.

Lemma 8.1

We say that a function I[-] is (sequentially) weakly lower semicontinuous on
Wh4(Q), provided

I[u] < liminf Iuy],
k—o00
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whenever
up — v weakly in WhH(Q).
Our goal therefore is now to identify reasonable conditions on the nonlinear term

L that ensure that I[-] is weakly lower semicontinuous.

8.2 Convexity

Now we analyze the following second variation inequality,
> Loy (Du(), ur),2)6& 20 (E€R"z € 9Q),
i,7=1

holding as a necessary condition, whenever v is a smooth minimizer. This in-
equality strongly suggests that it might be reasonable to assume that L is convex
in its first argument, i.e. for the gradient Du. Indeed we have the result.

Lemma 8.2 (Weak lower semicontinuity)

Assume that L is bounded below, and in addition the mapping p — L(p, z,x)
is convex for each z € R,x € Q. Then I[-] is weakly lower semicontinuous on
Whe(Q).

Proof. 1. Choose any sequence {u}3>, with
up — u weakly in WH(Q), (8.65)
and set [ := liminfy_, [{ug]. We must show that
Iu] < 1. (8.66)
2. Note first from (8.65) that

S%p g |[wra ) < oo. (8.67)

Upon passing to a subsequence if necessary, we may as well also suppose

[ = lim Ifug]. (8.68)

k—o00

Furthermore we use the compactness theorem that u, — w strongly in L?(Q);
and thus, passing if necessary to yet another subsequence, we have

u, — u a.e. in Q. (8.69)
3. Fix € > 0. Then (8.69) and Egroft’s Theorem assert
uy — u uniformly on FE., (8.70)

where E. is a measurable set with

Q- E|<e. (8.71)
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Now write

Fo= {2 € Q, |u(z)] + | Du(z)| < é}, (8.72)
then
Q—F.| -0 as ¢ —0. (8.73)
We finally set
G..=E.NF, (8.74)

and observe from (8.71), (8.73) that |2 — G.| — 0 as € — 0.
4. Now let us observe since L is bounded below, we may as well assume

L>0, (8.75)

(for otherwise we could apply the following arguments to L = L+ 3 > 0 for some
appropriate constant ). Consequently

I[’U,k] = / L(Duk,uk,)dx Z / L(Duk,uk,x) dX
Q €
> / L(Du,ug,z)dx+ [ D,L(Du,u,z)- (Duy — Du) dx. (8.76)
€ GE

the last inequality following from the convexity of L in its first argument. Now
in view of (8.70), (8.72) and (8.74):

lim L(Du,uk,x)dx:/ L(Du,u, x) dx. (8.77)
k—o0 GE .

In addition, since D,L(Du, uy,x) — D,L(Du,u,x) uniformly on G, and Duy —
Du weakly in L,(U;R"), we have

lim D,L(Du, ug, z) - (Duy, — Du)dx = 0. (8.78)

k— 00 Ge

Owing now to (8.77) we deduce from (8.78) that

[ = lim I[u] > / L(Du, u, z) dx. (8.79)

—00

This inequality holds for each £ > 0. We now let € tend to zero, and recall (8.75)
and the Monotone Convergence Theorem to conclude that

[ > / L(Du,u,x)dx = Iul,
Q
as required.
Remark. It is important to understand how the foregoing proof deals with the

weak convergence Duy — Du. The key is the convexity inequality (8.76), on
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the right hand side of which Duy appears linearly. Weak convergence is, by its
very definition, compatible with linear expressions, and so the limit (8.78) holds.
Remember that it is not in general true that Duy — Du a.e., even if we pass to
a subsequence.

The convergence of uy to uw in L? is much stronger, and so we do not need any
convexity assumption concerning the second variance z — L(p, z, x).

We can at last establish that I[-] has a minimizer among the functions in .A.

Lemma 8.3 (Existence of minimizer)

Assume that L satisfies the coercivity inequality (8.56) and is convex in the
variable p. Suppose also the admissible set A is nonempty. Then there exists at
least one function ug € A solving

Iup] = min I[ul.

u€A

Proof. 1. Set m := inf,c4 I[u]. If m = 400 we are done, and so we henceforth
assume 1 is finite. Select a minimizing sequence {u;}7° ;. Then by construction

Iug) = m. (8.80)

2. We may as well take Cy = 0 in inequality (8.56), since we could otherwise just
as well consider L := L + Cy. Thus L > C|p|?, and so

Q

Since m is finite, we conclude from (8.80) and (8.81) that

sup || Dug || ey < K < oo. (8.82)
k

3. Now for a given function ug € A. Since uy and ug both equal g on 92 in the
trace sense, we have uy — ug € Wy?(Q2). Therefore by the triangular inequality
and Poincare’s inequality implies

urllra@) < llur — wollzage) + |luol (o)
< C||D(ug — o) oy +C < C, (8.83)

by (8.82). Hence supy, ||ug||ra) < co. This estimate and (8.82) imply {ux}32, is
bounded in WH4(Q).

4. Consequently there exist a subsequence {u;}22, C {ux}pZ, and a function
ug € WH1(Q) such that

up, — up weakly in Wh(Q).

We assert next that uy € A. To see this, note that for u € A as above, u, —u €
W, 9(Q) is a closed, linear subspace of W,*%(Q), and so, by Mazur’s Theorem, is
weakly closed. Hence ug —u € Wy?(Q2). Consequently the trace of u on 99 is g.
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In view of Theorem 1 then, I[uo] < liminf; ,o I[ug,] = m. But since u € A, it
follows that

Iug) =m = glelﬂj[u]'

We turn next to the problem of uniqueness. In general there can be many min-
imizers, and so to ensure uniqueness we need the further assumptions. Suppose
for instance

L = L(p,z) does not depend on z, (8.84)

and

{there exists # > 0 such that (8.85)

ZZj:l Lpipj (pa I)gzgj > 0|§|2 (pag S Rn’x S Q)

Condition (8.85) means that the mapping p — L(p, z) is uniformly convex for
each x in p.

Lemma 8.4 (Uniqueness of minimizer)
Suppose (8.84),(8.85) hold. Then a minimizer u € A of I[-] is unique.

Proof. 1. Assume u,u € A are both minimizer of I[-] over A. Then v := % ¢
A. We claim

Tu|+ 1w
) < 2421
2
with a strict inequality, unless u = w a.e.
2. To see this, note from the uniform convexity assumption that we have

(8.86)

6
L(p.x) = L(g,z) + DyLla,2) - (p — ) + 5lp — g (r€Q,p,qeR"). (8.87)
Set ¢ = w,p = Du, and integrate over U:

D Du Du— Du
I[U]+/D,,L(7u+ u,x)~(u)dx+g/ |Du — Daf? dx < I[u].
Q 2 2 8 Jo
(8.88)

Du—Du
2 7

Similarly, set ¢ = p = Du in (8.87) and integrate:

Du+ Du Du — Du 0
[[U]‘F/DpL(M,JE)-(u)dx—l—g/ |Du — Dul*dx < Ifa).
Q Q

2 2
(8.89)
Add and divide by 2, to deduce
I Iu
I[v] + g/ |Du — Da)* dx < M. (8.90)
Q

This proves(8.86).
3. As I[u] = I[a] = miny,eal[ug] < Ifv], we deduce Du = Du a.e. in Q. Since
u=7u = g on 0f) in the sense of trace , it follows that u =u a.e. |

Finally, we proof that the minimizer to the problem 2.7 in our simplified set-
ting exists.
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9 Application to the simplified Cosserat model

Let us recall,
3

_ _ h
I(m,R) = / e WonplD) + - W (8) + 75 - Whna() dxdy,  (9.91)
with m : R* = R*, R : R? — SO(3,R).

Here, the following abbreviations are recalled,

_ _ _ Y _
W (T) = pal| sym(T — )2 + e | skew (D) + 52— - tr(sym (T — 11))?,

2+ A
L1+p 5 9
Weury (Rs) = p—5= (1 + aa L[| K[|*) (s || sym £5||” + a || skew () (9.92)

1+p
2

+047tr(ﬁ5)2)‘ )
R, = (ET(V(ﬁel)|0),§T(V(§ez)|0),§T(V(E€3)0)) :

(reduced third order curvature tensor),

A
Wocna(s) = ] sym() " + el skew ()| + 52 - r(sym(8)*

R = ET(V§3|0) = #&,%, (second order , non-symmetric bending tensor).
We refer to (4.24), the simplified form of m and R under the condition m : R?
R* R :R? — SO(3,R). We write therefore,
_T R
W, = ||sym(R (V|R3) — 1)|? (9.93)

= () cosTa(x))? — o (a)rm () sin 3 () cos () — 2 () cos ()
() (s @)? + 1 5 (m) (0) (50 @)? + 5 () cos )’
W, = || skew (B (Vm[ )| = 5k () sin + () cosa)? > .
W, = tr(sym (R (Vm[Ry) — 1)) = (i (s) cosa(e) — () sinai(s) — 1)” > 0.

First of all, we observe that I(m,R) can be written as I*(m;,ms, ), which
is satisfying the coercivity condition (8.57). This is now shown. By Young’s
inequality, a - b < 3(a” + b?) we have

mf (x)my(z) sin@(z) cosa(z) < %(m'1 (z))*(cos@)? + %(mg(:r))z(sina)Q. (9.94)

Taking into account our previous simplification w.r.t. m and R (4.14), we arrive
at

1 1\2 — 2 1 1 2/ 2

5 (my)”(cos@(z))” — 5 (my(2)) (sin ()

L 1 o 1 B

+ (my(2))* (sin@(2))” + 5 (my (2))° (sin@(2))” + 5 (my(2))* (cos Alx))”
—2m(x) cosa(z) + 1

(m! (2))? + %(mg (2))2 — 2 () cos (). (9.95)

Wa > (m)(2))*(cos@(x))” —

1
>
-2
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Since we know W, and W, are both positive, we have

me Z MWa + ,Uch +

LA
W, > uW,. 9.96
S ek (9.96)

!
Now set m/(z) = <Z} (x)>, then using that |cos@| < 1, shows
3

1
Wanp 2 j1- 5[’ (2)[* = 2|mi ()| hence,

b b b
/medng/ ||m'(x)||2dx—2,u/ ()] dx. (9.97)

Now use Holders-inequality,

/ 1 (@) dx < (/ b tax) (| b ||m'<:v>||2dx)%

= (b—a)2||m' ()| 2 (a)- (9.98)

(M

Then, we obtain the following inequality,
’ H 2 1
/ Winp dx > Tl ()| 0.y — 20(b — @) 2[[m/(2) | 220, (9.99)
Let £ = fab |m/(z)|| dx = ||m/(2)]| 12 (a,p), then from the inequality (9.99) we get

b
/ Winp dx > ggﬂ —oub—a-¢. (9.100)

2
By Young’s inequality again, we know 2uv/b — af < €2+ (“”\;’g—a) with some
yet unspecified coefficient £ > 0, then

[ (x), 0] > / W dx
= (g — )¢ - (@)2

By specifying ¢ > 0 such that § — > 0, we obtain the estimate in the form
(8.57), therefore

(9.101)

E_o)er- <@>2 (9.102)

; NG
2
L N b —a "
= (5 — €)||m (‘/E)||L2(a,b) - (T) ,  with 5 >e>0.
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Furthermore, from 6.45 the simplification of small system of differential equations

[ (z), o] = / Wonre(82) + Whona (R) dx,  with  @(a) = 0,
/Kcurv| |p+Kbend( ())2dX,

_ Ko / 1@ (@) dx + Koend - /|| ()| dx
Z KCUI‘V' ||a( )||L%ab), (9103)

together with Poincare’s inequality shows coercivity of I in W2 w.r.t. m and
coercivity of I in W' w.r.t. .

Now we prove that the map m(z) — W(m'(z)(a)), with m/(z) = (m/) (z), mj(z))T,
and W(m/(z),a) = W,(m/(z), a) + Wi(m/(z), a) + We(m/(z), ) is convex w.r.t.
m'.

To this end let z = m), y = mj, we proof that W, (z, y, «) is convex in the variable
(x,y) first. Since the linear term —2z cos@ + 1 is already convex, it is sufficient
to consider

1 1
W (z,y) = 2*(cos@)? — xsinay cosa@ + y*(sina)? + §x2(sin§)2 + 5@/2(0056)2.
The second derivative of W, (z,y), i.e. the Hesse-matrix is given by

VW, (z,y) = < (9.104)

2(cos@)? + (sin@)? —sin@cos a
—sin@cos @ 2(sin@)? + (cos@)?

Now consider the relevant quadratic form with argument h = (hq, hy), then we
have,

(hy, hy) - V2 W (hy, hy) - (hy, ho)T (9.105)
= h?(2(cos@)? + (sin@)?) — 2h 1 hg sin@cos @ + h2(2(sin@)? + (cos@)?)
= h? + (hycos@ + hycos@)® + h3 > ||h|?,

which shows uniform convexity of W, (z,y). Similarly, W,(z,y) and W,(z,y) are
both convex.

Now consider minimizing sequences (my g, msj, o) with I(my g, ms, o) bounded.
The admissible set is defined as

A ={mi,my € W"(a,b),a € W'(a,b) | mi(a) = gi(a),
ms(a) = gs(a), ala) = aq(a), mi(b) = g1(b), ms(b) = gs(b),
a(b) = ay(b) in the sense of trace }. (9.106)
By coercivity we can concentrate on weakly convergent subsequences,
myx —my in Wh%(a,b), (9.107)
msr —ms in W"(a,b),

o, =~ a in Wh(a,b).
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Moreover, we can arrange for a subsequence of oy which also converges strongly
in L?(a,b) by computation.

Since «ay converges strongly, the convexity of W(m/, «) w.r.t. m' is enough to
ensure weak lower semi-continuity. The bending and curvature terms are also
convex in o, hence altogether we have,

I(m', o) < liminf I(m},, o). (9.108)
Since (my, i) is a minimizing sequence, i.e.
lim I(my,ap) — I(M, @) m,a € A, (9.109)
we conclude that the weak limit (m/, «) is indeed a minimizer, i.e.
I(m',«) = inf I(, @).

This finishes the argument. [
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