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 This volume contains the development of a summary note on the Théorie de l’action 
euclidienne that APPELL has seen fit to introduce in the 2nd edition of his Traité de 
mécanique rationelle.  The reproduction of an appendix to the French edition of the 
Traité de physique of CHWOLSON, explains several peculiarities of the editing and the 
reference that we make to a prior work on the dynamics of the point and rigid body, 
which is likewise combined with the work of the Russian savant.  We profited from that 
new printing by correcting several mistakes in our text. 
 We do not seek to actually deduce all of the consequences of the general results that 
we will arrive at; throughout, we strive only to rediscover and clarify the classical 
doctrines.  In order for this sort of verification of the theory of the Euclidian action to 
appear more complete in each of the parts of our exposition we will have to establish the 
form that the equations of deformable bodies take when one is limited to the 
consideration of infinitely close states; however, this is a point that we have already 
addressed, with all of the necessary details, in our Premiere mémoire sur la Théorie de 
l’élasticité that we wrote in 1896 (Annales de la Faculté des Sciences de Toulouse, Tome 
X).  We suppose, moreover, that the masterful lessons of G. DARBOUX on the Théorie 
générale des surfaces are completely familiar to the reader.  
 Our researches will make sense only when have shown how one may envision the 
theories of heat and electricity by following the path that we follow.  We dedicate two 
notes in tomes III and IV of the treatise of CHWOLSON to this subject.  The subdivision, 
to use the language of pragmatism, appears to be a scientific necessity; nevertheless, one 
must not lose sight of the fact that it solves grave questions.  We have attempted to give 
an idea of these difficulties in our note on the Théorie of corps minces, published in 1908 
in the Comptes Rendus de l’Académie des Sciences and whose substance was also 
indicated by APPELL in his treatise. 
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OF 
 

DEFORMABLE BODIES 
 

By Messrs E. and F. COSSERAT 

__________ 
 

 
I. - GENERAL CONSIDERATIONS 

 
 

 1.  Development of the idea of a continuous medium. - The notion of a deformable 
body has played an important role in the development of theoretical physics in the last 
century, and FRESNEL (1) has to be regarded as the equal of NAVIER, POISSON, and 
CAUCHY (2) as one of the precursors to the present theory of elasticity.  At the time of 
these savants, under the influence of Newtonian ideas, one considered only discrete 
systems of points.  With the memorable research of G. GREEN (3), continuous systems 
of points appeared.   One has since attempted to enlarge the ideas of GREEN, which are 
insufficient to give the theory of luminous waves all that it requires.  In particular, LORD 
KELVIN (4) is associated with defining a continuous medium in which a moment may be 
exerted at any point.  The same tendency has been attributed to the school of 
HELMHOLTZ (5), and the contradiction, due to J. BERTRAND (6) in regard to the 
theory of electromagnetism, is quite characteristic. One may return to the origin of this 

                                                
1  FRESNEL. - Oeuvres complétes, Paris, 1886; see the introduction by I. VERDET. 

2  See ISAAC TODHUNTER and KARL PEARSON. - A History of the Theory of Elasticity and the 
Strength of Materials, from GALILEI to the present time, Vol. I, GALILEI to SAINT-VENANT, 1886; 
Vol. II, Part I and II, SAINT-VENANT to LORD KELVIN, 1893.  This remarkable work contains a very 
complete and very precise analysis of the work of the founders of the theory of elasticity. 

3  G. GREEN. - Math. Papers, edited by N.M. FERRERS, facsimile reprint, Paris, A. Hermann, 1903. 

4  LORD KELVIN. - Math. and phys. Papers, volume I, 1882; vol. II, 1884; vol. III, 1890; Reprint of 
Papers on Electrostatics and Magnetism, 2nd ed. 1884; Baltimore Lectures on Molecular Dynamics and the 
Wave Theory of Light, 1904; W. THOMSON and P.G. TAIT, Treatise on Natural Philosophy, 1st ed. 
Oxford 1867; 2nd ed. Cambridge 1879-1883. 

5  HELMHOLTZ. - Vorles. über die Dynamik diskreter Massenpunkte, Berlin 1897; Vorles. über die 
electromagnetische Theorie des Lichtes, Leipzig 1897; Wiss. Abhandl., 3 vol. Leipzig, 1892-1895. 

6  J. BERTRAND. - C.R. 73, pp. 965; 75, pp. 860; 77, pp. 1049; see also H. POINCARI, Electricité et 
Optique, II, Les théories de HELMHOLTZ et les experiences de HERTZ, Paris, 1891, pp. 51; 2nd ed. 1901, 
pp. 275. 
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evolution, which was, on the one hand, the concepts that were introduced in the theory of 
the resistance of materials by BERNOULLI and EULER (7), and, on the other hand, 
POINSOT’s theory of couples (8).  One is therefore naturally led to unite the various 
concepts of deformable bodies that one considers today in natural philosophy into a 
single geometric definition.  A deformable line is a continuous one-parameter set of 
triads, a deformable surface is a two-parameter set, and a deformable medium is a three-
parameter set ('i); when there is motion, one must add time t to these geometric 
parameters 'i .  As one knows, the mathematical continuity that one supposes in such a 
definition leaves the trace of an invariant solid unchanged at every point.  As a result, one 
may anticipate that the well-known moments that have been studied in line and surface 
elasticity since EULER and BERNOULLI, and which LORD KELVIN and 
HELMHOLTZ have sought to find in three-dimensional media, will appear in the 
mechanical viewpoint. 
 
 
 2.  Difficulties presented by the inductive method in mechanics. - The primary 
form of mechanics is inductive; this is what one neatly perceives in the theory of 
deformable bodies.  This theory imprinted propositions that relate to the notion of static 
force on the mechanics of invariable bodies, which one applies by the principle of 
solidification; next, the relation between effort and deformation was established 
hypothetically (generalized Hooke’s law), and one sought, a posteriori, the conditions 
under which energy is conserved (GREEN).   A century ago, CARNOT (9) pointed out 
the problem with that method: that one constantly appeals to a priori notions and that the 
path that one follows is not always certain.   Indeed, the static force has no constructive 
definition in our classical form for mechanics, and the importance of the revision that 
REECH (10) has proposed in regards to that in 1852 has remained largely unrecognized 

                                                
7  See TODHUNTER and PEARSON. - Op. cit. 

8  AUGUST COMPTE. - Cours de Philosophie positive. - 5th ed. Paris, 1907, Tome I, page 338: “No matter 
what the fundamental qualities of the conception of POINSOT that relate to statics may be in reality, one 
must nevertheless recognize, it seems to me, that it is, above all, essentially destined, by its nature, to 
represent the quintessence of dynamics; moreover, in regard to that, one may be assured that this 
conception has not exerted its ultimate influence up to this point in time.” 

9  CARNOT, in his 1783 Essai sur les machines en général, who foresaw in 1803, les Principes 
fondamentaux de l’équilibre et du mouvement, sought to reduce mechanics to precise definitions and 
principles that were completely devoid of any metaphysical character and vague terms that the philosophers 
dispute to no avail.  This reaction took CARNOT a little too far, since it led him to contest the legitimacy of 
the notion of force, a notion that was obscure according to him, and for which he would like to substitute 
the idea of motion exclusively.  By the same reasoning, he would not accept as rigorous any of the known 
proofs of the force parallelogram rule: “the very existence of the word force in the stated proposition 
renders this proof impossible by the very nature of things.”  (Cf. COMBES, PHILLIPS, and COLLIGNON, 
eds., Exposé de la situation de la mécanique appliquée, Paris 1867).  

10  F. REECH. - Cours de Mécanique, d’après la nature généralement flexible et élastique des corps, Paris 
1852.  This work was written by the illustrious marine engineer in order to revise the teaching of mechanics 
at l’Ecole Polytechnique.  His ideas have been discussed further by J. ANDRADE, Leçons de mécanique 
physique, Paris, 1898, and by marine engineer in chief, MARBEC, in his elementary course in mechanics 
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up to our present time.  Perhaps this is due to the considerable uncertainty that elasticians 
have about making Hooke’s law one of the rational foundations.  Analogous reservations 
are, moreover, manifest in almost the same form in all of the other domains of physics 
(11). 
 To avoid these difficulties, HELMHOLTZ has attempted to construct what one calls 
energetics, which rests on the least action principle and on the same idea of energy; force, 
whatever its origin, then becomes a secondary notion of deductive origin.  However, the 
principle of a minimum in natural phenomena (12) and the concept of energy (13) itself are 
things we replace on account of the defects of the inductive method.  Why a minimum, 
and what definition can be given to energy if one would have not merely a physical 
theory, but a truly mechanical theory?  HELMHOLTZ does not appear to have responded 
to these questions.  Nonetheless, he has contributed more completely than anyone before 
him to establishing the distinction between two notions that appear to agree in classical 
dynamics: energy and action.  We believe it is the latter that we must begin with in order 
to describe the viewpoint of HELMHOLTZ with full precision, and to give mechanics, 
or, more generally, theoretical physics, a perfectly deductive form. 
 
 
 3. Theory of the Euclidian action.  - When one is concerned with the motion of a 
point, the essential element that enters into the definition of the action is the Euclidian 
distance between two infinitely close positions of the moving point.  We have previously 
shown (14) that one can deduce all of the fundamental definitions of classical mechanics 
from this notion alone, such as those of the quantity of motion, of force and of energy. 
 We actually propose to establish that one may follow an identical path in the study of 
static or dynamic deformations of discrete systems of points and of continuous bodies 
and that one thus arrives at the construction of a general theory of action on the extension 

                                                                                                                                            
at l’Ecole de Maistrance de Toulon (1906).  See also J. Perrin, Traité de Chimie physique, les Principes, 
Paris 1903. 

11  The remarks of LORD KELVIN, in his Baltimore Lectures pp. 131, on the work of BLANCHET, is 
particularly interesting in this regard; he points out that POISSON, CORIOLIS, and STURM (C.R. 7, pp. 
1143), as well as CAUCHY, LIOUVILLE and DUHAMEL (1841) have accepted the 36 coefficients that 
BLANCHET introduced into the generalized Hooke law without objection.  LORD KELVIN has also 
argued against WEBER’s law of force at a distance from the same viewpoint in the 1st edition of Natural 
Philosophy.  More recently, the application of the static adiabatic law to the study of waves of finite 
amplitude was criticized by LORD RAYLEIGH for the same reasons, and one knows that HUGONIOT has 
proposed a dynamic adiabatic law. 

12  MAUPERTUIS himself has warned of the danger of the principle that he introduced into mechanics 
when he wrote in 1744: “We do not know very well what the objective of Nature is, and we may 
misunderstand the quantity that we will regard as its cost in the production of its effects.”  LAGRANGE 
first had the intention of making the least action principle the basis for his analytical mechanics, but, much 
later, he recognized the superiority of the method that consisted of considering the virtual works. 

13  HERTZ, Die Prinzipien der Mechanik, etc., 1894; see the introduction, in particular. 

14  Note sur la dynamique du point et du corps invariable, Tome I, page 236. 
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and the motion, which embraces all that is directly subject to the laws of mechanics in 
theoretical physics. 
 Here, the action will likewise be a function of two elements that are infinitely close 
elements, both in time and in the space of the medium considered.  Upon introducing the 
condition of invariance into the groups of Euclidian displacements and defining the 
medium that we indicated in section 1 the action density at a point will have the same 
remarkable form as the one that we have already encountered in the dynamics of the 
point and the invariable body.  With the notations of the Leçons of DARBOUX, let ("i, 
#i, $i), (pi, qi, ri) be the geometric velocities of translation and rotation of the elementary 
triad, and let (", #, $), (p, q, r), be the analogous velocities relative to the motion of the 
triad.  The action will be the integral: 
 

! ! !
2

.,,,,),,,,,;,,,,,;,( 1

t

t iiiiiii dtiddrqprqptW !!! ''%#"%#"'  

 
 It will suffice to consider the variation of that action if we are to be led to the 
definition of the quantity of motion and to those of the effort and the moment of 
deformation, of force and external moment, and finally, to those of the energy of 
deformation and motion, by the intermediary of the notion of work. 
 In that theory, statics becomes entirely autonomous, which conforms to the views of 
CARNOT and REECH.  For this, one will have to take only an action density W that is 
independent of the velocities (", #, $) and (p, q, r), i.e., to consider a body without 
inertia, or again, a body endowed with an inertia, but on the condition that we regard the 
deformation as a reversible transformation in the sense of DUHEM.  On the other hand, 
upon appealing to the notion of hidden arguments one will recover all of the concepts of 
mechanical origin that are employed in physics.  For example, those of flexible and 
inextensible line, flexible and inextensible surface, and of invariable body, as well as the 
less particular definitions that have been proposed for the deformable line from D. 
BERNOULLI and EULER up to THOMSON and TAIT, for the deformable surface from 
SOPHIE GERMAIN and LAGRANGE up to LORD RAYLEIGH, and for the 
deformable medium from NAVIER and GREEN up to LORD KELVIN and W. VOIGT. 
 Upon envisioning deformation and motion at the same time one will arrive at the idea 
that contains d’Alembert’s principle in a purely deductive manner, a principle that relates 
only to the case where the action of deformation is completely separate from the kinetic 
action.  Finally, if one suppose that the deformable body is not subject to any action from 
the exterior world, and if one introduces, in turn, the fundamental notion of isolated 
system, of which DUHEM (15), and subsequently LE ROY (16) have seen the necessity in 
the rational construction of theoretical physics, one will be naturally led to the idea of a 
minimum that HELMHOLTZ took for his point of departure, at the same time as the 
appearance of the principle of the conservation of energy, which is at the basis for our 
present scientific system. 
                                                
15  P. DUHEM. - Commentaire aux principes de la Thermodynamique, 1892; la Théorie physique, its objet 
et sa structure, 1906. 

16  E. LE ROY. - La Science positive et les philosophies de la liberté, Congrès int. de Philosophie, T. I, 
1900. 
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Apparently, one will thus ultimately avoid all of the difficulties, as well as the trial and 
error of inductive research, as we have previously said. 
 
 
 4.  A critique of the principles of mechanics. - In the form that we just sketched out, 
the theory of Euclidian action makes a primary contribution to the critique of the 
principles of mechanics. 
 Its generality permits us to foresee that there are singular phenomena for the action of 
the motion, as well as in the deformation of the extension; for example, the speed of 
solids in the plastic state or when close to a rupture, and that of fluids under great efforts 
(17).  Under ordinary circumstances, this generality may be reduced by the consideration 
of states that are infinitely close to the natural state; this is a point that we discussed in 
our preceding note. 
 However, one may also suppose that one or more dimensions of the deformable body 
becomes infinitely small and envision what one might call a slender body (18).  This 
notion was developed in 1828 by POISSON and also, a little later, by CAUCHY; their 
objective, as of all of the elasticians that were occupied with that arduous question later 
on, was to establish a passage between the distinct theories of bodies of one, two, and 
three dimensions.  One knows that one very important part of the work of BARRI de 
SAINT-VENANT and of KIRCHHOFF is attached to the discussion of the research of 
POISSON and CAUCHY.  Nevertheless, these savants, and later, their disciples, have not 
extricated themselves from the veritable difficulty of the question.  This difficulty 
consists in the fact that generally the zero value of the parameter that was introduced is 
not an ordinary point, as was assumed by POISSON and CAUCHY, nor even a pole, but 
an essential singular point.  This important fact justifies the separate study of the line, the 
surface and the medium that is found in the present work (19). 
 In concluding these preliminary observations we remark that the theory of the 
Euclidian action rests on the notion of differential invariant, taken in its simplest form.  If 
one enlarges this notion in such a manner as to understand the idea of a differential 
parameter then modern theoretical physics appears as an immediate prolongation of 
mechanics, properly speaking, to the Eulerian viewpoint, and one is naturally led to the 
principles of the theory of heat and to present electric doctrines.  This new field of 
research, in which we commence to enter into the deduction of the idea of the radiation of 
energy from the consideration of deformable bodies, will be explored more completely in 
an ultimate work.  We may thus introduce a new precision into the views of H. 

                                                
17  E. and F. COSSERAT. - Sur la mécanique générale, C.R. 145, pp. 1139, 1907. 

18  E. and F. COSSERAT. - Sur la théorie des corps minces, C.R. 146, pp 169, 1908. 

19  It is true that the interest and the importance of the theories of the deformable line and surface are poorly 
appreciated nowadays; there is no place for them in the Encyclopédie des Sciences mathématiques pures et 
appliquées, which is presently published in Germany.  W. THOMSON and TAIT are guarded about 
omitting them from their Natural Philosophy, and they are presented before the theory of the elastic body 
in three dimensions; similarly for P. DUHEM, Hydrodynamique, Elasticité, Acoustique, Paris, 1891. 
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LORENTZ (20) and H. POINCARÉ (21) on the subject of what one calls the principle of 
reaction in mechanics. 

                                                
20  H. LORENTZ. - Versuch einer Theorie der electrischen und optischen Ersheinungen in Bewegten 
Körpern, Leiden 1895; reprinted in Leipzig in 1906.  Abhandl. gber theoretische Physik, 1907; Encyklop. 
Der Math. Wissenschaften, V2, Elektronen theorie, 1903. 

21  H. POINCARÉ. - Electricité et Optique, 2nd ed., 1901, pp. 448. 



 

II. - STATICS OF THE DEFORMABLE LINE 
 
 
 5.  Deformable line.  Natural state and deformed state. - Consider a curve (M0) 
that is described by a point M0 whose coordinates x0, y0, z0 with respect to the three fixed 
rectangular axes Ox, Oy, Oz are functions of the same parameter, which we suppose in 
the sequel to be the arc length s0 of the curve, measured from a definite origin in some 
definite sense.  Add to each point M0 of the curve (M0) a tri-rectangular triad whose 
axes 0 0 0 0 0 0, ,M x M y M z! ! !  have the direction cosines ,,,,,,,,, 000000000 )))***((( !!!!!!!!!  

respectively, with respect to the axes Ox, Oy, Oz, and which are functions of the same 
parameter s0. 
 The continuous one-dimensional set of such triads 0 0 0 0M x y z! ! !will be what we call a 

deformable line. 
 Give a displacement M0M to the point M0 .  Let x, y, z be the coordinates of a point M 
with respect to the fixed axes Ox, Oy, Oz.  In addition, endow the triad 0 0 0 0M x y z! ! !with a 

rotation that will ultimately make these axes agree with those of a triad Mx y z! ! ! that we 
affix to the point M.  We define this rotation upon giving the axes , ,Mx My Mz! ! !  the 
direction cosines , , , , , , , ,( ( ( * * * ) ) )! !! ! !! ! !!with respect to the fixed axes Ox, Oy, Oz. 
 The continuous one-dimensional set of triadsMx y z! ! !will be what we call the 
deformed state of the deformable line, which, when considered in its primitive state, will 
be called the natural state. 
 
 
 6.  Kinematical elements that relate to the states of the deformable line. - Suppose 
that s0 varies and that, for the moment, we make it play the role of time. Upon employing 
the notations of DARBOUX (22), we denote the projections of the velocity of the origin 
M0 onto the axes 0 0 0 0 0 0, ,M x M y M z! ! ! by "0, #0, $0, and the projections of the velocity of 

instantaneous rotation of the triad 0 0 0 0M x y z! ! !  onto the same axes by p0, q0, r0 .  We denote 

the analogous quantities for the triad Mx y z! ! !when one refers it, like the triad 0 0 0 0M x y z! ! ! , to 

the fixed triad Oxyz by ", #, $, and  p, q, r. 
 The elements that we introduced are calculated in the habitual fashion; in particular, 
one has: 

                                                
22  G. DARBOUX. - Leçons sur la théorie générale des surfaces, T. I., Paris, 1887. 
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With these quantities, the linear element ds of the curve described by the point M is defined by 
the formula: 

.)( 2
0

2222 dsds %#" ++=  

 
 Denote the projections of the segment OM onto the axes , ,Mx My Mz! ! !by ,,, zyx !!!  in such a 
way that the coordinates of the fixed point O with respect to these axes are , ,x y z! ! !& & & .  We 
have the well-known formulas: 
 

,0
0

=!+!&
!

& yrzq
ds

xd
"  ,0

0

=!+!&
!

& zpxr
ds

yd
#  ,0

0

=!+!&
!

& xqyp
ds

zd
%  

 
which give the new expressions for ", #, $. 
 
 
 7.  Expressions for the variations of the velocities of translation and rotation of the triad 
relative to the deformed state. - Suppose that one endows each of the triads of the deformed 
state with an infinitely small displacement that may vary in a continuous fashion with these 
triads.  Denote the variations of ,,,,;,,;,, )(( !!!!!! !zyxzyx  by +x, +y, +z, 

,,, zyx !!! +++ ,, (++( ! …, ,)+ !! respectively.  The variations , , ,+( +( +)! !!! are expressed by 
formulas such as the following: 

,JK !&!= )+*++(  
 
by means of the three auxiliary variables ,,, KJI !!! +++ which are the components of the well-
known  instantaneous rotation attached to the infinitely small displacement under consideration, 
relative to .,, zMyMxM !!!   The variations dx, dy, dz are the projections of the infinitely small 
displacement experienced by M onto Ox, Oy, Oz; the projections , ,x y z+ + +! ! ! of this displacement 
onto , ,Mx My Mz! ! !are deduced immediately, and have the values: 
 
(6) ,KyIzxx !!&!!+!=! ++++  ,IzKxyz !!&!!+!=! ++++  .KxIyzz !!&!!+!=! ++++  
 
We propose to determine the variations +", +#, +$, +p, +q, +r that are experienced by ", #, $, p, 
q, r.  From formulas (2), we have: 
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If we replace +( by its value ,JK !&! )+*+ and ,,, )+(+ !!!! by their analogous values, 
then we get 

(7)    ,
0

JrKq
ds

Id
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ds

Jd
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Similarly, formulas (4) give us three formulas, where the first one is: 
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0
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ds
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If we replace +p, +q, +r, by their values as given by formulas (7) then we obtain: 
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where we have introduced the three symbols, ,,, zx +++ !!! which are defined by formulas 
(6), to abbreviate the notation. 
 
 
 8. Euclidian action of deformation on a deformable line. - Consider a function W 
of two infinitely close positions of the triad Mx y z! ! ! , i.e., a function of s0, of x, y, z, (, 

,,, )( !!!! and of their first derivatives with respect to s0.  We propose to determine what 
the form of W must be in order for the integral: 
 

! ,0dsW  
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when taken over an arbitrary portion of the line (M0), to have a null variation when one 
subjects the set of all the triads of the deformable line, taken in its deformed state, to the 
same arbitrary infinitesimal transformation from the group of Euclidean displacements. 
 By definition, this amounts to determining W in such a fashion that one has: 
 

+W = 0 
 

when, on the one hand, the origin M of the triad Mx y z! ! !  is subject to an infinitely small 

displacement whose projections +x, +y, +z on the axes Ox, Oy, Oz are: 
 

(15)    
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where a1, a2, a3, ,1, ,2, ,3 are six arbitrary constant and +t is an infinitely small quantity 
that is independent of s0, and where, on the other hand, the triad Mx y z! ! ! is subjected to an 
infinitely small rotation whose components along the axes Ox, Oy, Oz are: 
 

,1+t, ,2+t, ,3+t. 
 
Observe that, in the present case, the variations +", +#, +$, +p, +q, +r of the six 
expressions ", #, $, p, q, r are null, since this results from the well-known theory of 
moving triads, and as we have, moreover, verified immediately by means of formulas (7) 
and (8), upon replacing ,x I+ +! !  by their present values: 
 

)9( !    
#
$
%

!!+!+=!

&+!!+&+!+&+=!

,)(

)()()(

321

213132321

tI

txyatzxatyzax

+,(,((,+

+,,(+,,(+,,(+
 

 
and , , ,y z J K+ + + +! ! ! !with their analogous present values.  It results from this we have 
obtained a solution to the question, upon taking an arbitrary function of s0 and the six 
expressions ", #, $, p, q, r for W; we shall now show that we thus obtain the general 
solution (23) to the problem that we have posed. 
 To that effect, observe that by means of well-known formulas relations (2) permit us 
to express the first derivatives of the nine cosines , , ,( ( )! !!! with respect to s0 by means 
of the cosines of p, q, r.  On the other hand, we remark that formulas (1) permit us to 
conceive that one expresses the nine cosines , , ,( ( )! !!! by means of the ", #, $, and the 
first derivatives of x, y, z with respect to s0.  Therefore, we may finally express the 
desired function W as a function of s0, and x, y, z, and their first derivatives, and 
ultimately of ", #, $, p, q, r, which we indicate upon writing: 
                                                
23  We suppose, in what follows, that the deformable line is susceptible to all possible deformations, and, as 
a result, that the deformed state may be taken to be absolutely arbitrary; this is what one may express upon 
saying that the deformable line is free. 
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Since the variations +", +#, +$, +p, +q, +r are null in the present case, as we have 
remarked that there is such an instant, we finally have to write the new form of W that 
one obtains, by virtue of formulas (9), and for any a1, a2, a3, ,1, ,2, ,3: 
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We replace dx, dy, dz by their values (9) and 
0 0 0

, ,
dx dy dz

ds ds ds
+ + + by the values that one 

deduces upon differentiating; equating the coefficients of a1, a2, a3, ,1, ,2, ,3 to zero; we 
obtain the following six conditions: 
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The first three show, as we may easily foresee, that W is independent of x, y, z; the last 

three express that W depends on 
0 0 0
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dx dy dz

ds ds ds
only by the intermediary of the quantity: 
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and since the latter is, from formula (3), equal to "2 + #2 + $2 we finally see that the 
desired function W has the remarkable form: 
 

W(s0, ", #, $, p, q, r). 
 

 If we multiply W by ds0 then the product Wds0 that we obtain is an invariant of the 
group of Euclidean displacements that is analogous to the one that, under the name of 
linear element, provides the distance between two infinitely close points of the curve (M) 
that is described by the point M. 
  Similarly, the common value of the integrals: 
 

!
0

0

,0
0

B

A
ds

ds

ds
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B
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ds,  
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when taken between two points A0 and B0 of the curve (M0) and the corresponding points 
A and B on the curve (M), determines the length of the arc AB of that curve (M); in the 
same spirit, upon associating the notion of action to the passage from that natural state 
(M0) to the deformed state (M) we add the function W to the elements of the definition of 
the deformable line, and we say that the integral: 
 

0

0
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A
W ds!  

 
is the action of deformation on the deformed line between two points A and B, which 
correspond to the points A0 and B0 of (M0).  In this definition and in what follows, we 
suppose that the arcs s0 and s, are regarded in the sense of A0 going to B0 and A going to 
B, or conversely, that the notations A0, B0, A, B denote the extremities of the line in the 
natural state and the deformed state, corresponding to that convention. 
 We also say that W is the density of the action of deformation at a point of the 

deformed line relative to the unit of length of the undeformed line; 
ds

ds
W 0  will be the 

action density at a point relative to the unit of length of the deformed line. 
 
 
 
 9.  Force and external moment.  Effort and the moment of external deformation.  
Effort and the moment of deformation at a point of the deformed line. - Consider an 
arbitrary variation of the action of deformation between two points A and B of the line 
(M), namely: 
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By virtue of formulas (7) and (8) of sec. 7, we may write this as: 
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We integrate the six terms that refer explicitly to the derivatives with respect to s0 by 
parts and obtain: 
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We have: 
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 Upon first considering the integral that figures in the expression of !
0

0

,0

B

A
dsW+ we call 

the segments that issue from M whose projections on the axes 
, ,Mx My Mz! ! !are 0 0 0, ,X Y Z! ! ! and 0 0 0, ,L M N! ! !  the external force and external moment at the 

point M relative to the unit of length of the undeformed line, respectively.  Upon 

regarding the completely integrated part of !
0

0

,0

B

A
dsW+ we call the segments that issue 

from B whose projections on the axes , ,Mx My Mz! ! !  have the values 
0 0 0
, ,B B BF G H! ! !& & & and 

0 0 0
, ,B B BI J K! ! !& & & that the expressions , ,F G H! ! !& & & and , ,I J K! ! !& & & take at the point B0 

the external effort and external moment of deformation at the point B, respectively.  We 
call the analogous segments that are formed from the values 

0 0 0
, ,A A AF G H! ! !& & & and 

0 0 0
, ,A A AI J K! ! !& & &  that the expressions , ,F G H! ! !& & & and , ,I J K! ! !& & &  take at the point A0 

the external effort and external moment of deformation at the point A, respectively. 
 The points A and B are not presented in the same fashion here, which conforms to the 
convention that distinguishes them and the convention that was made regarding the sense 
of the arc s0. 
 Suppose that one cuts the deformed line AB at the point M, and that one separates the 
two parts AM and MB; one may regard the two segments ),,( HGF !&!&!& and 
( , , )I J K! ! !& & &  that are determined by the point M as the effort and the external moment 
of deformation of the part AM at the point M, and the two segments ),,( HGF !!! and 
( , , )I J K! ! !  as the effort and the external moment of the part MB at the point M.  It 
amounts to the same thing if, instead of considering AM and MB one imagines two 
portions of the deformable line that belong to AM and MB, respectively, and have an 
extremity at M.  By reason of these remarks, we say that , ,F G H! ! !& & &  and , ,I J K! ! !& & &  
are the components of the effort and the moment of deformation exerted on AM and on 
any portion of AM ending at M at the point M along the axes ,,, zMyMxM !!! and that 

, ,F G H! ! ! and , ,I J K! ! !  are the components of the effort and moment of deformation 

exerted on MB and any portion of MB ending at M at the point M along the axes 
.,, zMyMxM !!!  

 We observe that if one replaces the triad Mx y z! ! !by a triad that is invariably related 
then one is led to conclusions that are identical to the ones that we have previously 
indicated (24). 
 
 
 
 10.  Relations between the elements defined in the preceding section; diverse 
transformations of these relations. - The different elements that were introduced in the 
preceding section are coupled by the following relations, which result immediately from 
comparing the formulas that serve to define them: 

                                                
24  Note sur la dynamique du point et du corps invariable, Tome I, pages 260 and 269. 
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 One may propose to transform the relations that we proceed to write, independently of 
the values of the quantities that figure in them that are calculated by means of W.  
Indeed, these relations apply between the segments that are attached to the point M, and 
which we have given names to.  Instead of defining these segments by their projections 
on ,,, zMyMxM !!!  we can just as well define them by their projections on other axes.  
These latter projections will be coupled by relations that are transforms of the preceding 
ones. 
 The transformed relations are obtained immediately if one remarks that the primitive 
formulas have a simple and immediate interpretation by the addition of axes that are 
parallel translated from the point O to the moving axes. 
 
 1.  First consider fixed axes Ox, Oy, Oz.  Denote the projections of the force and 
external moment at an arbitrary point of the deformed line onto these axes by X0, Y0, Z0 
and L0, M0, N0, and the projections of the effort and the moment of deformation on the 
same axes by F, G, H and I, J, K, so the projections of the above on the , ,Mx My Mz! ! !  
axes will be , ,F G H! ! !  and .,, KJI !!!   Evidently, the transforms of the preceding relations 
are: 

 ,00
0

=& X
ds

dF

 ,00
000

=&&+ L
ds

dz
G

ds

dy
H

ds

dI
 

 ,00
0

=&Y
ds

dG

 ,00
000

=&&+ M
ds

dx
H

ds

dz
F

ds

dJ
 

 ,00
0

=& Z
ds

dH
  

 0
0 0 0

0
dK dx dy

G F N
ds ds ds

+ & & = . 

 
We may regard the force 0 0 0, ,X Y Z! ! ! and the moment ,,, 000 NML !!!  or, if one prefers, the 

force X0, Y0, Z0 and the moment L0, M0, N0 as distributed in a continuous manner along 
the line; this force and moment will be referred to the unit of length of the undeformed 
line.  In order to have the force and moment referred to the unit of length of the deformed 
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line, it suffices to multiply ,,, 000 ZYX !!! ,,, 000 NML !!! or X0, Y0, Z0, L0, M0, N0 by ,0

ds

ds
where 

ds is the linear element of the deformed line that corresponds to the linear element ds0 of 
the undeformed line.  We introduce the projections of the force and external moment on 
the fixed axes Ox, Oy, Oz, namely, X, Y, Z, L, M, N, which are referred to the unit of 
length of the deformed line; we obtain the relations: 
 

(12)   

"
"
"

#

""
"

$

%

=&&+=&

=&&+=&

=&&+=&

,0,0

,0,0

,0,0

N
ds

dy
F

ds

dx
G

ds

dK
Z

ds

dH

M
ds

dx
H

ds

dz
F

ds

dJ
Y

ds

dG

L
ds

dz
G

ds

dy
H

ds

dI
X

ds

dF

 

 
which are identical with those considered by several authors, and, in particular, by LORD 
KELVIN and TAIT (25).  However, the latter are obtained upon applying what one calls, 
in classical mechanics, the principle of solidification, and upon starting with the notions 
of forces and couples, a priori, which are thus expressed as a function of the 
deformations, a posteriori, by virtue of the hypotheses. Under these hypotheses, we have 
imagined only infinitely small deformations up till now, whereas now we presently place 
ourselves in the most general case. 
 
 2.  One may give a new form to the equations relative to the fixed axes Ox, Oy, Oz.  
We may express the nine cosines , , , ,( ( ( )! !! !!" by means of three auxiliary variables; let 

.1, .2, .3 be these three auxiliary variables.  Set: 
 

,332211 ./././)**) ddddd !+!+!=&=& &  

   ,332211 .0.0.0())( ddddd !+!+!=&=& &  

   1 1 2 2 3 3d d d d d* ( ( * 1 . 1 . 1 .! ! != & = + +& & . 

 

The functions , ,i i i/ 0 1! ! ! of .1, .2, .3 so defined satisfy the relations: 

 

,0=!!&!!+
-

!-
&

-

!-
ijji

j
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j
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/

.

/
 

,0=!!&!!+
-

!-
&

-

!-
ijji

j

i

i

j
/1/1

.

0

.

0
  (i, j = 1, 2, 3) 

,0=!!&!!+
-

!-
&

-

!-
ijji

j

i

i

j
0/0/

.

1

.

1
 

and one has: 

                                                
25  LORD KELVIN AND TAIT. - Natural Philosophy, Part. II, sec. 614. 
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,
0

3
3

0

2
2

0

1
1

ds

d

ds

d

ds

d
p

.
/

.
/

.
/ !+!+!=  

,
0

3
3

0

2
2

0

1
1

ds

d

ds

d

ds

d
q

.
0

.
0

.
0 !+!+!=  

31 2
1 2 3

0 0 0

dd d
r

ds ds ds

.. .
1 1 1! ! != + + . 

 
When we denote the projections on the fixed Ox, Oy, Oz axes of the segment whose 
projections on the zMyMxM !!! ,, axes are , ,i i i/ 0 1! ! ! by /i, 0i, 1i we have: 

 
  ))**(( !!!+!!!+!!! ddd  )( ))**(( !!!+!!!+!!!&= ddd  &= ,ii d./  

  ))**(( ddd !!+!!+!!   )( ))**(( !!+!!+!!&= ddd  &= ,iid.0  

  ))**(( !+!+! ddd   )( ))**(( ddd !+!+!&=  &= ,iid.1  

 
by virtue of which (26), the new functions /i, 0i, 1i of .1, .2, .3 satisfy the relations: 
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j
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 We again make the remark, which will be of use later on, that if one denotes the 
variations of .1, .2, .3 that correspond to the variations , , ,+( +( +)! !!! of , , ,( ( )! !!! by 

+.1, +.2, +.3 then one will have: 
 

,332211 +./+./+./+ !+!+!=!I  

,332211 +.0+.0+.0+ !+!+!=!J  

,332211 +.1+.1+.1+ !+!+!=!K  

,010101 NMLKJII 10/)+*+(++ ++=!+!+!=  

                                                
26  These formulas may serve to define the functions /i, 0i, 1i directly, and may be substituted for: 
 

,
iiii 1)0*/(/ !+!+!=  

,
iiii

1)0*/(0 !!+!!+!!=  (i = 1, 2, 3). 

.
iiii

1)0*/(1 !!!+!!!+!!!=  
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,020202 NMLKJIJ 10/+)+*+(+ ++=!!+!!+!!=  

,030303 NMLKJIK 10/+)+*+(+ ++=!!!+!!!+!!!=  

 
where +I, +J, +K are the projections onto the fixed axes of the segment whose projections 
onto , ,Mx My Mz! ! !are .,, KJI !!! +++  
 Now set: 
   1 1 1 1 1 1I J K I J K/ 0 1 / 0 1! ! ! ! ! != + + = + +!  

   2 2 2 2 2 2I J K I J K/ 0 1 / 0 1! ! ! ! ! != + + = + +"  

   3 3 3 3 3 3I J K I J K/ 0 1 / 0 1! ! ! ! ! != + + = + +#  

   0 1 0 1 0 1 0 1 0 1 0 1 0L M N L M N/ 0 1 / 0 1! ! ! ! ! != + + = + +$  

   0 2 0 2 0 2 0 2 0 2 0 2 0L M N L M N/ 0 1 / 0 1! ! ! ! ! != + + = + +%  

   0 3 0 3 0 3 0 3 0 3 0 3 0 ,L M N L M N/ 0 1 / 0 1! ! ! ! ! != + + = + +&  

 
and we will have the equation: 
 

1 1 1
1 1 1 1 1 1

0 0 0 0

d d dd
I q r J r p K p q

ds ds ds ds

/ 0 1
1 0 / 1 0 /

, ) , ) , )! ! !
! ! ! ! ! ! ! ! !& + & & + & & + &* ' * ' * '
+ ( + ( + (

!
 

 1 1 1 1 1 1 0( ) ( ) ( ) 0,F G H0 % 1 # 1 " / % / # 0 "! ! ! ! ! ! ! ! !+ & + & + & & =$   

 
with two analogous equations.  If one remarks that the functions ", #, $, p, q, r of 

.1, .2, .3, 31 2

0 0 0

, ,
dd d

ds ds ds

.. .
give rise to the formulas: 
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which result from the defining relations for the functions ,,, iii 10/ !!! and the nine identities 

that they verify, then one may give a new form to the preceding equation: 
 

0
0 1 1 1 1 1 1

0
d p q r

F G H I J K
ds

" # %

. . . . . .

- - - - - -
! ! ! ! ! !& & & & & & & =
- - - - - -

!
$ , 

 
with two analogous equations. 
 Upon setting: 
 

1 1 1( ) ( ) ( ),I y H z G J z F x H K x G y F/ 0 1! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! != + & + + & + + &!  
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1 0 0 0 1 0 0 0 1 0 0 0( ) ( ) ( ),L y Z z Y M z X x Z N x Y y X/ 0 1! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! != + & + + & + + &$  

 
with analogous formulas for 0 0, , ,! ! ! !" # % & one similarly finds the form of the equation: 

 

0 1 1

( ) ( )
d p q

I y H z G J z F x H
ds . .

! - -
! ! ! ! ! ! ! ! ! !& + & & + &

- -

!
0

1

( ) 0
r

K x G y F
.

-
! ! ! ! ! !& + & & =

-
$ , 

 
with two analogous expressions. 
 We will soon apply the transformations that we just indicated; for the moment, we 
limit ourselves to making the remark that the expressions ,,, KJI !!! +++ and +I, +J, +K are 

not exact differentials. 
 
 3.  Instead of referring the elements that relate to the point M to the fixed axes Oxyz, 
imagine that in order to define these elements, a trirectangular triad Mx y z! ! !  moving with 

M, whose axis 1Mx!  is subject to being directed along the tangent to the curve (M) given 

the sense of the increasing arc length.  To define this triad 1 1 1Mx y z! ! !  refer it to the 

triad ,zyxM !!! and let , ,l l l! !!be the direction cosines of 1Mx!  with respect to the latter triad, 

,,, mmm !!! those of ,1yM !  and ,,, nnn !!! those of .1zM !   The cosines , ,l l l! !!will be defined 
by the formulas: 

   ,0

ds

ds
l "=   ,0

ds

ds
l #=!   ,0

ds

ds
l %=!!  

 
i.e., by the following: 

   ,
2

"
=l    ,

2

#
=!l   ,

2

%
=!!l  

 
upon setting: 

222 %#"2 ++= . 

 
 We assume that the triad 1 1 1Mx y z! ! ! has the same disposition as the others.  We make no 

other particular hypotheses on the other cosines; from their definition, they will be simply 
subject to verifying the relations: 

,0=!!+!+ %#" mmm  
.0=!!+!+ %#" nnn  

 
 Suppose that s0 varies and that, for an instant, one makes it play the role of time.  
Moreover, refer the triad 1 1 1Mx y z! ! !  to the fixed triad Oxyz and denote the respective 

projections of the instantaneous rotation of the triad 1 1 1Mx y z! ! !  onto the axes 1 1 1, ,Mx My Mz! ! !  

by p1, q1, r1 in such a way that one will have three formulas such as the following: 
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&+!!+!+= ,
0

1
ds

dm
nrlqllpp  

 
upon admitting the same disposition for the triads. 
 Finally, denote the projections of the force and external moment at an arbitrary point M of 
the deformed line 1 1 1, ,Mx My Mz! ! !  onto (?) by (?) and referred to the unit of length of the 

undeformed line, and the projections of the effort and the moment of deformation by  1 1 1, ,F G H! ! !  

and .,, 111 KJI !!!  The transforms of the equations of the preceding section are obviously: 
 

(13)  
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NGIqJp
ds
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ds

Hd

MHKpIr
ds

Jd
YHpFr
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LJrKq
ds
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XGrHq
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 In the strength of materials, one calls 1F !  the effort of tension; the components 1 1,G H! ! are the 

shear efforts in the plane normal to the deformed line.  Similarly, the component 1I !  of the 

moment of deformation is a moment of torsion; the components 1 1,J K! ! are called the moments of 

flexion. 
 If, in the fourth equation (13), one has 01 =!L  and q1 = 0, then it follows that: 
 

,011
0

1 =!&
!

Jr
ds

Id
 

 
from which results the proposition, which was established by POISSON (27) for the case where 

1L!= 0, 1M != 0, 1N ! = 0, q1 = 0, that if 1J != 0 then one has 1I !  = const. 
 
 
 11.  External virtual work.  Varignon’s theorem.  Remarks on the auxiliary variables 
introduced in the preceding section. - For the deformed line AB, given an arbitrary virtual 
deformation, we give the name of external work to the expression: 
 

0

0
[ ]B

e AF x G y H z I I J J K K+ + + + + + +! ! ! ! ! ! ! ! ! ! ! != & + + + + +'  

                                                
27  POISSON. - Sur les lignes élastiques à  double courbure, Correspondance sur l’Ecole Polytechnique, T. III, no. 
3, pp. 355-360, January 1816.  POISSON’S proposition is independent of the formulas that define the effort and the 
moment of deformation by means of W; POISSON established them by writing the equations of equilibrium of a 
portion of the line by the principle of solidification; BERTRAND gave them a proof in a note in the Mécanique 
analytique of LAGRANGE, which we will review. 
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   .)(
0

0
0000000! !!+!!+!!+!!+!!+!!+

B

A
dsKNJMILzZyYxX ++++++  

 

From the preceding section, upon setting 0
0

ds

ds
=$ $ , …, 0

0

ds

ds
! !=$ $ , …, one may give the 

following forms to that expression: 
 

[ ]B
e AF x G y H z I I J J K K+ + + + + + += & + + + + +'  

   ! ++++++
B

A
dsKNJMILzZyYxX ,)( ++++++  

1 2 3[ ]B
e AF x G y H z+ + + + +. +. +.= & + + + + +' ! " #  

   1 2 3( )
B

A
X x Y y Z z ds+ + + +. +. +.+ + + + + +! $ % & , 

1 2 3[ ]B
e AF x G y H z+ + + + +. +. +.! ! ! ! ! != & + + + + +' ! " #  

   0 0 0 1 2 3( )
B

A
X x Y y Z z ds+ + + +. +. +.! ! ! ! ! !+ + + + + +! $ % & . 

 
 We will apply the last two later on.  As for the first two, we shall deduce a fundamental 
proposition of statics here, where the idea, though not its present form, is due to VARIGNON, 
and which we have encountered already in the interpretation given by SAINT-GUILHEM of the 
relations that couple the external forces and quantities of motion in dynamics.  Identifying the 
effort and the moment of deformation at a point M of the line M with the resultant and the 
resultant moment of a system of vectors relative to the point M; let P3, P1 be the general 
resultant and the resultant moment relative to a point P of space.  Similarly, identify the force 
and the external moment at a point M referred to the unit of length of (M), with the resultant and 
the resultant moment of a system of vectors relative to the point M; let PN and PS be the 
resultant and the resultant moment relative to a point P of space; one has this proposition: 
 When arc length is identified with time, the velocities of the geometric points 3 and 1 are 
equal and parallel to the segments PN and PS, respectively. 
 This proposition is obviously the translation of equations (12), which one may write: 
 

)21( !   

0, ( ) ( ) 0,

0, ( ) ( ) 0,

0, ( ) ( ) 0.

dF d
X I Hy Gz L Zy Yz

ds ds
dG d

Y J Fz Hx M Xz Zx
ds ds
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Z K Gx Fy N Yx Xy

ds ds

%
& = + & & + & ="

"
"

& = + & & + & =$
"
"

& = + & & + & ="
#

 

 
We may also arrive at this result in the following manner.  Start with: 
 

0

B

e
A

W ds+ += &! ' , 
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where +'e is taken between A and B.  Since +W may be identically null, by virtue of the 

invariance of W under the group of Euclidean displacements, when the expressions x+ ! , …, I+ ! , 
… are given by the formulas )9( !  or, what amounts to the same thing, when +x, +y, +z are given 

by formulas (9), and I+ ! = ,1+t, J+ ! = ,2+t, K+ ! = ,3+t, and this is true for any value of the 
constants a1, a2, a3, ,1, ,2, ,3 , from which we conclude that one has: 
 

! =&
M

A

B
A dsXF ,0][   ! =&

M

A

B
A dsYG ,0][  ! =&

M

A

B
A dsZH ,0][  

! =&+&&+
M

A

M
A dszYyZLzGyHI ,0)(][  

 
and two analogous formulas; in these relations, one may regard M as variable, and they are also 
equivalent to equations ).21( !   One will remark that these formulas are easily deduced from the 
ones that one ordinarily write by means of the principle of solidification; we will return to this 
point later on in the context of the reasoning made by POISSON and reprised by BERTRAND in 
regard to the deformable line considered by BINET. 
 Along with the expressions , , , , ,F G H I J K! ! ! ! ! ! that were first introduced, we have imagined 
other expressions that one may propose to calculate.  On the other hand, in these calculations, 
one may make functions appear explicitly that one introduces according to the nature of the 
problem, which will be, for example, x, y, z or ,,, zyx !!! and three parameters .1, .2, .3, by means 
of which, one expresses )(( !!! ,,, !  (28). 

 If one introduces x, y, z and .1, .2, .3 then one will have: 
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If one introduces , ,x y z! ! !and three parameters .1, .2, .3 then one will have: 
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28  For the auxiliary variables .1, .2, .3 one may take, for example, the components of rotation that make the fixed 
axes Ox, Oy, Oz parallel to .,, zMyMxM !!!  
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 12.  Notion of the energy of deformation. - Imagine the two states (M0) or A0B0 and (M) or 
AB of a deformable line, and consider an arbitrary sequence of states that start from (M0) and end 
at (M).  To that effect, it suffices to consider functions x, y, z; , , ,( ( )! !!!  of s0 and one variable 

h, which  reduce to x0, y0, z0; ,,,, 000 )(( !!! !  respectively, for the value zero of h, and to the 

values x, y, z; ,,,, )(( !!!! respectively, for the value h of h relative to (M). 
 Upon making the parameter h vary from h to 0 in a continuous fashion, we obtain a 
continuous deformation that permits us to pass from the state A0B0 to the state AB.  For this 
continuous deformation, imagine the total work performed by the forces and external moments 
of deformation that are applied to the extremities of the line.  To obtain the total work, it suffices 
to integrate the differential so obtained from 0 to h, upon starting with one of the expressions for 
+'e that were defined in the preceding section, and substituting the partial differentials that 

correspond to increasing h by +h for the variations of x, y, z; , , ,( ( )! !!! .  The formula: 
 

0

0
0

B

e A
W ds+ += &!'  

 

gives the expression 
0

0
0

B

A

W
dh ds

h

-
&

-! for the present value of +'e, and we obtain: 
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Wh B
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0

0
0 0 0 0 0 0 0 0 0[ ( , , , , , , ) ( , , , , , , )]

B

A
W s p q r W s p q r ds" # % " # %& &!  

for the total work. 
 The work considered is independent of the intermediary states and depends only on the 
extreme states (M0) and (M). 
 This leads us to introduce the notion of the energy of deformation, which must be 
distinguished from the preceding action we described; we say that &W is the deformation energy 
density, referred to the unit of length of the deformed line. 
 
 
 13.  Natural state of the deformable line.  General indications of the problems that the 
consideration of that line leads to.  In the foregoing, we started with a state of the deformable 
line that we called natural, and we were given a state that we called deformed; we have indicated 
the formulas that permit us to calculate the external force and the elements that are analogous to 
the ones that are adjoined to the function, W, that represents the action of deformation at a point 
for the deformable line. 
 Let us pause for a moment on the notion of natural state.  The latter is, in the preceding, a 
state that has not been subjected to any deformation.  Regard the functions x, y, z, ... as 
determining the deformed state, which depends upon one parameter such that one recovers the 
natural state for a particular value of this parameter; the latter will thus appear as a particular 
case of the deformed state, and we are led to attempt to apply the notions relating to the latter. 
 One may, without changing the values of the elements defined by formulas (10), replace the 
function W by that function augmented by an arbitrary definite function of s0, and if one was left 
inspired by the idea of action that we associated to the passage from the natural state (M0) to the 
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deformed state (M) one may, if one prefers, suppose that the function of s0 that is defined by the 
expression: 

W(s0, "0, #0, $0, p0, q0, r0) 
 

is identically null; however, the values obtained for the external force and the analogous 
elements in regard to the natural state will not be necessarily null; we say that they define the 
external force and the analogous elements relative to the natural state (29). 
 In what we just discussed, the natural state presented itself as the initial state of a sequence of 
deformed states, as a state with which to begin our study of the deformation.  As a result, one is 
led to demand that it is not possible for it to play the role of one of the deformed states, since the 
role that we have made the natural state play, and likewise the elements that were defined in 
section 9, (external force, external effort, ...), that were calculated for the other deformed states, 
have the same value if one refers the first of these elements to the unit of length of the deformed 
line.  This question receives a response only if one introduces and clarifies the notion of action 
corresponding to the passage from a deformed state to another deformed state. 
 The simplest hypothesis consists of assuming that this latter action is obtained by subtracting 
the action that corresponds to the passage from the natural state (M0) to the first deformed state 
(M(0)) from the action that corresponds to the passage from the natural state (M0) to the second 
deformed state (M).  If we denote the arc length of (M(0)) by s(0), and the quantities that are 
analogous to ", #, $, p, q, r by "(0), #(0), $(0), p(0), q(0), r(0) then one is led to adopt the expression: 
 

(14)   
0

0
0 0 (0) (0) (0) (0) (0) (0) 0[ ( , , , , , , ) ( , , , , , , )]

B

A
W s p q r W s p q r ds" # % " # %&! . 

 
 Introduce s(0) for the independent variable instead of s0, and denote the variables that become 
", #, $, p, q, r, when one makes s(0) play the role that was played by s0 by "(0), #(0), $(0), p(0), q(0), 
r(0); one will have relations such as the following: 
 

,
0

)0(
0

ds

ds
"" =  

 
and, upon denoting the points of (M(0)) that correspond to the points A0, B0 of (M0) by A(0), B(0) 
expression (14) becomes: 
 

(15)    ,),,,,,,( )0(
)0()0()0()0()0()0(

)0(
)0(

0

)0(

)0(

dsrqpsW
B

A
%#"!  

upon denoting the expression: 
 

                                                
29  We may then speak of the external force and moment, the effort and moment of deformation, because we regard 
the natural state as the limit of a sequence of states for which we know the external force and moments, the effort 
and the moment of deformation; this is because the external force and moment, the effort and moment of 
deformation, are defined, up till now, only when there is a deformation that makes it possible to manifest and 
measure them. 
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,)],,,,(),,,,([
)0(

0
)0()0(0

0

)0()0(

0

)0()0(

0

)0()0(
0

ds

ds
sW

ds

ds
r

ds

ds

ds

ds
sW !! #"#" &  

 
by )0(

0W (s(0), "
(0), #(0), $(0), p(0), q(0), r(0)), in which s0 is replaced as a function of s(0). 

 Furthermore, from the remark made at the beginning of this section, one may, if one 
prefers, substitute the following expression: 
 

)51( !     
(0)

(0 )

(0) (0) (0) (0) (0) (0) (0)
(0) (0)( , , , , , , )

B

A
W s p q r ds" # %!  

 
for (15), where the function W(0)(s(0), "

(0), #(0), $(0), p(0), q(0), r(0)), is the expression: 
 

),,,,(
0

)0()0(

0

)0()0(
0

ds

ds
r

ds

ds
sW !"  

in which  s0, 
(0)0

(0) 0

,
dsds

ds ds
are expressed as functions of s(0). 

 One immediately confirms that the application of the formulas of section 9 to 
expression (15) or expression )51( !  gives, upon starting with (M(0)) as the natural state, 
the same values for the external force and moment relative to the state (M), referred to the 
unit of length of (M), as well as the same values for the effort and the moment of 
deformation. 
 Therefore we may consider (M) as a deformed state when (M(0)) is the natural state, 
provided that the function W that is associated to the state (M) is presently W(0) and 

)0(
0W (30). 

 We now give several general indications about the problems that may lead to the 
consideration of the deformable line. 
 In the preceding, as well as in what we already did, we gave formulas that determined 
the external force and the analogous elements when one supposed that the functions x, y, 
z, ... of s0 that define the deformed state were known. 
 We immediately remark that if one starts with the givens of x, y, z, ..., and if one 
calculates &!!! 000 ,, ZYX  to fix ideas & then, after doing all the calculations, one obtains 

definite functions of s0 .  However, by virtue of the formulas that define x, y, z, ... as 
functions of s0, one may obviously express 0 0 0, ,X Y Z! ! ! by means of s0, x, y, z, ..., and their 

derivatives up to whatever order one desires.  Upon imagining a problem in 
which ,,, 000 ZYX !!!  for example, figure among the givens, we may imagine that these 

expressions are given as functions of s0, but we may just as well suppose that they refer x, 
y, z, ..., and the derivatives of the latter with respect to s0. 

                                                
30  As we said at the beginning of this section, this permits us to generalize the notion of natural state that 
we first introduced.  Instead of simply making the idea of a particular state correspond to that word, we 
may, in a more general fashion, make it correspond to the idea of an arbitrary state that we start with to 
study the deformation. 
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 Consider a problem in which the projections of the external force and moment, either 
on the fixed axes Ox, Oy, Oz or on the axes ,,, zMyMxM !!!  figure among the givens, and 
suppose, to fix ideas, that these projections are given functions of s0, x, y, z, 

,,,, )(( !!!! and their first and second order derivatives.  In addition, suppose that the 
external force and moment are referred to the unit of length of (M0) and that x0, y0, z0, are 
given functions of s0.  It is clear that under these conditions the formulas of section 9 that 
serve to define 0 0 0 0 0 0, , , , ,X Y Z L M N! ! ! ! ! !  become six differential equations between the 

unknowns x, y, z, .1, .2, .3 the last three being three auxiliary functions, by means of 
which one may express the nine cosines , , ,( ( )! !!! .  These differential equations, with 
the hypothesis that one proceeds to make on the external force and moment, do not 
involve derivatives of order higher than two. 
 To complete the search for the unknowns, if the problem we posed is well-defined, or 
at least if it does not involve an indeterminacy as great as the one that results in only the 
differential equations that we will eventually discuss, then one will have to take the 
complementary givens into account.  The latter may be limit conditions, i.e., conditions 
that are satisfied by the unknowns at the extremities A0 and B0; for example, one may 
give the values at A0 and B0 of a certain number of expressions x, y, z, .1, .2, .3, and 
expressions such as 0 0 0 0 0 0, , , , ,F G H I J K! ! ! ! ! ! that relate to the effort and the moment of 

deformation, or similarly to functions & more often than not, linear & of x, y, z, .1, .2, .3 
and .,,,,, 000000 KJIHGF !!!!!!  

 We shall show, by particular examples, with particular hypotheses, how differential 
equations and complementary conditions may correspond to various problems; however, 
one may vary the questions. 
 If the arc length s figures explicitly in the givens then one will consider s as a 
supplementary variable, and one may adjoin the relation: 
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222

='
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(
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,

ds

dz

ds

dy

ds

dx
 

 
 It often happens that one may devote most of one’s attention to the deformed line (M) 
with the line (M0) remaining in the background, so to speak.  If we suppose that the 
expression of W as a function of s0, x, h, z, p, q, r is given and does not necessitate being 
given (M0) for its determination then the function W will finally be a function of s0, the 
first derivatives of x, y, z, of .1, .2, .3, and the first derivatives of .1, .2, .3 .  If the 
external force and moment are also given explicitly by means of s0, x, y, z, .1, .2, .3 and 
their derivatives then it is clear that the problem may be considered as comprising, on the 
one hand, the determination of the state (M) by means of a variable relating to that state & 
s, for example & or one of the letters x, y, z, and, on the other hand, the determination of 
the relation that couples s0 and s.  With the hypotheses that we just made, s0 may figure 
explicitly, and, in addition(31), its differential ds0 may figure, or, if one prefers, the 
                                                
31  If one gives the external force and moment referred to the unit of length of (M), and, more generally, if 
one gives these elements as functions of s0, s, x, ..., and the first derivatives with respect to one of these 
letters. 
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expression 0ds

ds
or its inverse .

0ds

ds
  We remark that the notion of the quotient, which gives 

the derivative of s with respect to s0, corresponds to the linear dilatation felt by the line 
element ds0 that issues from the point M0 of (M0), and which becomes the element ds that 
issues from the point M of (M) that corresponds to the point M0. We return to the 
dilatation that LAMÉ specifically imagined for the particular deformable line that he 
studied (32). 
 Another type of problem will be developed later on when we seek to attach some very 
special lines that were considered by geometers who used to be occupied with the present 
subject, to the deformable line that was defined up till now, i.e., the free line (33), which is 
susceptible to all possible deformations, upon imagining the study of the former as the 
study of particular deformations of the free line. 
 
 

 14.  Normal form for the equations of the deformable line when the external 
force and moment are given as simple functions of s0 and elements that fix the 

position of the triad .zyxM !!!   Castigliano’s minimum work principle.  & Conforming 
to the indications of the preceding section, suppose that the external force and moment 
are given by means of simple functions of s0 and elements that fix the position of the 
triad .zyxM !!!   Suppose, moreover, that the natural state is given. We may consider the 
equations of sec. 9 as differential equations in the unknowns x, y, z and the three 
parameters .1, .2, .3 by means of which one expresses ,,,, )(( !!!!  or again, in the 

unknowns , ,x y z! ! !and the three parameters .1, .2, .3, which corresponds to a change of 
variables.  These two viewpoints are the ones that most naturally present themselves.  In 

the first case, the expressions", #, $, p, q, r are functions of ,,,
000 ds

dz

ds

dy

ds

dx
.1, .2, .3, 

31 2

0 0 0

, ,
dd d

ds ds ds

.. .
that one may calculate by means of formulas (1) and (2).  In the second 

case, these will be functions of ,,, zyx !!!  ,
0ds

xd !
...,  .1, ..., ,

0

1

ds

d.
… that one may calculate 

by means of formulas (2) and (4). 
 The first case is the most interesting, by reason of the analogy that exists between the 
present question and dynamics of points, and between triads and rigid bodies.  We 
examine it first. 
 
 1.  Assume that ,,,,,, 000000 NMLZYX !!!!!! or, what amounts to the same thing, X0, Y0, Z0, 

L0, M0, N0 are given functions of s0, x, y, z, .1, .2, .3.  The expression W is, after 

                                                
32  LAMÉ. - Leçons sur la théorie mathématique de l’élasticité des corps solides, 2nd ed., pp. 98-99 (8th 
lesson, sec. 41, entitled Dilatation du fil). 

33  Here, the expression “free” signifies that the theory starts with the function W that depends on elements 
that result from considering only that line, and which are susceptible to all possible variations. 
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substituting values for ", #, $, p, q, r that are related by formulas (1) and (2) to definite 

functions of s0, ,,,
000 ds

dz

ds

dy

ds

dx
.1, .2, .3, ,,,

0

3

0

2

0

1

ds

d

ds

d

ds

d ...
which we continue to denote by 

W, and the equations of the problem may be written: 
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$0, %0, &0, are functions of s0, x, y, z, .1, .2, .3 that result in the functions of sec. 10. 

 This results immediately either from the formulas of the preceding sections or, in a 
more immediate fashion, from the formulas of the definition of X0, Y0, Z0, $0, %0, &0, F, 

G, H, !, ", # may be summarized in the relation: 

 
0

0
0 0

B

eA
W ds+ ++ =! ' , 

i.e., in: 
0

0

0
0

0 1 2 3[ ]
B

B
AA

W ds F x G y H z+ + + + +. +. +.= + + + + +! ! " #  

   
0

0
0 0 0 0 1 0 2 0 3 0( )

B

A
X x Y y Z z ds+ + + +. +. +.& + + + + +! $ % & . 

 
We may replace the preceding system by a system of first order equations upon 
introducing six unknown auxiliary variables for which, instead of first order derivatives 
of x, y, z, .1, .2, .3, we choose the six expressions that we just considered: 
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Upon supposing that the Hessian of W with respect to 31 2

0 0 0 0 0 0

, , , , ,
dd ddx dy dz

ds ds ds ds ds ds

.. .
is 

non-null (which amounts to supposing that the Hessian of the function W is non-null 
when it is expressed in terms of ", #, $, p, q, r), we may derive values for the last six 

derivatives 
0

dx

ds
,…, 3

0

d

ds

.
 as functions of F, G, H, !, ", #.  We substitute these values in 

the expression: 

0 0 0 0

0 0 0 0

i

i

ddx W dy W dz W W
W

dx dy dz dds ds ds ds
ds ds ds ds
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- - - -
= + + + &

- - - -
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which is none other than the expression of: 
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as a function of !! ,,,,,,,
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d

ds

dz

ds
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ds

dx
s

.
.   After substitution, we obtain a function of s0, 

.1, .2, .3, F, G, H, !, ", #, which we continue to denote by the letter (.  Now, the total 

differential of the latter functions is obviously: 
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and as a result one has the following form for the system that defines x, y, z, .1, .2, .3, F, G, H, 
!, ", #: 
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 We have supposed that, by virtue of the formulas that define x, y, z, .1, .2, .3 as functions of 

s0, one can express X0, Y0, Z0, $0, %0, &0 as a function of s0, x, y, z, .1, .2, .3; this is possible in 
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an infinitude of ways, and one may choose the new forms for X0, Y0, Z0, $0, %0, &0 in such a 

way that the partial derivatives ,,,,,,
321 ... -
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- UUU

z
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U
respectively, change the sign of the 

same function of ), which is or is not independent of s0.  Suppose that this is the case and let * 

denote the function of x, y, z, .1, .2, .3 (and maybe s0) that is defined by the formula: 
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the preceding system takes the form: 
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 Here we have equations that are presented in the form of HAMILTON’S equations from 
dynamics.  In particular, if we suppose that the new forms of X0, Y0, Z0, $0, %0, &0 are chosen, 

as is always possible, in such a fashion that s0 does not figure and that they are partial derivatives 
of a function & ) of x, y, z, .1, .2, .3, and if, in addition, we suppose that W(s0, ", #, $, p, q, r) 

does not depend on s0 (
34), then we have, more particularly, a canonical system of equations. 

 
 2. Now look at the functions ,,, zyx !!! and suppose furthermore that the functions 

, , ,( ( )! !!! are expressed by means of three auxiliary functions .1, .2, .3.  Assume 

that ,,, 000 ZYX !!!
0 0 0, ,L M N! ! ! are given functions of s0, ,,, zyx !!!  .1, .2, .3. The expression W is, 

after substituting the values for ", #, $, p, q, r that are derived from formulas (2) and (4), a well-
defined function of s0, ,,, zyx !!!  .1, .2, .3 that we continue to denote by W, and the equations of 
the problem may be written: 
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34  To express this hypothesis one may say that in this case - and by definition - the line is homogenous. 
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where 0 0 0, ,! ! !$ % & are the functions of s0, ,,, zyx !!!  .1, .2, .3 that result from sec. 10. 

 We may replace the preceding system by a system of first order equations upon 
introducing six auxiliary unknowns for which, instead of first order derivatives of 

,,, zyx !!! .1, .2, .3, we choose the six preceding expressions that we already envisioned: 
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 Upon supposing that the Hessian of W with respect to 
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is non-null, we may derive values for these latter six 

derivatives as functions of F!, G!, H!, !!, "!, #! from these six relations; we transport 

these values into the expression: 
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we obtain, after substitution, a function of s0, zyx !!! ,, , .1, .2, .3, F!, G!, H!, !!, "!, #! that 

we continue to denote by the letter (!.  Now, the total differential of this latter function is 

obviously: 
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and, as a result, one has the following form for the system that defines zyx !!! ,, , .1, .2, .3, 

F!, G!, H!, !!, "!, #!: 
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 By virtue of the formulas that define zyx !!! ,, , .1, .2, .3 as functions of s0, we have 

supposed that one can express them as functions of s0, zyx !!! ,, , .1, .2, .3.  This is 
possible in an infinitude of ways and one may choose the new forms for them in such a 
way that they are the partial derivatives, up to sign, of the same functions )!, which may 

or may not be independent of s0.  Suppose that this is true and introduce the function of 
zyx !!! ,, , .1, .2, .3, (and maybe s0) that is defined by the formula: 

 
*! = (! + )!; 

 
the preceding system then takes the form: 
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 In the case where the forces and external moments are zero, the equation: 
 

0 0eW ds+ ++ =! '  

 
corresponds to Castigliano’s principle of minimum work (35), which was already 
considered by VINE, COURNOT, MENABREA, and others. 
 Consider the equations in the normal form: 
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Upon integrating from A0 to B0, they become: 
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35  CASTIGLIANO. - Théorie de l’équilibre des systèmes élastiques et ses applications, Turin 1879.  See 
also MÜLLER-BRESLAU, Die neueren Methoden der Festigkeitslehre, 3rd ed., Leipzig, 1904. 
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 For example, if one supposes that X0, Y0, Z0 are null then one has F = const. 
= ==

00 AB FF  G = const., H = const.  In the three formulas such as: 
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F, G, H are independent of s0, and one may write: 
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 If $0, %0, &0 are null, and if 
1 2 3

0
. . .

- - -
= = =
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( ( (
 then one obtains analogous 

theorems that relate to .1, .2, .3 .  One is therefore led, in a very direct and natural 
manner, to what one calls the theorems of CASTIGLIANO in the strength of materials.  
One therefore generally imagines the simple case of an infinitely small deformation; W is 
a quadratic form, and the same things are true for ( as those we deduced for W as its 

adjoint form. 
 
 
 15.  Notions of hidden triad and hidden W. - In the study of the deformable line, it 
is natural to direct one’s attention to the curve described by the line, in particular,  This 
amounts to starting with x, y, z and considering , , ,( ( )! !!! as simple auxiliary variables.  
This is what we may likewise express by imagining that one ignores the existence of the 
triads that determine the deformable line, and that one knows only the vertices of these 
triads.  Upon taking this viewpoint, in order to envision the differential equations that one 
is led to in this case, we may introduce the notion of hidden triad, and we are led to a 
resulting classification of the diverse circumstances that may present themselves in the 
elimination of .,,, )(( !!!!  
 A first question that presents itself is therefore that of the reductions that may be 
produced in the elimination of the , , ,( ( )! !!!  .  In the corresponding particular case 
where our attention is directed almost exclusively upon the curve described by the 
deformed line (M) one may occasionally make an abstraction from (M0), and, as a result, 
from the deformation that permits us to pass from (M0) to (M).  It is from this latter 
viewpoint that we may recover the line that is called flexible and inextensible in rational 
mechanics. 
 The triad may be considered in another fashion.  We may make several particular 
hypotheses on it, and similarly on the curve (M), which amounts to envisioning particular 
deformations of the free deformable line.  If the relations that we impose are simple 
relations between ", #, $, p, q, r, as will be the case in the applications that we have to 
study, we may account for these relations in the calculations of W and derive more 
particular functions from W.  The interesting question that this poses will be to simply 
introduce these particular forms, and to consider the general function W that will serve as 
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point of departure as hidden, in a way.  We will therefore have a theory that will be 
special to the particular forms suggested by the given relations between ", #, $, p, q, r. 
 We verify that one may thus, by means of the theory of the free deformable line, 
assemble the equations that are the result of special problems that one encounters in the 
habitual exposition of rational mechanics and in the classical theory of elasticity under 
the title of particular cases with a common origin. 
 In the latter theory, one often places oneself in the appropriate circumstances so as to 
avoid the consideration of deformations; in reality, they need to be completed.  In 
practical applications this is what one may do when imagining the infinitely small 
deformation. 
 Take the case where the force and the external moment refer only to the first 
derivatives of the unknowns x, y, z and .1, .2, .3 .  The second derivatives of these 
unknowns will be introduced into the differential equations only by way of W.  Now, the 
derivatives of x, y, z figure only in ", #, $ and those of .1, .2, .3 present themselves only 
in p, q, r.  One therefore sees that if W depends only on ", #, $ or only on p, q, r then 
there will be a reduction in the orders of the derivatives that enter into the system of 
differential equations, and, as a result, there will also be a reduction in the system that is 
obtained by the elimination of p, q, r.   We commence to examine the first two cases. 
 
 
 16.  Case where W depends only on s0, ", #, $.  How one recovers the equations of 
Lagrange’s theory of the flexible and inextensible line. - Suppose that W depends only 
on s0, ", #, $.  The equations of sec. 14 then reduce to the following: 
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in which W depends only on s0, ,,,
000 ds

dz

ds
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ds

dx
.1, .2, .3 . We show that if we take the 

simple case where X0, Y0, Z0, .1, .2, .3 are given functions (36) of s0, x, y, z, 

,,,
000 ds

dz

ds

dy

ds

dx
.1, .2, .3 then the three equations on the right may be solved for  

.1, .2, .3, and one finally obtains three differential equations that involve only s0, x, y, z, 
and the first and second derivatives. 
                                                
36  In order to simplify the exposition, and to indicate more conveniently the things to which we are 
alluding, we suppose that X0, Y0, Z0, L0, M0, N0 do not refer to the derivatives of .1, .2, .3. 
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 First, imagine the particular case where the given functions $0, %0, &0 are null; the 

same will be true for the corresponding values of the functions of any of the systems: 
),,,( NML !!! (L0, M0, N0), (L, M, N).  From this, it results that the following equations: 
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and, upon denoting the common value of these ratios by & T, the equations (?), in which it 
is necessary to carry .1, .2, .3, may be written: 
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or, if one prefers: 
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The effort actually reduces to an effort of tension T. 
 Having said this, observe that if one starts with two positions (M0) and (M), which are 
assumed given, and one deduces the functions $0, %0, &0 from them, as in sec. 9 and 10, 

then in the case where the three functions are null one may arrive at the conclusion that 
this result presents itself accidentally, i.e., only for a certain set of particular 
deformations.  However, one may also arrive at the conclusion that it presents itself for 
any deformed (M), since it is a consequence of the nature of (M), i.e., the form of W. 
 Imagine the latter case, which is particularly interesting: W is then a simple function 

of s0 and "2 + #2 + $2, or, from (37), what amounts to the same thing, of s0 and .0

ds

ds
  The 

equations ,0=
-

-

i

W

.
 (i =  1, 2, 3) reduce to identities (38) and if one supposes that W is 

expressed by means of s0 and 0 1
ds

ds
µ = & (where µ represents the linear dilatation at the 

point), then all that remains are the equations: 

                                                
37  One may also say that W is a function of s0 and the linear dilatation 0 1

ds

ds
µ = & at the point M, as was 

considered by LAMÉ in his Leçons sur la théorie mathématique de l’élasticité des corps solides, pp. 98, 
99, in the 2nd edition. 
 
38  The triad is completely hidden; we may also understand that we have a pointlike line. 
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where one has: 
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&=

W
T  

 
 If we suppose that the function W is known, then that gives us X, Y, Z or X0, Y0, Z0 as 
functions of s0, s, x, y, z, and the fourth derivatives of the latter (39) with respect to one of 
the others; the preceding equations, combined with: 
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provide four differential equations that define four of the variables s0, s, x, y, z by means 
of the fifth. 
 If s does not figure explicitly then one may eliminate ds by means of the relation that 
one derives, and what remains are three differential equations that define the three 
unknowns x, y, z as functions of s0. 
 If we imagine the particular case in which W depends on only µ and s0 does not figure 
explicitly then we find ourselves in the presence of the equations that were proposed by 
LAGRANGE (40) for the study of the line that he qualified as a “flexible and, at the same 
time, extensible and contractible filament.”  We must remark that explanations given by 
LAGRANGE, in the second of the sections that he dedicated to the question (sec. 43) 
must be revised in the following fashion: if we regard W as a given function of µ then the 
same is also true for T (which corresponds to the assertion of LAGRANGE that expresses 

& with these notations & the fact that F is a given function of 
ds

d1
).  We may substitute 

the unknown T for the unknown µ since the knowledge of one of them as a function of s 
implies the same for the other, and finally one is led to the study of four functions of s:  
T, x, y, z by means of the four preceding equations ( and supplementary conditions if they 
are given).  One observes, in addition, that if, as LAGRANGE seems to have supposed, 
the given expressions of X, Y, Z do not refer to s explicitly then one is limited to the 
consideration of the first three equations and the three variables x, y, z, where the 
differential of s was eliminated by means of the fourth equation. 

                                                
39  One may suppose that derivatives of order higher than the first have been introduced. 
 
40  LAGRANGE. – Mécanique analytique, 1st part, Section V, par. 11, nos. 42-43, 4th edition, pp. 156-158.  
The same question has been raised by LAMÉ, in his Leçons sur la théorie mathématique de l’élasticité des 
corps solides, 2nd edition, 8th lesson, and then by DUHEM, in Tome II of his work, Hydrodynamique, 
Elasticité, Acoustique, pp. 1 and following.  The exposition of LAMÉ, as well as the remarks of 
TODHUNTER and PEARSON on page 235 of Tome I of their History, etc., is the reproduction of the one 
that was given by POISSON, on pages 422 and following, of his Mémoire sur le mouvement des corps 
élastiques, printed in 1829 in Tome VIII of the Mémoires de l‘Institut de France. 
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 In the first of the sections that we cited (no. 43), LAGRANGE remarked that he was 
led to the same equations for the filament that he had already considered in his exposition 
under the name of flexible and inextensible filament, and in no. 44 he returned to tension.  
It seems to us that there is some confusion in the exposition of LAGRANGE on the 
subject of the notion of force (a confusion that was already pointed out by J. 
BERTRAND from the viewpoint of dynamics alone in the note he appended to no. 44).  
Indeed, it is clear that the viewpoint of LAGRANGE is that of dynamics, and that the 
word equilibrium is equivalent to the word rest in his exposition.  Upon introducing, at 
the beginning of no. 44, “the force F by which every element ds of the filament curve 
tends to be contracted,” LAGRANGE introduced a notion of force that no longer 
conforms to the definition posed at the beginning of his work (page 1), which is not a 
kinetic force, but a force that we may qualify as a static force, which is measured by 
means of the deformations. 
 
 
 17.  The flexible and inextensible filament. – How, while remaining in the domain 
of the section on statics, where one measures forces by means of deformation, may one 
conceive and introduce the notion of flexible and inextensible filament?  To give a 
definition of flexible and inextensible filament, it will suffice for us to follow & but in the 
opposite sense & the path that is habitually adopted, i.e., what one is often inspired to call 
the solidification principle (41). 
 In a general manner, imagine the deformable line of sec. 5, with its natural state (M0) 
and its deformed state (M).  Suppose that for the deformations of the line, which are 
defined as in sec. 5, i.e., by a correspondence between the points of (M0) and those of the 
deformation (M), we impose the condition (42) that an arbitrary portion of (M) has the 
same length as the corresponding portion, which amounts to saying that one subjects x, y, 
z to the condition, 

ds = ds0 , 
 
upon supposing, as we did before, that ds and ds0 have the same sign. One must assume 
that for such a line one would like to define the elements: exterior force, …  We imagine 
a deformable line of the type considered up till now, and, instead of considering an 
arbitrary deformation (M) of the natural state (M0), we direct our attention towards the 
deformations (M) for which one has ds = ds0 .  As far as the position of the points and the 
associated triads are concerned, these deformations coincide with the deformations of the 
given inextensible line.  For the definition of external force, …, acting on the latter, we 
assume the preceding formulas that we adopted with regard to any deformable line, 
which one applies to the positions of that line that coincide with those of the given 
inextensible line. 

                                                
41  APPELL. – 1st edition, T. I, no. 132, pp. 165; in the 2nd edition, T. I, no. 120, pp. 161, the expression 
solidification principle is omitted; the same is true for THOMSON and TAIT, Treatise on Natural 
Philosophy, vol. I, Part II, sec. 564, pp. 110. 
 
42  We shall repeat this assumption in different analogous circumstances where one is led to adjoin what we 
shall later call later the internal constraints of the system that we previously studied. 
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 In particular, if we imagine a flexible and inextensible line then we deduce the 
definition of external forces, relative to that line, that act on the line considered before, 
and for which W is a simple function of s and µ, by considering the deformations of the 
latter for which the function µ reduces to zero.  Retaining only the letters s, X, Y, Z (since 
s = s0, X = X0, Y = Y0, Z = Z0), one is led to the system: 
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 It will not be necessary for us to suppose that the function T is known in order to 
obtain a well-defined problem; it will suffice to adjoin suitable limits to the conditions. 
 
 
 18.  Case where W depends only on s0, ", #, $, and where $0, %0, &0 are non-

null. – Now imagine the general case, where $0, %0, &0 are not all three of them null.  

Upon introducing the auxiliary functions F, G, H the equations: 
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amount to the relations: 
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in such a way that in the present case the component of the effort that is tangent to the 
line, which one may call the effort of tension, the component of the effort that is normal 
to the line, which one may call the transverse effort, as is it is called in the strength of 
materials, and finally, the vector (L, M, N) determine a tri-rectangular triad. 
 Again introduce the effort of tension: 
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as an auxiliary, and we obtain: 
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As a result, if X, Y, Z, L, M, N are given as functions of s, x, y, z and their first derivatives 
then one comes upon three equations such as the following: 
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to which we may adjoin: 
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in such a way that for the last problem we posed we have five differential equations that 
refer to four unknowns, namely, x, y, z, and the auxiliary unknown T. 
 
 
 19.  Case where W depends only on s0, p, q, r. – Suppose that W depends only on s0, 
p, q, r.  The equations of sec. 14, which reduce to the following: 
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in which W depends only on s0, .1, .2, .3, ,
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then show us that if we take 

the simple case where X0, Y0, Z0 do not refer to the derivatives of x, y, z then one may 
obtain x, y, z from the equations on the left and substitute their values into the equations 
on the right, i.e., into $0, %0, &0.  If these latter three do not refer to the derivatives of 

order higher than the first of x, y, z then, when X0, Y0, Z0 refer only to s0, x, y, z, .i, and 
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$0, %0, &0 refer only to s0, x, y, z, ,
0ds
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0ds
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d i. ,
2
0

2

ds

d i. one then comes down 

to three second order equations that determine .1, .2, .3. 
 The particular case in which the given functions X0, Y0, Z0 are identically null is 

particularly interesting.  One has simply the three equations on the right which, if $0, 

%0, &0 depend only on .1, .2, .3, and their derivatives, constitute three differentials 

equations that determine .1, .2, .3. 
 
 
 20.  Case where W is a function of s0, ", #, $, p, q, r that depends on ", #, $ only 

by the intermediary of "2 + #2 + $2, or, what amounts to the same thing, by the 

intermediary of .1
0

&=
ds
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µ  - Consider the effort at a point of the deformed line and 

suppose that for any deformation it reduces to a tension effort.  This amounts to saying 
that the function W of s0, ", #, $, p, q, r verifies the identities: 
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i.e., they depend on ", #, $ only by the intermediary of the quantity "2 + #2 + $2, or, what 
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and, upon introducing the common value &T of these ratios, which is defined by the 
formula: 
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we may give the system the following form: 
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by which x, y, z, .1, .2, .3, and s0 are defined as functions of s (here, µ denotes )1
1
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 If we envision & to fix ideas & the case in which X, Y, Z are given functions of only 
the letters s, x, y, z then one sees that one may separately determine x, y, z, and the 
auxiliary T by means of the system of differential equations: 
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Once again, we recover the system that was presented in the context of LAGRANGE'S 
flexible and inextensible filament, and in the context of the flexible inextensible filament. 
 
 
 21.  The deformable line that is obtained by supposing that xM !  is the tangent to 

(M) at M. – We may repeat what we said about the passage from the flexible inextensible 
filament of LAGRANGE to the flexible inextensible filament of rational mechanics in 
regard to the general case and that of arbitrary particular deformations.  We shall 
consider the following case, which is important in the theory of the strength of materials, 
and will lead us later on to the deformable line as was studied by LORD KELVIN and 
TAIT, in particular, but only, as we have already observed, from the standpoint of 
infinitely small deformations (43). 
 We refer back to the deformable line of sec. 5, and suppose that we have defined the 
external force, etc., as in sec. 9.  Now imagine that we direct our attention exclusively to 
the deformation (M) of (M0), where the axis Mx!  is tangent to the curve (M) at each 
point, and suppose, moreover, and in such a way that these deformations form a 
continuous sequence starting with (M0), that the latter is constructed such that 00 xM !  is a 

tangent to M0.  By a convenient choice of the sense in which one understands s0 and s this 
amounts to supposing that one has: 
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43  W. THOMSON and TAIT. – Treatise on Natural Philosophy, vol. I, Part II, 1883 edition, sec. 588 ff., 
pp. 130 ff. 
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or that: 

(15)  # = #0 = 0, $ = $0 = 0,  "0 = 1,  .
0ds

ds
="  

 
The application of these definitions gives us definite expressions for the external force, 
etc..  We may say that the study of these expressions and the problems they lead to by the 
repetition of all that has been said constitutes the object of the study of the line that is 
subject to the conditions defined by formulas (14) and (15). 
 Limiting the deformations of (M0) to those deformations (M) that verify conditions 
(14) or (15) or admitting the new conception of a line that is susceptible only to 
deformations that verify the preceding conditions are regarded as identical here from the 
standpoint of calculations that define elements such as external force, etc.  This way of 
thinking is absolutely consistent with the principle called solidification, which is 
introduced by the authors in the opposite order, in a sense, as we have said. 
 Before considering the form that the formulas of sec. 9 take here, we establish several 
formulas that relate to the triad ,zyxM !!!  either under particular conditions or as they 
presently present themselves.  Suppose that we take the principal normal Mn and the 
binormal Mb to the curve (M) at M.  If they, along with ,xM !  form a triad Mx nb!  with the 
same disposition as the triad Mx y z! ! !  then we may designate the direction cosines of Mn 

and Mb with respect to the axes ,xM ! ,yM ! ,zM !  respectively, by 0, cos ,, sin ,, and 0, 

& sin ,, cos ,, which amounts to saying that we have, moreover: 
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upon denoting the direction cosines of Mn with respect to the fixed axes Ox, Oy, Oz 
by ,1* ,1* ! ,1* !! and those of Mb with respect to the same axes by ,1) ,1) ! ,1) !!  and upon 

introducing an auxiliary variable , as well, which is the angle yM !  makes with Mn, 
taken in a convenient sense. 
 We may then determine ,  by means of the expressions that we already introduced.  
The principal normal is the tangent to the indicatrix of P. SERRET, considered to be the 
point whose coordinates are 1, 0, 0, with respect to this triad, for which the vertex O is 
fixed and the axes are parallel to those of Mx y z! ! ! .  The projections of the displacement of 
this point onto the axes of the moving triad, or onto those of ,zyxM !!!  are: 
 

0, r ds0, & q ds0, 
and one has: 
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 One may obtain more complete formulas upon replacing the cosines , , ,* * )! !!"  in 
the formulas (2) of sec. 6 with their expression (16); they become: 
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upon setting 
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and recalling that & = .01

ds

d)
(   The expressions 

'

1
 and 

1

4
 are equal in absolute value 

to the curvature and torsion (the cambrure of BARRÉ DE SAINT-VENANT and the 
tortuosity of THOMSON and TAIT) of the curve (M) at M; the latter two formulas (17) 
correspond to the remarks made by THOMSON and TAIT (44). 
 We arrive at the formulas of sec. 9.  For the moment, denote the function that W 
becomes when one takes conditions (15) into account by W1, i.e., set: 
 

W1 = [W(s0, ", #, $, p, q, r)]#=0,$=0 = W(s0, ", 0, 0, p, q, r). 
 
Furthermore, upon remarking that from formulas (14): 
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we set: 
W1 = W(s0, 1 + µ, 0, 0, p, q, r). 
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44  W. THOMSON and TAIT. – Treatise on Natural Philosophy, vol. I, Part II, 1883 edition, sec. 590, pp. 
131. 
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 If we would therefore like to introduce only the function W1, i.e., the value taken by 
W at # = $ = 0, and if we suppose that one is not given the values that are taken by the 

derivatives ,
#-

-W W

%

-

-
 for # = $ = 0 then we find ourselves in the presence of six 

expressions, where only four of them, ,,,, KJGF !!!!  may be considered as given, and two 
of them, ,, HG !!  are left to be determined (45).  In other words, knowledge of W1 uniquely 

entails knowledge of the tension effort F! and the moment of deformation ).,,( KJI !!!  
 If we introduce the expressions F, G, H, I, J, K then we may say that the first three are 
three auxiliaries, in regard to which, one knows simply that one has (46): 
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and the last three may be calculated by means of one of the systems: 
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where , , , ,( ( ( )! !! !!"  are defined by formulas (14) and (16). 
 The external force and moment result from them by the formulas of sec. 9 and 10, in 
the measure where they may be determined when W1 alone is given. 
 Suppose that one is presently given the external force and moment.  The equations: 
 

                                                
45.  If we admit that we know only the function W1 then we may suppose that we ignore the existence of the 
function W that has served as our point of departure, since that function is, in a sense, hidden, along with 
the positions of the triad Mx y z! ! ! for which xM ! is not tangent to the curve (M). 

 
46.  From now on, we denote the function W1 of s0, µ, p, q, r by W. 
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combined with equations (18) and (19), and the relation: 
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provide a system of eight differential equations in five of these variables (as functions of 
the sixth) and of F, G, H when X, Y, Z, L, M, N or X0, Y0, Z0, L0, M0, N0 are given 
functions of s0, s, x, y, z, ,, and the derivatives of these variables with respect to each 
other. 
 If s does not figure explicitly in the given functions then one may use (21) to 
eliminate ds and, upon taking s0, for example, to be the independent variable one will 
have a system of seven differential equations that define the seven unknowns x, y, z, ,, 
and F, G, H. 
 In the case at hand, where the function W that we started with is hidden, the 
expressions F, G, H are simple auxiliary functions that are defined by the differential 
equations of which we speak; we may propose to eliminate them.  However, that 
elimination is easy, since they figure linearly and their derivatives are excluded from 
relation (18) and the three relations on the right-hand side of (20); these four relations 
give: 
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To abbreviate the notation, we set: 
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from which, by elimination of F, G, H we obtain the system of four equations: 
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in which we have replaced I, J, K, T with their values from )91( !  and (23), and which, 
with (21), form a system of five differential equations that relate five of the variables s0, 
s, x, y, z, ,, to the remaining one.  If s does not figure in the given variables explicitly 
then one may use (21) to eliminate ds, and relations (24) and (25) provide four 
differential equations that define x, y, z, , as functions of s0 . 
 
 
 22.  Reduction of the system of the preceding section to a form that one may 
deduce from the calculus of variations. – In the preceding section, we finally found a 
function W which, by the intermediary of µ, p, q, r, depends upon 

,,,,,
3
0

3

0 ds

xd

ds

dx

ds

d
"

,
, as well as on s0. 

 Observe that upon taking these latter arguments into account, equation (25) may be 
written: 

.0000

0

0

='
(

)
*
+

,
+++

-

-
&

'
'
'
'

(

)

*
*
*
*

+

,

-

-

ds

dz
N

ds

dy
M

ds

dx
L

W

ds

d

W

ds

d

,,
 

 
We examine whether successively combining each of equations (24) and (25) will give 
three equations that are susceptible to being deduced from the calculus of variations 
directly, i.e., equations such as the following: 
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where the terms not written depend only upon the external moments. 
 If we remark that the equations considered refer to derivatives that are of order at 
most five then one sees that one must seek to introduce the third derivatives of equations 
(25), which may be written: 
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with the notation of sec. 9. 
Consider the first equation of (24); it is written: 
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Upon forming the first term 
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details will not be given here, that the combination: 
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reproduces the different terms of the expression in question, as well as those that go to 
zero with the external forces. 
 If we set: 
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and if we designate the analogous expressions that are obtained by replacing X0, )1 with 
Y0, ,1) !  and then Z0, ,1) !! respectively, and then making the required permutations in the 

last term by ,0, -0, we obtain the system in the following form: 
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which one may summarize in the formula: 
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where one considers only the terms that ultimately present themselves under the integral 
sign (47). 
 This summarized form to which one is led, and which must be treated according to 
the rules of the calculus of variations, is particularly convenient for the purpose of 
effecting changes of variables. 
 Upon supposing that X0, Y0, Z0, 0L!  are of a particular form, one will have the 

equations for the extremals of a problem of the calculus of variations. 
 If we consider the case in which U denotes a function of x, y, z, 
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47  One has a form

1

0

( ) 0
t

t
T U dt+ !+ =! for HAMILTON’S principle that is analogous to the one that was 

given by TISSERAND, pp. 4 of Tome I of his Traité de Mécanique céleste. 
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or, what amounts to the same thing: 
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One then has: 
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as the extremal equations relative to the integral: 
 

! + .)( 0dsUW  

 
 Another particular case, which one may combine with the preceding, is the one in 
which W is of the form Bp + 5(q2 + r2, "), where B is a constant.  W may then be written: 
 

Bp + 6(s0, ", '). 
 
If one supposes, in addition, that 0 0L! =  then the four equations reduce to three, since the 

fourth equation reduces to an identity. 
 The case that we will now examine comprises, in particular, the one in which W is of 
the form, 

,
1

2
CA +

'
 

 
with A and B constant.  This amounts to the case considered by D. BERNOULLI, and 
later by EULER; it is the case that inspired SOPHIE GERMAIN and POISSON in their 
researches on elastic surfaces. 
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 23.  The inextensible deformable line where xM ! is the tangent to (M) at M. – 
Instead of simply supposing, as in the preceding case, that one has introduced conditions 
(14) and (15), we may suppose, in addition, that the line is inextensible, which, by virtue 
of (14), amounts to adjoining: 

" = 1. 
 
 If we admit that one knows only the value of the function S(s0, ", #, $, p, q, r) for " = 
1, # = 0, $ = 0, or then again, starting with the line of the preceding section, to which we 
adjoin the condition µ = 0, that we know simply the value of the function W1 for µ = 0 
then we see that all three of F, G, H become indeterminate and we presently have either 
equations (20), where I, J, K are replaced by the values ),91( !  in which W denotes W(s0, 

1, 0, 0, p, q, r) or (W1)µ=0 , and which form, with relation (21), a system of seven 
differential equations that define the unknowns x, y, z, F, G, H as functions of s = s0, or 
equations (24) and (25), where I, J, K are replaced by the same values ),91( !  and which, 
with relation (21), a system of five differential equations that define the unknowns x, y, z, 
,, T as functions of s = s0. 
 However, the system so obtained coincides with the one that was introduced by 
THOMSON and TAIT (48), upon supposing that W(s0, 1, 0, 0, p, q, r) is obtained by the 
substitution of the values of p0, q0, r0 as functions of s0 into a quadratic form (with 
constant coefficients) in the expressions p – p0, q – q0, r – r0 .  This is what we will arrive 
at if we suppose, for example, that the expression W1 at the beginning of the preceding 
section is obtained by substituting the values of p0, q0, r0 as functions of s0 for these 
variables in a quadratic form in p(1 + µ) – p0, q(1 + µ) – q0, r(1 + µ) – r0 . 
 Observe, in addition, that in the applications made by THOMSON and TAIT of the 
considerations in their sec. 614, namely, for example, the application made in sec. 616, 
they put themselves in the case of an infinitely small deformation; we therefore recover, 
in a completely natural way, the applications mentioned by starting with the function W 
in general and considering infinitely small deformations. 
 Here we may develop considerations that are analogous to the ones relating to the 
preceding line; the only difference is that one adjoins: 
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One presently arrives at the formula: 
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which must happen by virtue of the fact that: 
 

                                                
48  THOMSON and TAIT. – Treatise on Natural Philosophy, Vol. I, Part. II, sec. 614, pp. 152-155. 
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and where +0, ,0, -0 have a significance that we shall describe. 

 Indeed, the equilibrium system of equations is equivalent to the following: 
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where one must set: 
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 24.  Case where the external forces and moments are null; particular form of W 

that leads to the equations treated by Binet and Wantzel. – Instead of using equations 
(24) and (25), it may be more convenient to recall the equations we began with; it may 
also be useful to appeal to the geometric interpretation. 
 For example, suppose that X0, Y0, Z0 are null.  One concludes from this that F, G, H 
are constants equal to the values 

0 0 0
, ,A A AF G H that they take at the one of the extremities 

A0, and one has three equations: 
 



THE DEFORMABLE LINE 
 

53 

,00
000

00
=&&+ L

ds

dz
G

ds

dy
H

ds

dI
AA  

,00
000

00
=&&+ M

ds

dx
H

ds

dz
F

ds

dJ
AA  

,00
000

00
=&&+ N

ds

dy
F

ds

dx
G

ds

dK
AA  

 
which are the primitive equations and actually result from the elimination of T from (24) 
and (25). 
 If one has, in addition, that L0, M0, N0 are null i.e., if the deformed (M) is subjected 
only to forces applied at its extremities, then we have: 
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relations that one also obtains from the geometric interpretation of the equations by 
means of formulas such as (49): 
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Having made these remarks, consider the case where the function W of s0, p, q, r is of the 
form (50): 

,)( 22
2
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where A, B, C are constants.  One will have: 
 

                                                
49  One will observe that the reasoning of BERTRAND (Sur l’équilibre d’une ligne élastique, Note III of 
the Mécanique analytique of LAGRANGE, pp. 460-464 of Tome XI of Oeuvres de LAGRANGE) amounts 
to the use of these formulas, or, more precisely, to equivalent ones such as: 
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it suffices to refer to sec. 9, where we said that the effort and the moment of deformation at A0 are 

),,,(
000

AAA
HGF !!! ),,,(

000
AAA

KJI !!!  i.e., the values of ),,,( HGF !!! ),,( KJI !!!  at A0. 

 
50  If W is obtained by replacing p0, q0, r0 with their values as a function of p – p0, q – q0, r – r0 then we 
suppose that p0 = q0 = r0 = 0, in such a way that (q0)

2 + (r0)
2 = 0, and the curve (M0) is a straight line. 
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,BI =!  ,AqJ =!  ;ArK =!  
 

the vector ( , , )I J K! ! !  or (I, J, K) is the resultant of a constant vector equal to B that is 

directed along the tangent Mx! and a vector that is directed along the binormal and has the 

same absolute value as .
'

A
  The three equations: 
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are, up to notations, identical with the equations: 
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that were considered by BINET (51), WANTZEL (52), HERMITE (53), in which p, 7, a, b, 
c, a1, b1, c1 are constants. 
 In the previously cited note, which placed us in the realm of the analytical mechanics 
of LAGRANGE, and where we were said to have imitated a method discussed by 
POISSON in the article that was mentioned in sec. 10, and recalled in the following 
section, J. BERTRAND has treated, after WANTZEL, the case where the three 
equations: 

cy – bz + a1 = 0, az – cx + b1 = 0, bx – ay + c1 = 0, 
 

represent a straight line; if this straight line is identified by: 
 

HA(y – yA) – GA(z – zA) = IA, 
FA(z – zA) – HA(x – xA) = JA, 
GA(x – xA) – FA(y – yA) = KA 

 
then the preceding hypothesis amounts to: 
 

FAIA + GAJA + HAKA = 0, 
                                                
51  J. BINET. – Mémoire sur l’intégration des équations de la courbe élastique B double courbure 
(Extract), C.R., 18, pp. 1115-1119, 17 June 1844.  Réflexions sur l’intégration des formulas de la tige 
élastique B double courbure, C.R., 19, pp. 1-3, 1st July 1844. 
 
52  WANTZEL. – Note sur l’intégration des équations de la courbe élastique B double courbure, C.R., 18, 
pp. 1197-1201, 24 June 1844. 
 
53  Ch. HERMITE. – Sur quelques applications des functions elliptiques, C.R., 90, pp. 478, 8 March 1880; 
see also the work of that title that appeared in 1885 (see sec. 35). 
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and this amounts to supposing that the couple (IA, JA, KA) and the force (FA, GA, HA) 
reduce to a unique force. 
 From relation (2) on page 463 of LAGRANGE, this line, when it is of issue, does not 
encounter the curve (M); this remark was made by J. BERTRAND in the case where he 
defined it.  What might appear strange is that a hypothesis is preserved at the top of page 
462 that, from the note on page 463, entails the relation 7 = 0. 
 Upon supposing that the constant 7 of BINET is null, i.e., with our notations, upon 
making B = 0, one has the particular curve considered by LAGRANGE. 
 Observe that in the present case the unknown that we have denoted by , does not 
appear in the equations; however, the three equations: 
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reduce to two because upon multiplying them by 
0 0 0

, ,
dx dy dz

ds ds ds
 and adding them one gets 

zero for the particular form of I, J, K that was considered in the last example. 
 We recover the preceding line in the following section; this leads us to remark that 
one may present the following as it is. 
 We seek the case in which the effort of deformation of the line in the preceding 
section is perpendicular to the principal normal. 
 We have the condition: 

.0=
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&
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r

W
q

q

W
r  

 
 If we suppose that this condition results from the nature of the line, i.e., from the form 
of its W, then this condition is a partial differential equation that is verified by W, from 
which W must depend on q and r only by the intermediary of q2 + r2.  If this condition is 
verified then, from the remark of POISSON that we recalled in sec. 10, the equations of 
the problem entail that 

.constI =!  
 
 If we suppose that this conclusion results from the nature of the line, i.e., the form of 
its W, then this amounts to the condition: 
 

,B
p

W
=

-

-
 

where B is a constant, and we find 
W = Bp + 5, 
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where 5 is a function of  ;
1

2
22

'
=+ rq  upon supposing that 5 is of first degree in q2 + r2 

we recover the W that served as the point of departure for this section. 
 
 
 
 25.  The deformable line for which the plane Mx y! ! is the osculating plane of (M) 
at M; the case in which the line is inextensible, in addition; the line considered by 

Lagrange and its generalization due to Binet and studied by Poisson. – We may 
proceed further with the hypotheses that were made for the deformations of a deformable 
line.  Instead of assuming simply that xM !  is tangent to the curve (M), we may suppose 
that the plane Mx y! ! is the osculating plane to the curve (M). 
 
 1.  First, leave aside the hypothesis of inextensibility. Assume that one still has 
relations (14) or (15), and, in addition: 

q = q0 = 0. 
 
If, for the moment, we let W2 denote the function that is obtained by setting # = $ = q = 0 
in W, or q = 0 in W1 then we have: 
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As for ,,, JHG !!! they may be calculated if W2 is the only given, and may be considered 
as three auxiliary variables that are defined by the equations. 
 In the present case, equations (20) are combined with relations (18), (21), and the 
following: 
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in which W designates the expression W2 takes when X, Y, Z, L, M, N or X0, Y0, Z0, L0, M0, 
N0 are given functions of s0, s, x, y, z, and their derivatives with respect to one of them – a 
system of eight differential equations in four of these variables (as a function of the fifth) 
and F, G, H, .J !  
 As in the preceding, we may eliminate F, G, H, and what remains are the four 
equations (24) and (25), in which we have replaced I, J, K, T with their values from (26) 
and (23), and which, with (21), form a system of five differential equations that relate 
five of the variables s, s0, x, y, z, J!  to the other one. 
 
 2.  In addition, introduce inextensibility by the relations: 
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" = "0 = 1. 
 
Continue to designate the function W(s0, 1, 0, 0, p, 0, r) by W and suppose that this 
function alone is continuous.  We simply have the relations: 
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 As a result, if X, Y, Z, L, M, N or X0, Y0, Z0, L0, M0, N0 are given functions of s0, s, x, 
y, z, and their derivatives with respect to one of them then we have the seven equations 
(20) and (21), where I, J, K are replaced by their values from (26), and which determines 
the seven unknowns x, y, z, F, G, H, J!  as functions of s0, for example.  Upon eliminating 
F, G, H, we have the four equations (24) and (25) that define the four unknowns x, y, z, J!  
as functions of s0. 
 It is easy to deduce the cases that were envisioned by LAGRANGE, BINET, and 
POISSON from the case we shall now consider. 
 Suppose that the given functions L, M, N are null; the three right-hand equations of 
(20) form a system that is equivalent to the following: 
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which the system of sec. 10 reduces to; just the same, one or two of these three equations 
may replace one or two of the equations on the right-hand side of (20), in general. 
 In particular, the relation: 
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0
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that is obtained by adding the three equations on the right-hand side of (20), after 

multiplying them by ,,,
ds

dz

ds
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ds

dx
=!!=!= (((  may be substituted for any one of the 

aforementioned right-hand equations of (20), in general. 
 Having said this, suppose first that the function W of s0, p, r that presently figures in 
relations (26) does not depend on p.  We will have ,0=!I  and relation (27) will give 

0=J  upon supposing that r 8 0.  Hence, in the present case, the moment of deformation 
is directed along the binormal to the curve (M).  In equations (20), we have replaced I, J, 
K by the values: 
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The three right-hand equations of (20) reduce to two. 
 We thus obtain the case envisioned by LAGRANGE in no. 46 and the following ones 
of sec. III, chapter III, first part, section V, of his Mécanique analytique (pp. 162, et seq. 
of Tome I of the first edition). 
 It might be useful to show the identity with the exposition of LAGRANGE.  We may 
suppose: 
    I = J1(dy d2z – dz d2y), 
    J = J1(dz d2x – dx d2z), 
    K = J1(dx d2y – dy d2x), 
 
since the vector I, J, K is perpendicular to the osculating plane of (M). 
 The right-hand equations of (20), which may really be written (L = M = N = 0): 
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which permits us to set: 
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after introducing an auxiliary variable .. 
 If we transport these values into the three left-hand equations of (20) then we recover 
the equations that were given by LAGRANGE at the beginning of his no. 48: 
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 In the preceding theory presented by LAGRANGE the moment of deformation is 
normal to the osculating plane.  BINET (54) has proposed to consider the case where this 
                                                
54  J. BINET. – Mémoire sur l’expression analytique de l’élasticité et de la raideur des courbes B double 
courbure (Bull. De la Soc. Philomatique, 1814, pp. 159-160; Journ. de l’Ec. Polyt., , Note 17, T. X, pp. 
418-456, 1815).  



THE DEFORMABLE LINE 
 

59 

moment of deformation is simply perpendicular to the principle normal.  On the other 
hand, BINET supposed that the line elements were subject to external forces in a way that 
we shall also do in the case where L = M = N = 0.  From (27), the hypothesis J! = 0 that 
was made by BINET entails that 

.constI =!  
 

 This result, as we pointed out in sec. 10, in the general form that is independent of W, 
and which is due to POISSON (55), may come about either because of the specification of 
the forces or the specification of W. 
 If we assume the latter case, we have: 
 

W = 5(s0, r) + mp, 
where m is a constant; as a result: 
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With this hypothesis, one sees that if r 8 0 then condition (27) amounts to saying that the 
unknown J!  is equal to zero, and, as a result, one has to replace I, J, K in equations (20) 
with their values: 
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and the three right-hand equations of (20) reduce to two.  In particular, if 
r-

-5
 is derived 

from an expression of the form n(r – r0), where n is constant, and if one replaces r0 as a 
function of s0 then one has the hypothesis that was explicitly made by BINET and 
POISSON.  Upon supposing, in addition, that the curve (M0) is a straight line and that the 
external forces are null, in such a way that the transformation of (M0) into (M) comes 
about only from forces and moments applied to the extremities, one recovers the problem 
treated by BINET and WANTZEL, upon which we previously stopped. 
 Upon supposing that m = 0 in all of what we proceed to discuss we revert to the case 
of LAGRANGE. 
 
 
 26.  The rectilinear deformations of a deformable line. – If we suppose that (M0) is 
a straight line then we must direct our attention to the deformations (M) that are likewise 

                                                                                                                                            
 
55  POISSON. – Sur les lignes élastiques B double courbure, Correspondance sur l’Ecole Polytechnique, T. 
III, no. 3, pp. 355-360, January, 1816.  This work may be considered as destined to complete what preceded 
it, which was due to BINET. 
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straight lines such that, in addition, the axis Mx! is directed along the line (M) and 00 xM !  

is directed along (M0). 
 
 1.  If one first supposes that the line is extensible, then we have: 
 

# = #0 = 0, $ = $0 = 0, q = q0 = 0, r = r0 = 0. 
 

Upon continuing to denote the function W(s0, 1 + µ, 0, 0, p, 0, 0) by W, we have: 
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As for ,,,, KJHG !!!!  they may be calculated by means of only the knowledge of the 

function W(s0, 1 + µ, 0, 0, p, 0, 0).  If this function is the only given one must consider 
, , ,G H J K! ! ! !  as four auxiliary variables that are defined by the equations. 

 In the present case, when X, Y, Z, L, M, N or X0, Y0, Z0, L0, M0, N0 are given functions 
of s0, s, x, y, z, and the derivatives of these variables with respect to one of the others, 
equations (20), combined with relations, (18), (21), and the following: 
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provide a system of eight differential equations in four of the above variables (as a 
function of the fifth) and ,, F, G, H, ;, KJ !!  in addition, one has two first degree 
equations (whose coefficients are to be determined) in x, y, z. 
 As before, one may eliminate F, G, H. 
 A particular case is the one where (M) coincides with (M0) point-by-point 
(coincidence of the triad vertices). 
 
 2.  In addition, if one introduces inextensibility by the relations: 
 

" = "0 = 1, 
 
and if one continues to denote the function W(s0, 1, 0, 0, p, 0, 0) by W, one will have, 
upon supposing that only the this latter function is known, simply the relation: 
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 If X, Y, Z, L, M, N or X0, Y0, Z0, L0, M0, N0 are given functions of s0, s, x, y, z, and the 
derivatives of these variables with respect to one of the others then we have seven 
equations (20) and (21), where I, J, K are replaced by their values (28) and which, 
combined with two relations of first degree in x, y, z (with the coefficients to be 
determined by accessory conditions) determine the nine unknowns x, y, z, ,, F, G, H, 

,J K! !  as a function of s0. 
 As before, one may eliminate F, G, H. 
 
 
 27.  The deformable line obtained by adjoining the conditions p = p0, q = q0, r = 
r0, and, in particular, p = p0 = 0, q = q0 = 0, r = r0 = 0. – This deformable line may be 
studied in various fashions, either by considering the deformations (M) of the general 
deformable line that verify the indicated conditions, or by starting with W in general and 
defining a new line by the consideration of the stated conditions, or by starting with W as 
a function of s0, ", #, $, and defining the line that conforms to these conditions. 
 Imagine the first viewpoint.  For the moment, designate by W1 what W becomes when 
one takes the conditions: 

p = p0,  q = q0,  r = r0, 
into account;  i.e., set: 
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 Therefore, if we would like to introduce only the function W1 of s0, ", #, $, i.e., the 
value taken by W for p = p0, q = q0, r = r0, and if we suppose that we are not given the 

values taken by the derivatives , ,
W W W

p q r

- - -

- - -
 for p = p0, q = q0, r = r0 then we find 

ourselves in the presence of six expressions, only three of which , ,F G H! ! !may be 
considered as given, and three of which , ,I J K! ! !  are left to be determined. 
 The equations in question are then: 
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to which we must add p = p0, q = q0, r = r0, and which give us, in all, nine equations in 
the nine unknowns x, y, z, .1, .2, .3, .,, KJI !!!  
 The last three formulas are similar to the ones for what MAXWELL has called the 
magnetic induction in the interior of a magnet. 
 In the particularly simple case p = p0 = 0, q = q0 = 0, r = r0 = 0, the preceding 
formulas take a very simply form. 
 
 
 28.  Deformable line subject to constraints.  Canonical equations. – In all of the 
foregoing, we have considered a deformable line that we have qualified as free, i.e., the 
theory was developed without the intervention of external elements, and by means of a 
function W that is defined by the elements of the line in its natural and deformed states. 
 Directing our attention to certain deformations, upon adding the notion of a hidden W 
we may recover the equations that were proposed by the authors for various lines. 
 Instead of this exposition, we may give another in which, instead of considering the 
deformable line of sec. 5 and 9 for which the deformations satisfy certain definite 
conditions, we imagine a sui generis deformable line, where the definition already 
accounts for the definite conditions satisfied by the particular deformations of the 
preceding line. 
 Here is how we proceed to define the new line, while remaining in the same general 
neighborhood as before. 
 First, observe that the conditions imposed on the functions x, y, z, , , ,( ( )! !!! may be 
of two kinds: 1. conditions between functions and their derivatives (56), for any s0 . 2. 
conditions satisfied for certain values of s0. 
 We restrict ourselves to conditions of the first type. 
 To fix ideas, let 

f1 = 0,  f2 = 0 
 

be two conditions or equations of constraint.  Instead of constructing the preceding 
expressions that we defined by means of the identity: 
 

! !!+!!+!!+!!+!+!!=
0

0

0

0
][0

B

A

B
AKKJJIIzHyGxFWds +++++++  

                                                
56  Our exposition is not concerned with the distinction between holonomic and non-holonomic constraints. 
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! !!+!!+!!+!!+!!+!!&
0

0

,)( 0

B

A
dsKNJMILzZyYxX ++++++  

 
as functions of s0, where we introduced ,,,,,,;,,,,, NMLZYXKJIHGF !!!!!!!!!!!!  to fix 
ideas, we say that - by definition – the preceding identity must make sense by virtue of: 
 

f1 = 0,  f2 = 0, 
 
or again that – by definition – we imagine a deformable line such that the theory results 
from the consideration of a function W(s0, ", #, $, p, q, r) and two auxiliary functions .1, 
.2 of s0, by means of the identity: 
 

! !!+!!+!!+!!+!+!!=++
0

0

0

0
][)( 02211

B

A

B
AKKJJIIzHyGxFdsffW +++++++.+.+  

! !!+!!+!!+!!+!!+!!&
0

0

,)( 0

B

A
dsKNJMILzZyYxX ++++++  

 
where, this time, all of the variations are arbitrary; we must then add 
 

f1 = 0,  f2 = 0, 
a posteriori. 
 Observe, moreover, that in the case where certain of the left-hand sides f1, f2, …, of 
the equations of constraint refer to only the arguments that figure in W, one may conceive 
that either one proceeds in a manner as we shall describe, or that by a change of the 
auxiliary variables one introduces the data of these equations with particular constraints 
into W a priori; this brings us back to the notion of a hidden W.  We stop ourselves at this 
point in the particular cases that follow and where the present remarks apply. 
 
 1.  FLEXIBLE AND INEXTENSIBLE LINE. – Start with a function W of 

1
0

&=
ds

ds
µ and s0, and add the condition that µ = 0.  We define the functions 

, , , , ,F G H X Y Z! ! ! ! ! ! by starting with: 
 

! !!+!!+!!=+
0

0

0

0
][)(

B

A

B
AzHyGxFdsW +++.+µ+  

! !!+!!+!!&
0

0

.)( 0000

B

A
dszZyYxX +++  

 
This amounts to replacing W with W1 = W + .µ in the preceding, and it leads to the 
formulas: 

,

0

1

ds

dx

W
F

-

-
=  ,

0

1

ds

dy

W
G

-

-
=  ,

0

1

ds

dz

W
H

-

-
=  
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,00
0

=& X
ds

dF
  ,00

0

=&Y
ds

dG
  ,00

0

=& Z
ds

dH
 

 
in which we have taken µ = 0 into account, and which thus determine F, G, H, X0, Y0, Z0. 
 As one sees, we come down to a theory of the flexible inextensible line that 
generalizes the theory of LAGRANGE, which corresponds to the function W1 of s0 and µ, 
and where we limit ourselves to the study of deformations that correspond to µ = 0.  If we 
take the case in which W1 is hidden then we suppose that one knows simply the value 
W0(s0) that W and W1 take simultaneously for µ = 0, and we therefore have the classical 
system of mechanics. 
 Observe that if, in order to construct the flexible inextensible line, we take the 
condition µ = 0 into account in W, a priori, by a change of the auxiliary variables, then 
we are led to replace W with . in the calculations relating to the general deformable line, 
and we arrive at formulas that lead furthermore to the study of the flexible extensible 
filament, where we limit ourselves to considering deformations that correspond to µ = 0; 
upon supposing that . is unknown, these formulas also lead us to the classical system of 
mechanics. 
 We conclude with the following remark.  Suppose that, by virtue of the formulas that 
define the deformation, one has expressed X0, Y0, Z0 as functions of s0, x, y, z in such a 
way that X0 dx + Y0 dy + Z0 dz is the total differential of a function 5 of s0, x, y, z with 
respect to x, y, z.  Suppose, in addition, that we are dealing with the case of the hidden 
W1, or in the case envisioned in the latter context, in such a way that we are reduced to 
the case of mechanics.  From the foregoing, one recovers the remark that served as the 
point of departure for CLEBSCH (57) that the equations in question, in which X0, Y0, Z0 
figure, are none other than the extremal equations of the problem of the calculus of 
variations that consists of determining an extremum for the integral: 
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under the condition (58): 

.1
2

0

2

0

2

0

=''
(

)
**
+

,
+''

(

)
**
+

,
+''

(

)
**
+

,

ds

dx

ds

dx

ds

dx
 

If we set: 

,1
2

1
2

0

2

0

2

0
1

-
-

.

/

0
0

1

2
&''

(

)
**
+

,
+''

(

)
**
+

,
+''

(

)
**
+

,
&=

ds

dz

ds

dy

ds

dx
6  

 

                                                
57  A. CLEBSCH. – Über die Gleichgewichtsfigur eines biegsamen Fadens, Journ. für die reine und 
angewandte Math., T. LVII, pp. 93-116 [1859], 1860. 
 
58  We must distinguish between the present question and the one treated by APPELL, Traité de Mécanique 
rationelle, T. I, 1st ed., sec. 158, pp. 205 ff.; 2nd ed., sec. 146, pp. 201 ff. 
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and apply the considerations developed by JORDAN (59), we may reduce this system to 
its canonical form.  If we put .1 in place of T then the system expresses the idea that one 
nullifies the first variation of the integral: 

0

0
0

B

A
F ds!  

upon setting: 
F = & (5 + .161). 

 
The equations: 

,1

0

p

ds

dx

F
=

-

-
 ,2

0

p

ds

dy

F
=

-

-
 ,3

0

p

ds

dz

F
=

-

-
 61 = 0, 

 

permit us to express the variables ,
0ds

dx
x =! ,

0ds

dy
y =! ,

0ds

dz
z =! .1 as functions of the 

variables x, y, z, p1, p2, p3 by means of the formulas: 
 

,2
3

2
2

2
11 ppp ++=.   ,

1

1

.

p
x =!  ,

1

2

.

p
y =!  .

1

3

.

p
z =!  

 
If we substitute these values into: 

,321 Fzpypxp &!+!+!  

we obtain the function: 
2 2 2

0 1 2 3( , , , ) ,s x y z p p p5= + + +.  

 
and upon denoting the coordinates x, y, z by q1, q2, q3, as in APPELL (60), we have the 
equations (which are canonical if s0 does not figure in 5): 
 

0

dq

ds p
3

3

-
=
-

.
,  

0

dp

ds q
3

3

-
= &

-

.
 

 
to determine the variables x, y, z, p1, p2, p3 . 
 As one sees, we recover the results that were obtained by APPELL (61), in a simple 
form that was first given by LEGOUX (62), and then by MARCOLONGO (63), and from 

                                                
59  JORDAN. – Cours d’Analyse de l’Ecole Polytechnique, T. III, 2nd edition, no. 375, pp. 501, 502. 
 
60  APPELL. – Traité de mécanique rationelle, 1st ed., T. II, Exercise 14, pp. 48-49; 2nd ed., T. I, Exercise 
14, pp. 583-584. 
 
61  APPELL. – Reduction à la forme canonique des équations d’un fil flexible et inextensible, C.R., 96, pp. 
688-691, 12 March 1883; Traité de mécanique rationelle, loc. cit. 
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which one may pass to the method of JACOBI and the results given in the first place by 
CLEBSCH, in the previously-cited memoir (64). 
 One may also present the preceding exposition as we did for the dynamics of a point 
in our first Note and for the deformable line in general. 
 Begin with the equations: 
 

,00
00

=+''
(

)
**
+

,
X

ds

dx
T

ds

d
 ,00

00

=+''
(

)
**
+

,
Y

ds

dy
T

ds

d
  ,00

00

=+''
(

)
**
+

,
Z

ds

dz
T

ds

d
 

 
or rather, the system that gave rise to them: 
 

,
0ds

dx
TF &=   ,

0ds

dy
TG &=   ,

0ds

dz
TH &=  

,00
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=& X
ds

dF
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  ,00

0
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which may be considered as defining the six unknowns x, y, z, F, G, H.  Suppose that X0, 
Y0, Z0 are given functions of s0, x, y, z. 
 If we add the three equations of the first line, after squaring, then we see that T is 
defined as a function of F, G, H by the relation: 
 

T2 = F2 + G2 + H2, 
from which, it results that: 
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 The normal form of the system considered is, as a result: 
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 2.  ELASTIC LINE OF LORD KELVIN AND TAIT. – We may repeat for this line 
what we did for the flexible inextensible line.  Start with a function W of s0, ", #, $, p, q, 

                                                                                                                                            
62  A. LEGOUX. – Equations canoniques, application à la recherché de l’équilibre des fils flexible et des 
courbes brachistrochrones, Mém. de l’Acad. des Sciences, inscriptions et belles lettres de Toulouse, 8th 
Series, T. VIII, 2nd semester, pp. 159-184, 1885. 
 
63  R. MARCOLONGO. – Sull’ equilibrio di un filo flessible ed inestensibile, Rend. dell’ Accad. delle 
scienze fisiche e matematiche (Sezione della SocietB reale di Napoli), 2nd Series, vol. II, pp. 363-368, 1888. 
64 Likewise, consult APPELL, Sur l’équilibre d’un fil flexible et inextensible, Ann. de la Fac. Des Sc. de 
Toulouse, (1), 1, pp. B1-B5, 1887. 
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r, and add the conditions: 
 

" = "0 = 1, # = #0 = 0, $ = $0 = 0 . 

 

We define the functions 0 0 0 0 0 0, , , , , ; , , , , ,F G H I J K X Y Z L M N! ! ! ! ! ! ! ! ! ! ! !  by means of the 

identity: 
0

0

0

0

][)( 0321
A
B

B

A
KKyGxFdsW !!++!!+!!=+++! ++++%µ+#µ+"µ+ !  

! !!++!!+!!&
0

0

;)( 0000

B

A
dsKNyYxX +++ !  

 
this amounts to replacing W with W1 + µ1(" – 1) + µ2# + µ3$ in the preceding and 
including the indicated formulas " = "0 = 1, # = #0 = 0, $ = $0 = 0 in these equations. 
 As one sees, we come down to the theory of the deformable line that corresponds to 
the function W1 of s0, ", #, $, p, q, r, and when one limits oneself to the study of 
deformations that correspond to " = "0 = 1, # = #0 = 0, $ = $0 = 0.  If we put ourselves in 
the case where W1 is hidden then we suppose that one knows simply the function W(s0,1, 
0, 0, 0, p, q, r) that W and W1 simultaneously reduce to for " = "0 = 1, # = #0 = 0, $ = $0 = 
0, and we recover the theory developed by LORD KELVIN and TAIT. 
 Observe that if, to construct the preceding line, we account for W a priori in the three 
conditions " = "0 = 1, # = #0 = 0, $ = $0 = 0 by a change of auxiliary variables then we 
are led to replace W by W(s0, 1, 0, 0, p, q, r) + µ1(" – 1) + µ2# + µ3$  in the calculations 
that relate to the general deformable line, and we obtain formulas that further reduce to 
the study of a deformable line when one is limited to imagining deformations that 
correspond to the three conditions " = "0 = 1, # = #0 = 0, $ = $0 = 0.  Upon supposing that 
µ1, µ2, µ3 are not known these formulas lead us once more to the theory of LORD 
KELVIN and TAIT. 
 Suppose that by virtue of the formulas that determine the deformation, one has 
expressed X0, Y0, Z0, L0, M0, N0 as functions of s0, x, y, z, .1, .2, .3 in such a way that 
 

X0 dx + Y0 dy + Z0 dz + $0 d.1 + %0 d.2 + &0 d.3 

 
is the total differential of a function U of s0, x, y, z, .1, .2, .3, considered simply with 
respect to x, y, z, .1, .2, .3 .  In addition, suppose that we are in the case of hidden W or 
the case envisioned in the latter example.  From the preceding, the equations in question, 
in which X0, Y0, Z0, $0, %0, &0 figure, are none other than the extremal equations of the 

problem in the calculus of variations that consists of determining an extremal for the 
integral: 

! +
0

0

,)( 0

B

A
dsUW  

 
where W is a given function of s0, p, q, r, upon supposing that the six unknown functions 
x, y, z, .1, .2, .3 verify the three differential equations: 
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" & 1 = 0, # = 0,  $ = 0. 
 
 If we set 61 = " – 1, 62 = #, 63 = $ and apply the considerations developed by 
JORDAN then we may reduce the system to canonical form.  Upon putting , ,F G H! ! ! in 

place of the variables .1, .2, .3 of JORDAN, the system expresses that one nullifies the 

first variation of the integral 
0

0
0
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A
ds! /  upon setting: 
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61 = 0,  62 = 0,  63 = 0 

 

permit us to express the nine variables ,
0ds

dx
x =!  ,

0ds
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y =!  ,

0ds
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ds
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. =! ,

0

3
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d.
. =! , ,F G H! ! ! as functions of the twelve variables x, y, z, .1, .2, .3, p1, 

p2, …, p6 by means of the formulas: 
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and by solving the formulas: 
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where we preserve the notations of sec. 10, for the moment. 
 Substituting these values into: 
 

1 2 3 4 1 5 2 6 3p x p y p z p p p. . .! ! ! ! ! !+ + + + + &/ , 

 

we obtain the function . of s0, x, y, z, .1, .2, .3, p1, p2, …, p6, which is deduced from: 
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W W W
W U p p p p q q

p q q
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! !!& & + + + + + +

- - -
 

 
by the substitution of the values for p, q, r as functions of s0, .1, .2, .3, p1, p2, …, p6 that 
one deduces from equations (29).  
 To determine the twelve variables x, y, z, .1, .2, .3, p1, p2, …, p6, we have the 
equations (which are canonical if s0 does not figure explicitly): 
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by which one may conclude the application of the method of JACOBI to the line in 
question. 
 One may also present the preceding exposition as we did for the general deformable 
line as well as for the dynamics of a point in our first note. 
 
 
 3.  DEFORMABLE LINE WHERE xM !  IS TANGENT TO M AT (M).  As always, 
start with a function W of s0, ", #, $, p, q, r, and add the conditions that # = #0 = 0, $ = $0 
= 0.  We define the functions 0 0 0 0 0 0, , , , , , , , , , ,F G H I J K X Y Z L M N! ! ! ! ! ! ! ! ! ! ! !  by means of the 

identity: 
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This amounts to replacing W with W1 = W + µ1# + µ2$, in the preceding, and adding the 
indicated conditions # = #0 = 0, $ = $0 = 0 to the formulas. 
 As one sees, we recover the theory of the deformable line that corresponds to the 
function W1 of s0, ", #, $, p, q, r when we limit ourselves to studying the deformations 
that correspond to # = #0 = 0, $ = $0 = 0.  If we put ourselves in the case of hidden W1 
then we suppose that one knows simply the function W(s0, ", 0, 0, p, q, r) that W and W1 
simultaneously reduce to for # = #0 = 0, $ = $0 = 0. 
 If, to construct the preceding line, we account for the two conditions 
# = #0 = 0, $ = $0 = 0 in W a priori, by a change of the auxiliary variables, then we are 
led to replace W with W(s0, ", 0, 0, p, q, r) + µ1# + µ2$ in the calculations that relate to 
the general deformable line, and we arrive at formulas that once again reduce to the study 
of a deformable line when one is limited to studying deformations that correspond to the 
two conditions # = #0, $ = $0 . 
 Suppose that, by virtue of the formulas that determine the deformation, one has 
expressed X0, Y0, Z0, L0, M0, N0 as functions of s0, x, y, z, .1, .2, .3, in such a way that: 
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X0 dx + Y0 dy + Z0 dz + $0 d.1 + %0 d.2 + &0 d.3 

 
is the total differential of a function U of s0, x, y, z, .1, .2, .3, considered simply with 
respect to x, y, z, .1, .2, .3 .  Suppose, in addition, that we are dealing with the case of 
hidden W or in the case envisioned in the latter example.  From the preceding, the 

equations in question, in which X0, Y0, Z0, $0, %0, &0 figure, are none other than the 

extremal equations for the problem of the calculus of variations that consists of 
determining an extremum for the integral: 
 

! +
0

0

,)( 0

B

A
dsUW  

 
where W is a given function of s0, ", #, $, p, q, r, upon supposing that the six unknown 
functions x, y, z, .1, .2, .3 verify the two differential equations # = 0, $ = 0.  The earlier 
considerations are thus repeated and it will be the same for all of the other particular lines 
that we have envisioned. 
 
 
 29.  States infinitely close to the natural state.  Hooke’s modulus of deformation.  
Critical values of the general moduli.  Concurrence with the dynamics of triads. – 
Return to the general deformable line.  Suppose that the action is null in the natural state, 
as well as the effort and the moment of deformation, and similarly, the external force and 
moment.  In this case, not only does the function W vanish identically, but also the six 
partial derivatives of W with respect to ", #, $, p, q, r, for the values "0, #0, $0, p0, q0, r0 of 
these variables.  Suppose, moreover, that W is developable in a neighborhood of " = "0, # 
= #0, $ = $0, p = p0, q = q0, r = r0 in positive integer powers of " & "0, # & #0, ..., r & r0 . 
Under these conditions, one will have: 
 

W = W2 + W3 + … 
 
upon representing W2, W3, … by homogenous polynomials of degree 2, 3, …, in the 
differences " & "0, # & #0, ..., r & r0 . 
 Suppose that the coordinates of a point M0 of the line (M0) in the normal state and the 
three parameters by means of which one expresses the direction cosines of the axes of the 
triad associated with that point are x0, y0, z0, .10, .20, .30, respectively, and that the 
coordinates x, y, z of the corresponding point M in the deformed state (M), and that the 
parameters .1, .2, .3 that define the axes of the associated triad are functions of s0 and h 
that are developable in powers of h by the formulas: 
 

x = x0 + x1 + … + xi + …, .1 = .10 + .11 + … + .1i + …, 
y = y0 + y1 + … + yi + …, .2 = .20 + .21 + … + .2i + …, 
z = z0 + z1 + … + zi + …, .3 = .30 + .31 + … + .3i + …, 

 
in which xi, yi, zi, .1i, .2i, .3i denote terms that refer to the hi factor.  We introduce these 
series developments to abbreviate the exposition and we assume that they obey the 
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ordinary rules of calculus.  The formulas of sec. 14 permit us to calculate the 
developments of F, G, H, !, ", #; X0, Y0, Z0, $0, %0, &0 in powers of h; the terms that 

are independent of h are null, and the terms F1, G1, H1, !1, "1, #1; X01, Y01, Z01, $01, %01, 

&01 are given by the formulas: 
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where we have set: 
 

,10
)1( xxx +=   ,10

)1( yyy +=   ,10
)1( zzz +=  

,1110
)1(

1 ... +=  ,2120
)1(

2 ... +=  .3130
)1(

3 ... +=  

 
 If we consider, under the name of deformation state one that is infinitely close to the 
natural state, then the state (M), where the point M has the coordinates x(1), y(1), z(1), and 
where the parameters that relate to the associated triad have the values ,,, ),1(

3
),1(

2
),1(

1 ...  and 

if, on the other hand, we call the vectors (F1, G1, H1), (!1, "1, #1), (X01, Y01, Z01), (L01, 

M01, N01) the effort, moment of deformation, external force, and external moment, relative 
to that state, where L01, M01, N01 are calculated by means of .10, .20, .30, $01, %01, &01, 

in the same manner as L0, M0, N0 are calculated from .1, .2, .3, $0, %0, &0, then we 

arrive at the general hypotheses made by the classical authors, and where the first two 
vectors are linear functions of the elements that characterize the deformed state in 
question.  As a consequence, we recover what has been named the generalized HOOKE 
law, but limited, as is convenient, by the condition that we respect the principle of energy 
conservation.  To satisfy this condition in the classical method it is necessary to retrace 
the path that we followed in our exposition, but in the opposite sense. 
 The coefficients in the linear functions that express HOOKE’S law are the 
deformation moduli of the deformable line in its state of being infinitely close to the 
natural state; they are invariant at a given point of the line.  This notion of modulus may 
be generalized upon envisioning the first and second derivatives of the function W. 
Instead of the case where the general moduli are defined and continuous, one may 
consider the one where they have critical values. 
 The preceding considerations are easily repeated for different particular deformable 
lines; they must be reconciled with the ones that we developed in our first note.  Indeed, 



THEORY OF DEFORMABLE BODIES 
 
72 

the dynamics of triads is attached to the foregoing in a completely direct manner.  It 
suffices to regard the arc s0 as time t, and the deformable line as a trajectory.  This simple 
statement immediately explains the analogies that have been recognized for quite some 
time between the classical dynamics of a point and the rigid body, and the statics of the 
deformable line. 
 Observe that, as in the preceding proposition that we obtained (65) for the case of the 
rigid body, with regard to the kinetic energy, there corresponds a proposition for the 
deformable line, from which, when W does not depend on s0 explicitly, formulas (10) 
entail that the expression: 
 

,)( 0000000 dsNrMqLpZYX !+!+!+!+!+! %#"  

 
which may be put into the form: 
 

X0 dx + Y0 dy + Z0 dz + $0 d.1 + %0 d.2 + &0 d.3 , 

 
is equal to the differential of the quantity: 
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that was already introduced in sec. 14. 
 On the other hand, observe that one may add considerations that are analogous to the 
ones that were developed in the present work, as far as constraints are concerned, for the 
deformable line to the developments that were given in our first note with regard to the 
rigid body.

                                                
65  Note sur la dynamique du point et du corps invariable, Tome I, pp. 261. 



 

III. – STATICS OF THE DEFORMABLE SURFACE 
AND DYNAMICS OF THE DEFORMABLE LINE 

 
 30.  Deformable surface.  Natural state and deformed state. – As we shall see, the 
developments that we deduced in regard to the deformable line are reproduced, almost 
unchanged, in the theories of the deformable surface and deformable three-dimensional 
medium.  This repetition shows the fecundity of the concept of Euclidian action.  It 
suggests numerous approaches and opens up a vast field of study that the first researchers 
began to explore only with great difficulty, but which is now possible to begin more 
successfully, given the present state of the general geometric theory of surfaces and 
curvilinear coordinates, such as what DARBOUX has presented in his great works (1). 
 Consider a surface (M0) that is described by a point M0, whose coordinates x0, y0, z0 
with respect to three rectangular axes Ox, Oy, Oz are functions of two parameters, which 
we assume are chosen in a arbitrary manner and are designated by '1 and '2 .  Adjoin a 
trirectangular triad with axes 0 0 0 0 0, ,M x M y Mz! ! ! to each point M0 of the surface (M0), whose 

direction cosines with respect to the axes Ox, Oy, Oz are 
;,, 000 ((( !!! ;,, 000 *** !!! ,,, 000 ))) !!! respectively, and are functions of the same parameters 

'1 and '2 .  The continuous two-dimensional set of all such triads 0 0 0 0M x y z! ! !  will be what 

we call a deformable surface. 
 Give a displacement M0M to the point M0, and let x, y, z be the coordinates of the 
point M with respect to the fixed axes Ox, Oy, Oz.  In addition, give the triad 0 0 0 0M x y z! ! !  a 

rotation that ultimately brings the axes of the triad into agreement with those of a triad 
Mx y z! ! !  that we adjoin to the point M; we define that rotation by giving the direction 
cosines ;,, ((( !!! ;,, *** !!! , ,) ) )! !! of the axes , ,Mx My Mz! ! !with respect to the fixed axes.  
The continuous two-dimensional set of all such triads Mx y z! ! !will be called the deformed 

state of the deformable surface under consideration, which, in its primitive state, will be 
called the natural state. 
 
 
 31.  Kinematical elements that relate to the state of the deformable surface. – Let 

(0) (0) (0), ,i i i" # % denote the components of the velocity of the origin M0 of the axes 

0 0 0 0 0, ,M x M y Mz! ! ! along these axes when each 'i alone varies and plays the role of time. 

Likewise, let (0) (0) (0), ,i i ip q r  be the quantities that define the projections on those axes of 

the instantaneous rotation of the triad 0 0 0 0M x y z! ! !  relative to the parameter 'i.  We denote 

the analogous quantities for the triad Mx y z! ! !by "i, #i, $i, and pi, qi, ri when one refers it, 

like the triad 0 0 0 0M x y z! ! ! , to the fixed triad Oxyz. 

 The elements that we just introduced are calculated in the habitual fashion; one has: 

                                                
1 GASTON DARBOUX. – Leçons sur la théorie générale des surfaces, 4 vol., Paris, 1887-1896; Leçons 
sur les systèmes orthogonaux et les coordinées curvilignes, Tome I, Paris, 1898. 
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 The linear elements ds0 and ds of the surface in its natural and deformed state will be 
defined by the formulas: 
 

2 2 2
0 0 1 0 1 2 0 22ds d d d d' ' ' '= + +( / 0  2 2 2

1 1 2 22ds d d d d' ' ' '= + +( / 0 , 

 
where (, /, 0 are calculated from the following double formulas: 
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and where (0, /0, 00 are calculated by analogous formulas. 

 Denote the projections of the segment OM onto the axes , ,Mx My Mz! ! !  by , ,x y z! ! ! , in 
such a way that the coordinates of the fixed point O will be , ,x y z! ! !& & & with respect to 
these axes.  We have the following well-known formulas: 
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which give the new expressions for "i , #i , $i . 
 
 
 32.  Expressions for the variations of the translational and rotational velocities 

relative to the deformed state. &&&&  Suppose that one gives an infinitely small 
displacement to each of the triads of the deformed states in a manner that may vary in a 
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continuous fashion with the triads.  Designate the variations of x, y, z; 
;,, zyx !!! , , .( ( )! !!!  by +x, +y, +z; ;,, zyx !!! +++ ,.,, )+(++( !!!!  respectively.  The 

variations , , .+( +( +)! !!!  are expressed by formulas such as the following: 
 
(34)    K J+( *+ )+! != &  
 
by means of the three auxiliary functions ,,, KJI !!! +++ which are the components with 
respect to , ,Mx My Mz! ! !  of the well-known instantaneous rotation that is attached to the 

infinitely small displacement in question.  The variations +x, +y, +z are the projections on 
Ox, Oy, Oz of the infinitely small displacement given to the point M; the projections 

, ,x y z+ + +! ! ! of this displacement on , ,Mx My Mz! ! !  are deduced immediately and have the 
values: 
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 We propose to the determine the variations +"i , +#i , +$i , +pi , +qi , +ri that are 
implied for "i , #i , $i , pi , qi , ri , respectively.  From the formulas (31), we have: 
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 We replace +( by its value ,JK !&! )+*+  and , .+( +)! !!! by their analogous values; we 
obtain: 
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Likewise, formulas (35) give us three formulas, the first of which is: 
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if we replace +pi , +qi , +ri  by the values they are given from formulas (36) then we 
obtain: 
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where, to abbreviate the notation, we have introduced the three symbols , ,x y z+ + +! ! ! that 
are defined by formulas (35). 
 
 
 33.  Euclidian action for the deformation of a deformable surface. -  Consider a 
function W of two infinitely close positions of the triad ,zyxM !!!  i.e., a function of '1, '2, 

x, y, z, ,.,, )(( !!!!  and their first derivatives with respect '1 and '2.  If we preserve the 
notations of sec. 31, and set: 

2
0 0 0 09 = &( / 0  

 
then we propose to determine what sort of form that W must have in order for the 
integral: 

!! 9 ,210 '' ddW  

 
to have a null variation when taken over an arbitrary portion of the surface (M0), and 
when one subjects the set of all triads of the deformable surface in its deformed state to 
the same arbitrary infinitesimal transformation of the group of Euclidian displacements. 
 By definition, this amounts to determining W in such a fashion that one has: 
 

+W = 0 
 
when, on the one hand, the origin M of the triad Mx y z! ! !  is subjected to an infinitely small 

displacement whose projection +x, +y, +z on the axes Ox, Oy, Oz are: 
 

(38)    
"
#

"
$

%

&+=

&+=

&+=

,)(

)(

)(

213

132

321

txyaz

tzxay

tyzax

+,,+

+,,+

+,,+

 

 
where a1, a2, a3, ,1, ,2, ,3 are six arbitrary constants and +t is an infinitely small quantity 
that is independent of '1, '2, and when, on the other hand, this triad Mx y z! ! ! is subjected 
to an infinitely small rotation whose components with respect to the axes Ox, Oy, Oz are: 
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,1+t, ,2+t, ,3+t. 
 

 Observe that in the present case the variations +"1, +#1, +$1, +p1, +q1, +r1; +"2, +#2, 
+$2, +p2, +q2, +r2 of the twelve expressions "1, #1, $1, p1, q1, r1; "2, #2, $2, p2, q2, r2 are 
null, since this results from the well-known theory of the moving triad, and as we may, 
moreover, immediately verify by means of formulas (36) and (37) by replacing 

;,, zyx +++ !!! , ,I J K+ + +! ! !  with their present values.  It results from this that we may 

obtain a solution of the question when we let W be an arbitrary function of '1, '2, and the 
twelve expressions "1, #1, $1, p1, q1, r1; "2, #2, $2, p2, q2, r2; we shall now show that we 
also obtain the solution to the general problem (1) that we now pose. 
 To that effect, observe that the relations (31) permit us & by means of well-known 
formulas – to express the first derivatives of the nine cosines , , .( ( )! !!!  with respect to 

'1 and '2 by means of the cosines and p1, q1, r1; p2, q2, r2.  On the other hand, we remark 
that formulas (30) permit us to conceive that one expresses the nine cosines 

, , .( ( )! !!! by means of "1, #1, $1, and the first derivatives of x, y, z with respect '1, or by 

means of "2, #2, $2, and the first derivatives of x, y, z with respect to '2.  Furthermore, in 
this case it is useless to make a hypothesis on the mode of solution, since it is clear that 
we do not obtain a more general form than the one that we are led to upon ultimately 
supposing that the function W that we seek is an arbitrary function of '1, '2, and of x, y, z, 
and their first derivatives with respect to '1, '2, and finally, of "1, #1, $1, p1, q1, r1; "2, #2, 
$2, p2, q2, r2, which we indicate by writing: 
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 Since the variations +"i, …, +ri, +"i, …, +r2 are null in the present case, as they are for 
some instant, as we have remarked, we finally can write the new form of W that obtains 
from formulas (38) and for any a1, a2, a3, ,1, ,2, ,3: 
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 If we replace +x, +y, +z by their values in (38), and , ,
i i i

x y z
+ + +

' ' '

- - -

- - -
 by the values 

that one deduces by differentiating, and set the coefficients of a1, a2, a3, ,1, ,2, ,3 then 
we obtain the following six conditions: 
 

                                                
1 In what follows, we suppose that the deformable surface is susceptible to all possible deformations, and 
that, as a result, the deformed state may be taken absolutely arbitrarily; this is what mean when we say that 
the surface is free. 
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which are identities if we assume that the expressions that figure in W have been reduced 
to the smallest number. 
 The first three then show us, as one may easily foresee, that W is independent of x, y, 
z.  The last three express that W depends on the first derivatives of x, y, z only by the 
intermediary of the quantities (, /, 0 that were defined by the formulas (32).  We 

therefore finally see that the desired function W has the remarkable form: 
 

W('1, '2, "1, #1, $1; "2, #2, $2; p1, q1, r1; p2, q2, r2), 
 
which is analogous to the one we encountered previously for the deformable line. 
 Let 9 denote the quantity that is analogous to 90 and is defined by the formula: 
 

29 = &(/ 0 . 
 
 If we multiply W by the area element d10 = 90 d'1d'2 of the surface (M0) then the 
product W 90 d'1d'2 so obtained is an invariant that is analogous to the area element of 
the surface (M) in the group of Euclidian displacements.  The same is true for the value of 
the integral: 

0 0
0 1 2 1 2

0
C C

d d d d' ' ' '
9
9 = 9

9!! !!  

 
that is taken over the interior of a contour C0 of the surface (M0) or a corresponding 
contour C of the surface (M) that determines the area of the domain delimited by C on 
(M).  Similarly, in the spirit of the notion of action for the passage from the natural state 
(M0) to the deformed state (M), we adjoin the function W to the elements of the definition 
of the deformable surface, and we say that the integral: 
 

!! 9
0

,210C
ddW ''  

 
is the action of deformation of the interior of the contour C of the deformed surface. 
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 On the other hand, we say that W is the density of the action of deformation at a point 
of the deformed surface when referred to the unit of area for the non-deformed surface; 

9

9 0W  will be that density at a point when referred to the unit of area of the deformed 

surface. 
 
 
 34.  External force and moment; the effort and moment of external deformation; 
the effort and moment of deformation at a point of the deformed surface. – Consider 
an arbitrary variation of the action of deformation of the interior of a contour C of the 
surface (M), namely: 
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By virtue of formulas (36) and (37) of sec. 32, we may write: 
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If we apply GREEN’S formula to the terms that refer explicitly to the derivatives with 
respect to '1 or '2 then we obtain: 
 

20
111111

210
0 0

'++++
%

+
#

+
"

''+ dK
r

W
J

q

W
I

p

W
z

W
y

W
x

W
ddW

C C
90

1

2
''
(

)
**
+

,
!

-

-
+!

-

-
+!

-

-
+!

-

-
+!

-

-
+!

-

-
=9!! !  

10
222222

'++++
%

+
#

+
"

dK
r

W
J

q

W
I

p

W
z

W
y

W
x

W
9-
.

/
''
(

)
**
+

,
!

-

-
+!

-

-
+!

-

-
+!

-

-
+!

-

-
+!

-

-
&  



THEORY OF DEFORMABLE BODIES 80 

!! &
"#

"
$
%

!-
.

/
0
1

2

-

-
&

-

-
+''
(

)
**
+

,

-

-
9

-

-

9
&

0
0

0

1
C

i i

i

i

i

ii

x
W

r
W

q
W

+
#%"'

 

y
W

p
W

r
W

i i

i

i

i

ii

+
%"#'

!-
.

/
0
1

2

-

-
&

-

-
+''
(

)
**
+

,

-

-
9

-

-

9
+& 0

0

1
 

z
W

q
W

p
W

i i

i

i

i

ii

+
"#%'

!-
.

/
0
1

2

-

-
&

-

-
+''
(

)
**
+

,

-

-
9

-

-

9
+& 0

0

1
 

I
WW

q

W
r

r

W
q

p

W

i i

i

i

i

i

i

i

i

ii

!-
.

/
0
1

2

-

-
&

-

-
+

-

-
&

-

-
+''
(

)
**
+

,

-

-
9

-

-

9
+& +

#
%

%
#

'
0

0

1
 

J
WW

r

W
p

p

W
r

q

W

i i

i

i

i

i

i

i

i

ii

!-
.

/
0
1

2

-

-
&

-

-
+

-

-
&

-

-
+''
(

)
**
+

,

-

-
9

-

-

9
+& +

%
"

"
%

'
0

0

1
 

.
1

2100
0

''+
"

#
#

"
'

ddK
WW

p

W
q

q

W
p

r

W

i i

i

i

i

i

i

i

i

ii

9
"5

"
4
3
!-

.

/
0
1

2

-

-
&

-

-
+

-

-
&

-

-
+''
(

)
**
+

,

-

-
9

-

-

9
+&  

 
 The curvilinear integral that figures in the preceding formula must be clarified by 
specifying the sense of its traversal; as one knows, this sense is defined by means of the 
rotation that is given to the positive part of the curve ('2), i.e., the part that corresponds to 
the sense in which '1 varies on that augmented curve at the edge of the positive part of 
the curve ('1).  One may further specify that curvilinear integral, as in the example of 
BELTRAMI upon giving it the form that is provided by applying the formulas: 
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where 5 denotes a function of '1, '2, where ds0 is the absolute value of the linear element 
of the curve (C0), and where n0 indicates the direction of the normal to the contour (C0) 
traced in the tangent plane to the surface (M0) and directed towards the exterior of the 
region delimited by that contour.  To obtain the new form of the curvilinear integral, it 
will suffice to replace the d'1 and d'2 found under the integral sign in the first form that 
we obtained with the following values: 
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respectively. 
 If we let 0 0 0, ,. µ 3! ! ! denote the direction cosines of the exterior normal to the contour 

C0 in question with respect to the triad 0 0 0 0M x y z! ! !  then one may give the following forms 
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to the preceding two expressions that must be substituted for d'1 and d'2, respectively(1): 
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by virtue of the formulas: 
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that determine .,, 000 3µ. !!!  

 If ds0 denotes the absolute value of the element of arc for the contour C0 traced on the 
surface (M0) then set: 
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where the signs of d'1 and d'2 are made precise by the sense of traversal indicated above 
for the curvilinear integral, or again, the values of d'1 and d'2 are the ones that one 
indicates and in which the exterior normal to the contour C0 that is situated in the tangent 
plane to (M0) figure.  In addition, if we set: 
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1 One naturally has analogous formulas upon introducing the direction cosines , ,. µ 3! ! ! of the exterior 

normal to the contour C that corresponds to C0 with respect to the triad .zyxM !!!  
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then we have: 
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If we first consider the double integral that figures in the expression for 

0
0 1 2C

W d d+ ' '9!! then we call the segments that have their origins at M whose 

components along the axes , ,Mx My Mz! ! !  are 0 0 0, ,X Y Z! ! !  and ,,, 000 NML !!!  respectively, 

the external force and external moment at the point M referred to the unit of area of the 
non-deformed surface.  If we next consider the curvilinear integral that figures in 

0
0 1 2C

W d d+ ' '9!! then we call the segments that issue from the point M, whose 

projections on the axes , ,Mx My Mz! ! !  are 0 0 0, ,F G H! ! !& & &  and ,,, 000 KJI !&!&!&  

respectively, the external effort and external moment of deformation of the contour C of 
the deformed surface at the point M referred to the unit of length of the contour C0. 
 As we have seen, at a specific point M of C these last six quantities depend only on 
the direction of the exterior normal to the curve C0, taken at the point M0 in the tangent 
plane to (M0).  They remain invariant when the direction of the exterior normal does not 
change when one varies the region (M0) in question, and they change sign if that direction 
is replace by the opposite direction. 
 Suppose that one traces a line : in the interior of the deformed surface that is 
bounded by the contour C in such a way that it circumscribes a subset (A) of the surface, 
either alone or with a portion of the contour C, and denote the rest of the surface outside 
of the subset (A) by (B).  Let :0 be the curve of (M0) that corresponds to the curve : of 
(M), and let (A0) and (B0) be the regions of (M0) that correspond to (A) and (B) of (M).  
Imagine that the subsets (A) and (B) are separate.  One may regard the two segments 

0 0 0( , , )F G H! ! !& & &  and 0 0 0( , , )I J K! ! !& & &  that are determined by the point M, the direction of 

the normal to :0 in the tangent plane to (M0), and the exterior to (A0) as the external effort 
and the moment of deformation at the point M of the contour : of the region (A).  
Similarly, one may regard the two segments ),,( 000 HGF !!! and 0 0 0( , , )I J K! ! !  as the external 

effort and moment of deformation at the point M of the contour : of the region (B).  By 
reason of this remark, we say that 0 0 0, ,F G H! ! !& & &  and 0 0 0, ,I J K! ! !& & &  are the components 

of the effort and moment of deformation that are exercised at M by the portion (A) of the 
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surface (M) with respect to the axes ,,, zMyMxM !!!  and that ,,, 000 HGF !!!
0 0 0, ,I J K! ! !  are the 

components of the effort and moment of deformation that is exercised at M on the portion 
(B) of the surface (M). 
 The observation made at the close of sec. 9 on the subject of replacing the triad 
Mx y z! ! !  with a triad that is invariably related to it may be repeated here without 
modification. 
 
 
 35.  Diverse specifications for the effort and moment of deformation. – Set: 
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,,, zMyMxM !!!  respectively, of the effort and moment of deformation that is exerted at 

the point M of the a curve that admits the same tangent as '1 = const.  This effort and 
moment of deformation are referred to the unit of length of the non-deformed contour  As 
for '2 = const., the effort and moment of deformation have the projections 
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 The new efforts and the new moments of deformation that we shall define are related 
to the elements that we introduced in the preceding section by way of the following 
relations: 
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where, if one prefers, d'1 and d'2 are replaced by their values (39) in the equations on the 
right. 
 One may propose to transform the relations that we just wrote independently of the 
values of the quantities that figure in them that were calculated by means of W.  Indeed, 
these relations apply to the segments that are attached to the point M, and that we gave 
names to.  Instead of defining these segments by their projections on ,,, zMyMxM !!!  we 
may just as well define them by their projections on the other axes; the latter projections 
will be coupled by relations that are transforms of the preceding. 
 Moreover, the transformed relations are obtained immediately if one remarks that the 
primitive formulas have simple and immediate interpretations (1) by the adjunction of 
axes that are assumed parallel to the ones at the point O to the moving axes. 
 
 1.  First consider the fixed axes Ox, Oy, Oz.  Denote the projections on these axes of 
the external force and external moment at an arbitrary point M of the deformed medium 
by X0, Y0, Z0 and L0, M0, N0, respectively.  The projections of the effort and the moment 
of deformation that are related to the direction (d'1, d'2) of the tangent to a curve C are 
designated by F0, G0, H0 and I0, J0, K0, respectively.  They are referred to the unit of 
length of the non-deformed curve C0, and have been previously defined.  The projections 
of the effort ),,,( iii CBA !!!  and the moment of deformation ),,,( iii RQP !!! are denoted by Ai, 

Bi, Ci, and Pi, Qi, Ri, respectively.  The transforms of the preceding relations are 
obviously: 
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 must be replaced by: 

 

                                                
1 An interesting interpretation of note is the analogue of the one that was given by VARIGNON in the 
context of statics and by P. SAINT_GUILHEM in the context of dynamics. 
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respectively, where we have notated the direction cosines of the exterior normal to C0 
with respect to the fixed axes by .0, µ0, 30, and the exterior normal to C by ., µ, 3. 
 In particular, these equations give the equations of the infinitely small deformation of 
a plane surface that were used by LORD KELVIN and TAIT (1). 
 
 2.  One may give a new form to the equations relating to the fixed axes Ox, Oy, Oz.  
We may express the nine cosines , , ,( ( )! !!!  by means of three auxiliary variables; 

let .1, .2, .3 be three such functions.  Set: 
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The functions , ,i i i/ 0 1! ! !  of .1, .2, .3 that are so defined satisfy the relations: 
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1 Treatise on Natural Philosophy, vol. I, Part II, sec. 644, pp. 186-188. 
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 Let /i, 0i, 1i denote the projections on Ox, Oy, Oz of the segment whose projections 
on the axes , ,Mx My Mz! ! !  are .,, iii 10/ !!!   We have: 
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& & ++=!!&=!! ,332211 .0.0.0(((( ddddd  

& & ++=!&=! ,332211 .1.1.1(((( ddddd  

 
by virtue of which (1) the new functions /i, 0i, 1i of .1, .2, .3 satisfy the relations: 
 

,0=&+
-

-
&

-

-
ijji

j

i

i

j
1010

.

/

.

/
 

,0=&+
-

-
&

-

-
ijji

j

i

i

j
/1/1

.

0

.

0
 (i, j = 1, 2, 3), 

.0=&+
-

-
&

-

-
ijji

j

i

i

j
0/0/

.

1

.

1
 

 
 Again we make the remark, which will serve us later on, that if one denotes the 
variations of .1, .2, .3 by +.1, +.2, +.3, which corresponds to the variations 

, , ,+( +( +)! !!!  of , , ,( ( )! !!! then one will have: 
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where +I, +J, +K are the projections onto the fixed axes of the segment whose projections 
onto , ,Mx My Mz! ! !are .,, KJI !!! +++  
 Now set: 
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1 These formulas may serve to directly define the functions /i, 0i, 1i, and may be substituted for 

iiii
1)0*/(/ !+!+!=  

iiii
1)0*/(0 !!+!!+!!=   (i, j = 1, 2, 3) 

.1)0*/(1 !!!+!!!+!!!=
iii
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0 1 0 1 0 1 0 1 0 1 0 1 0L M N L M N/ 0 1 / 0 1! ! ! ! ! != + + = + +$ , 

0 2 0 2 0 2 0 2 0 2 0 2 0L M N L M N/ 0 1 / 0 1! ! ! ! ! != + + = + +% , 

0 3 0 3 0 3 0 3 0 3 0 3 0L M N L M N/ 0 1 / 0 1! ! ! ! ! != + + = + +& . 

 
In addition, introduce the following notation: 
 
   ,111111 iiiiiii RQPRQP 10/10/ ++=!!+!!+!!=;  

   ,222222 iiiiiii RQPRQPX 10/10/ ++=!!+!!+!!=  

   3 3 3 3 3 3i i i i i i iP Q R P Q R/ 0 1 / 0 1! ! ! ! ! !: = + + = + + . 

 
we then have the following in place of the latter system in which either , ,i i iP Q R! ! !or Pi, Qi, 

Ri figure: 
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with two analogous equations.  If one remarks that the functions "i, #i, $i, pi, qi, ri of 

.1, .2, .3, ,,, 321

iii '

.
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'
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which are related by the formulas: 
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that result from the definition of the functions , ,i i i/ 0 1! ! !  and the nine identities that they 

verify, then one may give the preceding system the new form: 
 

0
1 1 1 1 1 1

i i i i i i i
i i i i i i

i i

p q r
A B C P Q R

" # %

' . . . . . .

2 /-; - - - - - -
! ! ! ! ! != & & & & & &0 -

- - - - - - -1 .
&$ , 

 
with two analogous equations. 
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 3.  Instead of referring the elements that relate to the point M to the fixed axes Ox, 
Oy, Oz imagine that we define these elements in terms of a trirectangular triad 1 1 1Mx y z! ! !  

that is moving with M such that the axis 1Mz!  is normal to the surface (M) at M.  To define 

this triad ,111 zyxM !!!  we refer it to the triad ,zyxM !!!  and let , ,l l l! !!  be the direction cosines 

of 1Mx! , with ,,, mmm !!!  those of ,1yM !  and ,,, nnn !!!  those of ,1zM ! with respect to the 

latter axes. 
 More precisely, we define the direction cosines , ,n n n! !!  by the formulas: 
 

),(
1

1221 %#%# &
9

=n   ),(
1

1221 "%"% &
9

=!n   ).(
1

1221 #"#" &
9

=!!n  

 
We assume that the triad 1 1 1Mx y z! ! !  has the same disposition as the others and, for the 

moment, we make no other particular hypotheses on the other cosines. 
 Therefore, let (1) (1) (1), ,i i i" # %  denote the components of the velocity of the origin M of 

the axes 1 1 1, ,Mx My Mz! ! !  with respect to these axes when 'i alone varies and plays the role 

of time.  Likewise, let (1) (1) (1), ,i i ip q r  be the projections of instantaneous rotation of the 

triad 1 1 1Mx y z! ! ! relative to the parameter 'i on these same axes.  In these latter definitions, 

the triad 1 1 1Mx y z! ! !  is naturally referred to the fixed triad Oxyz.  We have: 

 
,)1(

iiii lll %#"" !!+!+=  ,)1(
iiii mmm %#"# !!+!+=  ,0)1( =!!+!+= iiii nnn %#"%  

 
and three formulas such as the following: 
 

&
-

-
+!!+!+= ,)1(

i

iiii

m
nrlqllpp
'

 

 
in which the triads being considered have the same disposition. 
 Let 0 0 0, ,X Y Z!! !! !!  and 0 0 0, ,L M N!! !! !!  be the projections on the 1 1 1, ,Mx My Mz! ! !  of the external 

force and external moment, respectively, at an arbitrary point M of the deformed surface, 
referred to the unit of surface of the non-deformed surface.  Furthermore, let 0 0 0, ,F G H!! !! !!  

and 0 0 0, ,I J K!! !! !!  be the projections of the effort (F0, G0, H0) and the moment (I0, J0, K0), 

respectively, on the same axes, and let , ,i i iA B C!! !! !!  and , ,i i iP Q R!! !! !! be the projections of the 

effort ( , , )i i iA B C! ! ! and the moment ),,,( iii RQP !!! respectively, as previously defined. 

 The transforms of the preceding relations (or the primitive relations) are obviously 
(1): 

                                                
1 It suffices to replace !! ,,,

ii
A!" with !! ,,,)1(

ii
A !!" and take the hypothesis (1) 0

i
% =  into account; for an 

arbitrary triad with vertex M one will have the same calculations.  
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 Instead of replacing d'1, d'2 in the right-hand equations with their values in (39) or 
their analogues relative to (M), we may give them the following values: 
 

,)( )1(
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)1(
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9
!!+!!&

ds
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)1(

1
9

!!+!!&
ds

#µ".  

 
in which we have denoted the direction cosines of the exterior normal to the contour C 
with respect to the triad 1 1 1Mx y z! ! !  by ).0,,( µ. !!!!   We thus obtain: 
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and two systems of analogous formulas. 
 These formulas lead us to substitute twelve new auxiliary functions for the twelve 
auxiliary functions ,,,,,, iiiiii RQPCBA !!!!!!!!!!!! which will be the coefficients of . !! and µ !!  in the 

preceding expressions for the efforts and moments, when referred to the unit of length of 
C, or they will be related to these coefficients in a simple manner.  We set: 
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in which we have introduced the first six auxiliary functions N1, N2, T, S1, S2, S3, and 
similarly: 

(1) (1)
1 1 2 2

1

P P" "!! !!+
=

9
& ,  

(1) (1)
1 1 2 2

3

P P# #!! !!+
= &

9
' 1 , 

(1) (1)
1 1 2 2

3

Q Q" "!! !!+
= +

9
' 1 , 

(1) (1)
1 1 2 2

2

Q Q# #!! !!+
=

9
& , 

(1) (1)
1 1 2 2

2

R R" "!! !!+
=

9
1 ,  

(1) (1)
1 1 2 2

1

R R# #!! !!+
=

9
1 , 

 

in which we have introduced the other six auxiliary functions &1, &2, ', 11, 12, 13 . 

 The twelve equations that we write may be solved immediately with respect to the 
primitive auxiliary variables .,,,,, iiiiii RQPCBA !!!!!!!!!!!!   Observe that by virtue of the hypotheses 

made on the common disposition of all of the triads, one has: 
 

;1=

!!!

!!!

!!!

nnn

mmm

lll

 

 
as a consequence, the formulas that define (1) (1),i i" #  give: 

 
.)1(

1
)1(

1
)1(

1
)1(

1 9=& #"#"  
As a result, we obtain: 
 
  ,)( )1(

23
)1(

11 "# STNA &&=!!   ,)( )1(
11

)1(
132 #" NSTA &&=!!  

  ,)( )1(
22

)1(
31 "# NSTB &+=!!   ,)( )1(

13
)1(

122 #" STNB +&=!!  

  ,)1(
21

)1(
21 "# SSC &=!!    ,)1(

12
)1(

112 #" SSC &=!!  
 
and six analogous formulas for ,,, iii RQP !!!!!!  with the letters in italics on the right-hand side.  

When we substitute these values in relations (40) and (41), we will have the equations 
that relate to the efforts and moments of deformation, as well as the forces and external 
moments, in the form that they take with the new auxiliary variables (1). 
 Obviously, one may give names to the components of effort and the moment of 
deformation that are analogous to the ones that we used for the deformable line.  
Therefore, one may call the components N1, N2 of the effort, the effort of tension.  The 
components T – S3, T + S3 are the truncated efforts in the plane tangent to the deformed 
surface.  The components S1, S2 are the truncated efforts normal to the deformed surface.  
Similarly, the components &1, &2 of the moment of deformation may be regarded as the 

                                                
1 We remark that the coefficient of S3 in the third equation is null. 
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moments of torsion; the components ' – 13, ' + 13 have the character of the moments of 

flexion; the components 11, 12 may be called the moments of geodesic flexion. 

 
 

 36.  Remarks concerning the components S1, S2, S3 and 11, 12, 13. – With regard to 

the expressions S1, S2, S3, and their analogues 11, 12, 13, we clarify the following remark 

that we used above in order to write the transformed equations. 
 In a general fashion, suppose we have a segment whose projections on Ox, Oy, Oz 
are: 
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 If we think of this segment as the moment of a vector (Ai, Bi, Ci) that is applied to the 

point , ,
i i i

x y z

' ' '

, )- - -
* '
- - -+ (

 then one sees that the projections on ,,, zMyMxM !!!  will be: 

 
,iiii BC !&! %#   ,iiii CA !&! "%   ,iiii AB !&! #"  

 
and on 1 1 1, ,Mx My Mz! ! ! they will be: 

 
,)1(
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 From this, it results that the segment whose projections on Ox, Oy, Oz are: 
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will have: 

,)(& !&!
i

iiii BC %#  ,)(& !&!
i

iiii CA "%  ( )i i i i
i

B A" #! !&&  

 
for its projections on , ,Mx My Mz! ! !  and: 
 

,1
)1( SC

i
ii 9=!!&#  ,2

)1(& 9&=!!& SCii"   (1) (1)
3( ) 2i i i i

i

B A S" #!! !!& = 9&  

 
for its projections on .,, 111 zMyMxM !!!  
 Naturally, there is an identical proposition for the italicized variables. 
 From this, one deduces that the conditions: 
 

S1 = 0,   S2 = 0,  S3 = 0 
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amount to the following: 
 

,0)( =!&!&
i

iiii BC %#  ,0)(& =!&!
i
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i

iiii AB #"  

 
and that the conditions: 

11 = 0,  12 = 0,  13 = 0, 

 
come down to: 
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In these two cases, one arrives at a system of two equations that do not depend on the 
choice of triad .111 zyxM !!!  
 If the conditions S1 = 0, S2 = 0, S3 = 0 are conditions that result from the form of W 
then W verifies the three partial differential equations: 
 

,0=''
(

)
**
+

,

-

-
&

-

-
&

i i

i

i

i

WW

#
%

%
#  ,0=''

(

)
**
+

,

-

-
&

-

-
&

i i

i

i

i

WW

%
%

"
% "  ,0=''

(

)
**
+

,

-

-
&

-

-
&

i i

i

i

i

WW

"
#

#
"  

 
which entails that W depends on "i, #i, $i only by the intermediary of the expressions: 
 

2 2 2
1 1 1" # %= + +( , 1 2 1 2 1 2" " ## % %= + +/ ,  2 2 2

2 2 2" # %= + +0 . 

 
 If the conditions 11 = 0, 12 = 0, 13 = 0 are conditions that result from the form of 2 

then 2 verifies the three partial differential equations: 
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which entails that 2 depends on pi, qi, ri only by the intermediary of the three 

expressions: 
 

p1"1 + q1#1 + r1$1,  p1"2 + q1#2 + r1$2+ p2"1 + q2#1 + r2$1, p2"2 + q2#2 + r2$2, 
 
expressions that reduce to the coefficients of ,, 21

2
1 ''' ddd  and 2

2'd  in the equation of 

the lines of curvature of (M) when $1 = $2 = 0. 
 Furthermore, observe that if one simply imposes the conditions: 
 

S1 = 0,  S2 = 0, 
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which amount to saying that the segment whose projection on 1 1 1, ,Mx My Mz! ! !  has the 

indicated values from the preceding page is parallel to 1Mz! or that it is perpendicular to 

both of the vectors ("1, #1, $1) and ("2, #2, $2), which gives the conditions: 
 

,0)()()( 222212222122221 =!&!+!&!+!&! ABCABC #"%"%#%#"  

,0)()()( 111121111211112 =!&!+!&!+!&! ABCABC #"%"%#%#"  
 
which may be written: 
 

,0)()()( 221212212122121 =!&+!&+!& CBA "##"%""%#%%#  

,0)()()( 121211212112121 =!&+!&+!& CBA "##"%""%#%%#  
 

and, in that form express that the vectors ),,( 111 CBA !!!  and 2 2 2( , , )A B C! ! !  are perpendicular 

to the normal .1zM !   One thus finds two conditions that are independent of the choice of 

triad ,111 zyxM !!!  and may be verified immediately a posteriori when one gives them the 
meaning of the truncated efforts S1, S2.  If the conditions S1 = 0, S2 = 0 are conditions that 
result from the form of W then W verifies the two partial differential equations: 
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which entails that W is a function that depends on  "i, #i, $i only by the intermediary of 
the three expressions (, /, 0. 

 The same reasoning proves that the conditions: 
 

11 = 0,  12 = 0, 

 
amount to two conditions that are independent of the choice of triad ,111 zyxM !!! which one 
may ultimately write: 
 

,0)()()( 121211212112121 =!&+!&+!& RQP "##"%""%#%%#  

.0)()()( 221212212122121 =!&+!&+!& RQP "##"%""%#%%#  
 

If the conditions 11 = 0, 12 = 0 are conditions that result from the form of W then W 

verifies the two partial differential equations: 
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which entails that W is a function that depends only on pi, qi, ri only by the intermediary 
of the four expressions: 
 

p1"1 + q1#1 + r1$1,  p1"2 + q1#2 + r1$2,  p2"1 + q2#1 + r2$1, p2"2 + q2#2 + r2$2 . 
 
 Similarly, imagine the condition: 

S3 = 0 . 
 
It expresses that the segment whose projections on 1 1 1, ,Mx My Mz! ! !  have the indicated 

values from the page (?) is perpendicular to ,1zM ! which gives the condition: 
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which does not depend on the choice of triad 1 1 1Mx y z! ! ! and leads to a partial differential 

equation that is verified by W when the condition S3 = 0 results from the form of W.    
 This equation is: 
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which is easily integrated because it admits the three particular integrals defined by (, /, 

0, respectively. 

 The same reasoning applies to the condition: 
 

13 = 0, 

 
which, moreover, corresponds to a condition that is independent of the choice of the triad 

1 1 1Mx y z! ! ! and, when it results from the form of W, leads to the partial differential equation: 
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whose integration is immediate. 
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 37.  Equations that are obtained by introducing the coordinates x, y as 

independent variables in place of '1, '2, as in Poisson’s example. – We propose to 
form equations that are analogous to those of sec. 35, but in which the independent 
variables are x, y by pursuing a certain analogy that we will also make for the deformable 
three-dimensional medium. 
 To abbreviate notation, denote the left-hand side of the transformation relations by 

0 0 0 0 0 0, , , , ,! ! ! ! ! !+ , - $ % & ; i.e., set: 
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 We may summarize the twelve relations of sec. 35, in which we referred the elements 
to fixed axes, by the following: 
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in which .1, .2, .3, µ1, µ2, µ3 are arbitrary functions, and the integrals are taken along the 
curve C0 of the surface (M0) and over the domain bounded by them. 
 Applying GREEN’S formula, the relation becomes the following one: 
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 We seek to transform this latter equation when one takes the functions x, y of '1, '2 
for new variables.  If one denotes an arbitrary function of '1, '2, which becomes a 
function of x, y, by j then the elementary formulas for the change of variables are: 
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  Apply these formulas to the functions .1, .2, .3, µ1, µ2, µ3.  Furthermore, if C always 
denotes the curve of (M) that corresponds to the curve (C0) of (M0) then we denote the 
projections of the force and external moment that is applied to the point M onto Ox, Oy, 
Oz by X, Y, Z, L, M, N when referred to the unit of area for the deformed surface (M), and 
the projections of the effort and the moment of deformation that is exerted at the point M 
on C onto Ox, Oy, Oz by F, G, H, I, J, K when referred to the unit of length on C.  
Finally, introduce twelve new auxiliary functions ;,, )1(
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and by the analogous formulas obtained upon replacing: 
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 We call the analogue of 9, 91; therefore, we set: 
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We obtain the transformed relation: 
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where the integrals are taken over the curve C of the surface (M) and the domain it 
bounds, and ds denotes the element of arc-length of C. 
 We apply GREEN’S formula to the terms that involve the derivatives of .1, .2, .3, µ1, 
µ2, µ3 with respect to x, y; since .1, .2, .3, µ1, µ2, µ3 are arbitrary they become: 
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 These formulas may be deduced a posteriori from the ones we previously gave.  For 
example, take the ones on the right.  We have seen (se. 35, 1) that F, G, H may be 

obtained upon replacing the expressions 1 2,
d d

ds ds

' '
in: 
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respectively, in which ., µ, 3 denote the direction cosines of the exterior normal to C.  
This gives: 
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which amounts to saying that one has: 
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However, these latter relations result from the formulas: 
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where the sign in the latter relation corresponds to the sense in which we traverse C, 
which figures in the use of GREEN’S formula. 
 
 
 38.  Introduction of new auxiliary functions provided by considering non-tri-

rectangular triads formed from 1zM !  and the tangents to the curves ('1) and ('2). – 

In sec. 35, 3, we envisioned a tri-rectangular triad 1 1 1Mx y z! ! ! in which the 1zM !  axis is 

normal to (M).  The formulas that give 0 0 0 0 0 0, , , , ,F G H I J K!! !! !! !! !! !!  lead us to introduce new 

auxiliary functions; however, we may also consider the equations to be indefinite and 
refer them to a triad that is no longer tri-rectangular, in general, which is formed from the 

1zM !  axis and the tangents to the ('1) and ('2) curves.  This is easily accomplished by 

using the calculations we already performed by the intermediary of .111 zyxM !!!   It suffices 
for us to start with the equations that are obtained with regard to the latter and show the 
combinations: 
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2 1 2 1 2A B" #!! !! !!= +4 , 

 
as well as four analogous formulas for 1 1 2 2, , ,!! !! !! !!5 6 5 6  from them, we deduce: 
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as well as analogous formulas for .,,, 2111 QPQP !!!!!!!!   The equations may be written: 
 

(1) (1)1 2
2 1 3 2 2 1 3 2 1 2 0 2 0 2 0

1 2

( )C C X Y" #
' '

!! !!- -
!! !! !! !! ! !! !! !! !! !!+ &: &: &< &< &9 &9 = 9 +

- -

3 3
3 3 4 4 7 7 , 

(1) (1)1 2
1 1 2 2 1 1 2 2 1 2 0 1 0 1 0

1 2

( )C C X Y" #
' '

!! !!- -
!! !! !! !! !! ! !! !! !!+ &: &: &< &< &9 &9 = 9 +

- -

4 4
3 3 4 4 7 7 , 

1 2
1 1 2 2 0 0

1 2

C C
Z

' '

!! !! ! !! ! !! ! !!- - & & & &
!! !! !! !! !!+ & & + + = 9

- - 9 9 9 9

(7 /7 0 7 /7 (7 /7 07 /7
3 4 3 4 , 

 
(1) (1)1 2

2 1 3 2 2 1 3 2 1 2 1 0 2 0 2 0
1 2

( )R R C L M" #
' '

!! !!- -
!! !! !! !! ! !! !! !! !! !! !!+ &: &: &< &< &9 &9 &9 = 9 +

- -

5 5
5 5 6 6 7 7  



THEORY OF DEFORMABLE BODIES 100 

(1) (1)1 2
1 1 2 2 1 1 2 2 1 2 2 0 1 0 1 0

1 2

( )R R C L M" #
' '

!! !!- -
!! !! !! !! !! ! !! !! !! !!+ &: &: &< &< &9 &9 + 9 = 9 +

- -

6 6
5 5 6 6 7 7 , 

1 1
1 1 2 2

1 2

R R

' '

!! !! ! ! !! ! ! !!- - & & & &
!! !! !! !!+ & + + +

- - 9 9 9 9

(7 /7 07 /7 (7 /7 07 /7
5 6 5 6  

     1 2 1 2
0 0

( )
N

!! !! !! !!+ & &
!!+ = 9

9

(3 / 3 4 04
. 

 
 In these formulas, the six CHRISTOFFEL symbols are designated by :1, :2, :3, 
<1, <2, <3: 
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and we let 2 2 2, ,! !!9 9 97 7 7  denote the three determinants that are defined by the identity 
(1): 
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 In the preceding calculations, we used the relations: 
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1 As we will reiterate later on, here we are letting 2 2 2, ,9 9 9! !!7 7 7  denote the quantities that 

DARBOUX denoted by .,, DDD !!!  
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 39.  External virtual work; a theorem analogous to those of Varignon and Saint-

Guilhem.  Remarks on the auxiliary functions introduced in the preceding sections. 
– We give the name external virtual work done on the deformed surface (M) by an 
arbitrary virtual deformation to the expression: 
 

0
0 0 0 0 0 0 0( )e C

F x G y H z I I J J K K ds+ + + + + + +! ! ! ! ! ! ! ! ! ! ! != & + + + + +!'  

 .)( 210000000
0

''++++++ ddKNJMILzZyYxX
C

9!!+!!+!!+!!+!!+!!+ !!  

 
 One may give other forms to this formula by introducing other elements.  For 
example, suppose that one introduces the expressions X0, Y0, Z0, L0, M0, N0; F0, G0, H0, I0, 
J0, K0.  To that effect, we let +I, +J, +K denote the projections onto the fixed axes of the 
segment whose projections on , ,Mx My Mz! ! !  are ,,, KJI !!! +++  in such a way that, for 
example: 

),( )+)*+*(+()+)*+*(+(+ !!!+!!!+!!!&=!!!+!!!+!!!=& I  
 
by always supposing that the axes we are considering have the same disposition.  We 
then have: 
 

  
0

0 0 0 0 0 0 0( )e C
F x G y H z I I J J K K ds+ + + + + + += & + + + + +!'  

   .)( 210000000
0

''++++++ ddKNJMILzZyYxX
C

9++++++ !!  

 
 The force ),,( 000 ZYX !!!  or (X0, Y0, Z0), the moment ),,( 000 NML !!! or (L0, M0, N0) are 

referred to the unit of area of the non-deformed surface.  The effort ),,( 000 HGF !!!  or (F0, 

G0, H0), and the moment of deformation ),,( 000 KJI !!!  or (I0, J0, K0) are referred to the unit 

of length of the non-deformed contour C0. 
 Start with the formula: 

0
0 1 2( ) eC

W d d+ ' ' +9 = &!! '  

 
taken over an arbitrary portion of the deformable surface bounded by a contour C0. 
 Since +(W90) must be identically null, by virtue of the invariance of W and 90 under 
the group of Euclidian displacements, when the variations +x, +y, +z are given by the 
formulas (9), page (?), namely: 
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   +x = (a1 + ,2z – ,3y)+t, 
   +y = (a2 + ,3x – ,1z)+t, 
   +z = (a3 + ,1y – ,2x)+t, 
 
and +I, +J, +K are given by: 
 

+I = ,1+t, +J = ,2+t, +K = ,3+t, 
 

and the fact that this is true for any values of a1, a2, a3, ,1, ,2, ,3, we conclude, from the 
preceding expression of +'e , that one has: 
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and two analogous formulas. 
 These six formulas that are easily deduced from the ones that one ordinarily writes by 
means of the principle of solidification (1).  In these formulas, one may imagine that the 
contour C0 is variable. 
 The auxiliary functions that were introduced in the preceding sections are not the only 
ones that one may envision.  We restrict ourselves to their consideration and simply add 
several obvious remarks. 
 By definition, we have introduced two systems of efforts and moments of 
deformation relative to a point M of the deformed surface.  The first ones are the ones 
that are exerted on the curves ('1) and ('2).  The others are the ones that are exerted on 
orthogonal curves that are arbitrary and to be specified, with tangents 1 2,Mx My! ! that have 

arbitrary rectangular and unspecified directions in the plane that is tangent to (M) at M.  
 Now suppose that one introduces the function W.  The first efforts and moments of 
deformation have the expressions we already indicated, and one immediately deduces the 
expressions relative to the second from this.  However, in these calculations one may 
explicitly describe the functions that one encounters according to the nature of the 
problem, and which are, for example, x, y, z, and three parameters (2) .1, .2, .3, by means 
of which one expresses .,,, )(( !!!!  

 If one introduces x, y, z, .1, .2, .3, and if one continues to let W denote the function 
that depends on '1, '2, the first derivatives of x, y, z with respect to '1, '2 on .1, .2, .3, 
and their first derivatives with respect to '1, '2, and, after replacing the different 

                                                
1 The passage from elements referred to the unit of area of (M0) and the length of C0 to elements referred to 
the unit of area of (M) and length of C is so immediate that it suffices to limit ourselves to the first ones, for 
example, as we have done. 
 
2 For such auxiliary functions .1, .2, .3, one may take, for example, the components of the rotation that 
makes the axes Ox, Oy, Oz parallel to ,,, zMyMxM !!! respectively. 
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quantities "i, #i, $i, pi, qi, ri with the values they are given by means of formulas (30) and 
(31),  we will have: 
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 40.  Notion of the energy of deformation.  Natural state of a deformable surface. 
– Envision two states (M0) and (M) of the deformable surface bounded by the contours C0 
and C, and consider an arbitrary sequence of states starting with (M0) and ending with 
(M).  To accomplish this, it suffices to consider functions x, y, z, , , ,( ( )! !!! of '1, '2, and 
a variable h such that for the value 0 of h the functions reduce to x0, y0, z0, x, y, z, 

,,,, 000 )(( !!! ! respectively, and for the value h of h they reduce to the values x, y, z, 

, , ,( ( )! !!! relative to (M). 
 If we make the parameter h vary in a continuous fashion then we obtain a continuous 
deformation that permits us to pass from the state (M0) to the state (M).  Imagine the total 
work performed by the external forces and moments that are applied to the different 
surface elements of the surface and the efforts and moments of deformation that are 
applied to the contour during this continuous deformation.  To obtain this total work, it 
suffices to take the differential obtained by starting with one of the expressions for +'e in 

the preceding section, substituting the partial differentials that correspond to increases dh 
in h for the variations x, y, z, , , ,( ( )! !!! in that expression, and integrate it from 0 to h.  
Since the formula: 

0
0 1 2( )e C

W d d+ + ' '= & 9!!'  

 

gives the expression 
0

0
1 2

( )
C

W
dh d d

h
' '

- 9
&

-!! for the actual value of +'e, we obtain: 

 

0
0 0

0
1 2 0 0 1 20

( )
( ) ( )

h

M M
C C

W
d d dh W W d d

h
' ' ' '

- 9, ) 2 /& = & 9 & 9* ' 1 .-+ (
! !! !!  

 
for the total work. 
 The work considered is independent of the intermediary states and depends on only 
the extreme states considered (M0) and (M). 
 This leads us to introduce the notion of the energy of deformation, which must be 
distinguished from that of action as we previously envisioned.  We say that – W is the 
density of the energy of deformation referred to the unit of area of the non-deformed 
surface. 
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 These considerations are only the repetition of the ones that we presented in sec. 12; 
similarly, the observations relating to the natural state of the deformable line, which was 
the object of sec. 13, may be reproduced with regard to the deformable surface. 
 
 
 41.  Notion of hidden triad and of hidden W. – In the study of the deformable 
surface, as it is in the case of the deformable line, it is natural to direct one’s attention to 
the particular manner in which the geometric surface is drawn by the deformable surface. 
This amounts to thinking in terms of x, y, z and considering , , ,( ( )! !!! as simple 
auxiliary functions.  This is what we may likewise express by imagining that one ignores 
the existence of the triads that determine the deformable surface and that one knows only 
the vertices of these triads.  If we take this viewpoint in order to envision the partial 
differential equations that one is led to in this case then we may introduce the notion of 
hidden triad, and we are led to a resulting classification of the various circumstances that 
may present themselves when we eliminate .,,, )(( !!!!  
 The first study that presents itself is that of the reductions that are produced by the 
elimination of .,,, )(( !!!!   In the corresponding particular case in which attention is 
devoted almost exclusively on the point-like surface that is drawn by the deformed 
surface, one may sometimes make a similar abstraction of (M0), and, as a result, of the 
deformation that permits us to pass from (M0) to (M).  It is by taking the latter viewpoint 
that we may recover the surface called flexible and inextensible in geometry. 
 The triad may be employed in another fashion: we may make particular hypotheses 
on it and, similarly, on the surface (M).  All of this amounts to envisioning particular 
deformations of the free deformable surface.  If the relations that we impose are simple 
relations between "i, #i, $i, pi, qi, ri, as will be the case in the applications we will study, 
then we may account for the relations in the calculation of W and deduce more particular 
functions from W.  The interesting question that is posed is to simply introduce these 
functions and consider the general function W that serves as our point of departure as 
hidden, in some sense.  We thus have a theory that will be special to the particular 
deformations that are suggested by the given relations "i, #i, $i, pi, qi, ri. 
 We confirm that one may thus collect all of the particular cases and give the same 
origin to the equations that are the result of special problems whose solutions have only 
been begun up till now by means of the theory of the free deformable surface.  In the 
latter problems, one sometimes finds oneself in the proper circumstances to avoid the 
consideration of deformations.  In reality, they still need to be completed.  This is what 
one may do in practical applications when we envision infinitely small deformations. 
 Take the case where the external force and moment refer, at the very most, to only the 
first derivatives of the unknowns x, y, z and .1, .2, .3.  The second derivatives of these 
unknowns will be introduced into the partial differential equations only by W; however, 
the derivatives of x, y, z figure only in "i, #i, $i, and those of .1, .2, .3 present themselves 
only in pi, qi, ri.  One sees that if W depends only upon "i, #i, $i or only upon pi, qi, ri then 
there will be a reduction of the orders of the derivatives that enter into the system of 
partial differential equations.  We proceed to examine the first of these two cases. 
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 42.  Case where W depends only upon '1, '1, "1, #1, $1, "2, #2, $2 .  The surface 

that leads to the membrane studied by Poisson and Lamé in the case of the infinitely 

small deformation.  The fluid surface that refers to the surface envisioned by 
Lagrange, Poisson, and Duhem as a particular case. – Suppose that W depends only 
on the quantities 'i, "i, #i, $i, and not on the pi, qi, ri.  The equations reduce to the 
following: 
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in which W depends only on '1, '2, ,,,
21 '' -

-

-

- zx
! .1, .2, .3 .  If we take the simple case 

where X0, Y0, Z0, $0, %0, &0 are given functions (1) of '1, '2, x, y, z, 

,,,
21 '' -

-

-

- zx
! .1, .2, .3 they show us that the three equations may be solved with respect 

to .1, .2, .3, and one finally obtains three partial differential equations that, under our 
hypotheses, refer only to '1, '2, x, y, z, and their first and second derivatives. 
 We confine ourselves to the particular case in which the given functions $0, %0, &0 

are null.  The same will be true for the corresponding values of the functions of any 
arbitrary one of the systems: (L0, M0, N0), ),,,( 000 NML !!! ).,,( 000 NML !!!!!!   It then results 

from this that the equations: 
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1 To simplify the discussion and indicate more easily what we will be alluding to, we suppose that X0, Y0, 
Z0, $0, %0, &0 do not refer to the derivatives of .1, .2, .3 . 
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or to: 
S1 = 0,   S2 = 0,  S3 = 0  

 
in such a way that the effort at a point of an arbitrary curve is in the plane tangent to the 
deformed surface and the truncated efforts that are exerted on two rectangular directions 
are equal. 
 This said, observe that if one starts with two positions (M0) and (M1), which are 
assumed to be given, and one deduces the functions $0, %0, &0, as in sections 34 and 35, 

then, in the case where these three functions are null, one may arrive at this result by 
accident, i.e., for a certain set of particular deformations.  However, one may arrive at 
this result in the case of arbitrary deformations of (M) as well, since it is a consequence of 
the nature of (M), i.e., of the form of W. 
 Envision this latter case, which is particularly interesting.  W is then a simple function 
(1) of '1, '2, (, /, 0 with the latter three quantities being defined by formula (32) of 

sec. 31.  The equations deduced in sec. 34 and 35 then reduce to either: 
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1 The triad is completely hidden; we may also imagine that we have a simple pointlike surface. 
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or, finally, to the equations: 
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 As we said, the effort is in the plane tangent to the deformed surface.  N1 and N2 are 
normal efforts, i.e., efforts of tension or compression.  T is an effort that is tangent to the 
linear element on which it is exerted, i.e., a truncated effort. 
 The consideration of infinitely small deformations that are applied to the preceding 
surface permits us to recover the surface or membrane that was studied by POISSON and 
LAMÉ (1). 
 Observe that, in addition to the formula that we already used to obtain 9, we also 
have the following: 
 

(1) 2 (1) 2
1 1( ) ( )" #= +( , (1) (1) (1) (1)

1 2 1 2" " # #= +/ ,  (1) 2 (1) 2
2 2( ) ( )" #= +0 , 

 
by virtue of which N1, T, N2 may be considered as the functions that are determined by 
'1, '2 and .,,, )1(

2
)1(

1
)1(

2
)1(

1 ##""  
 A particularly interesting case, which we call the case of the fluid surface, is obtained 
upon supposing, in regard to the three functions so defined, that one has: 
 

T = 0,  N1 = N2 . 
 
If one observes that one has the identities (2): 
 

(1) 2 (1) (1) (1) 2 2
1 1 2 2( ) 2 ( )" " " "& + = 90 / ( ,     

(1) 1 (1) (1) (1) (1) (1) 1
1 1 1 2 2 1 2 2( ) 0( ) ( )" # " # " # " #& + + =0 / (  ,   

(1) 2 (1) (1) (1) 2 2
1 1 2 2( ) 2 ( )# # # #& + = 90 / ( ,     

                                                
1 POISSON. – Mémoire sur le mouvement des corps élastiques, pp. 488 ff., Mém. de l’Inst., T. VIII, 1829; 
G. LAMÉ, Leçons sur la théorie mathématique de l’élasticité des corps solides, 2nd edition, 1866, 9th and 
10th Lessons. 
 
2 By virtue of the second of these identities, if T = 0 for any linear element then one is led to the conditions 
that follow, and, as a result, N1 = N2; one may content oneself by setting T = 0. 
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that result from the values: 
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for the expressions (, /, 0 that were defined by formula (32), one sees that the two 

conditions that we must set amount to the following: 
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which entails that W depends on (, /, 0 only by the intermediary of the quantity 

29 = &(/ 0  and is, as a result, a function of '1, '2, and .1
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to denote the expression of W in terms of '1, '2, µ by W, one will have: 
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 It is easy to obtain the particular form that the different systems of equations in 
question take, which are, moreover, combinations or simple consequences of each others. 
In particular, by virtue of the equations verified by the ,,, )1()1(

ii r!"  and upon denoting 

the expression 
W

µ

-

-
 by N, the system on page (?) takes the following form: 

   ,00
2

)1(
1

1

)1(
2 X

NN
!!9=

-

-
&

-

-

'
#

'
#  

   ,00
2

)1(
1

1

)1(
2 Y

NN
!!9=

-

-
+

-

-
&

'
"

'
"  

   0
0

1 2

1 1
N Z
, ) 9

!!+ =* '
9+ (8 8

 

 
upon using the formula: 
 

(1) (1) (1) (1) (1) (1) (1) (1)
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in which 81 and 82, the radii of principle curvature of the deformed surface (M), figure. 

 If we envision the particular case in which W depends only on µ, and in which (M0) 
does not figure explicitly, then we find ourselves in the presence of the surface 
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considered by LAGRANGE (1), whose study has been reprised by DUHEM (2).  Here, 
we must make some observations that are absolutely analogous to the ones that we 
presented in the context of the flexible and inextensible filament of LAGRANGE.  If, as 
LAGRANGE and DUHEM supposed, the surface (M0) does not figure explicitly then 
that surface (M0) figures only by the quantity µ; its existence is revealed only by that 
quantity.  If one supposes that the function W is given, like the quantity µ that we may 
introduce as an unknown auxiliary function in the usual problems, then we may substitute 
the unknown N.  If the function W is hidden then N becomes, moreover, an unknown 
auxiliary function; however, knowledge of that function will give us nothing in regard to 
(M0). 
 In the case where the surface (M0) figures only by the quantity µ, one may take two 
other unknown variables & x, y, for example & instead of '1 and '2, and if W is given then 
one has two unknowns and three equations.  If W is hidden then µ figures only in W, and 
one is in the same case.  In the first case, the remark that was made by POISSON is 
repeated by DUHEM (3).  We shall develop this remark explicitly, while putting the 
equations in the form that was given by LAGRANGE and, more explicitly, by POISSON 
and DUHEM (4). 

 If we solve the preceding equations with respect to 
1'-

-N
 and 

2'-

-N
then we obtain: 
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however, upon introducing, for the moment, the direction cosines , ,l l l! !!of ,1xM !  

, ,m m m! !! of ,1yM ! and , ,n n n! !! of ,1zM ! with respect to the fixed axes, one has: 
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1 LAGRANGE. – Mécanique analytique, 1st Part, Section V, Chap. III, sec. II, nos. 44-45, pp. 158-162, of 
the 4th edition. 
 
2 P. DUHEM. – Hydrodynamique, Elasticité, Acoustique, T. II, pp. 78 ff. 
 
3 P. DUHEM. – Ibid., T. II, pp. 92 at the top of the page. 
 
4 P. DUHEM. – Ibid., T. II, pp. 86 and 91. 
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The preceding system may be written: 
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   0
0 0 0

1 2

1 1
( )N X n Y n Z n

, ) 9
! !!+ = + +* '

9+ (8 8
; 

 
this is what one finds, up to notation, on page 86 of Tome II of the book by DUHEM that 
was already cited (the sense of the normal to (M) alone is changed). 
 Introduce the variables x, y, instead of '1, '2; to that effect, observe that the two 
relations that refer to the derivatives of N may be summarized in the following: 
 

),( 000
0 dzZdyYdxXdN ++
9

9
=  

 
which corresponds, in the particular case in which µ alone figures, to the remark made by 
DUHEM at the top of page 90 of Tome II of his work. 
 If x, y are taken for variables then we have the system: 
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9+ (8 8
; 

 
which is none other, up to notations and with a suitable convention on the sense of the 
normal, that equations (31) and (32) of DUHEM. 
 If we, with POISSON and DUHEM, consider the case in which 

,0
0 X
9

9
,0

0 Y
9

9 0
0Z

9

9
are given functions of x, y, z (we may assume the same for the 

derivatives of z) then we have three equations that refer to the two unknowns N, z. 
 In the particular case in which the given functions of x, y, z, insofar as they are of 

issue, are such that )( 000
0 dzZdyYdxX ++
9

9
 is the total differential of a function V then 

the system of three equations, which may be written, as we have said: 
 

   ),( 000
0 dzZdyYdxXdN ++
9

9
=  



THEORY OF DEFORMABLE BODIES 112 

   0
0 0 0

1 2

1 1
( )N X n Y n Z n

, ) 9
! !!+ = + +* '

9+ (8 8
 

    
amount to the following: 
 
   N – V = const. = C, 

   
1 2

1 1 V V V
N n n n

x y z

, ) - - -
! !!+ = + +* '

- - -+ (8 8
. 

 
N is calculated from the formula: 

N = V + C, 
 
and the surface (M) verifies the equation (1): 
 

1 2

1 1
( )

V V V
V C n n n

x y z

, ) - - -
! !!+ + = + +* '

- - -+ (8 8
. 

 
 
 
 43.  The flexible and inextensible surface of the geometers.  The incompressible 
fluid surface.  The Daniele surface. – We have considered the particular case in which 
W does not depend on pi, qi, ri and different special cases of this case.  We shall show 
how, by the study of particular deformations, one may approach the various surfaces that 
were already considered, at least in part, by the authors. 
 First, start with the simple case, in which the triad is hidden, i.e., the definition of a 
simple pointlike surface, and suppose that this is, moreover, the general case in which W 

is an arbitrary function of '1, '2, (, /, 0. 

 
 1.  We may imagine that one pays attention only to the deformations of the surface 
for which one has: 

( = (0,  / = /0,  0 = 00 . 

 
 In the definitions of forces, etc., it suffices to introduce these hypotheses and, if the 
forces, etc., are given, to introduce these three conditions.  In the latter case the habitual 

problems, which correspond to the given of the function W, and the general case where ( 

& (0, / & /0, 0 & 00 are non-null may be posed only for particular givens. 

 If we suppose that only the function W0 that is obtained by setting ( = (0, / = /0, 0 = 

                                                
1 Compare DUHEM, Elasticité, etc., T. II, pp. 92, which inspired pages 179-181 of POISSON, Mémoire 
sur les surfaces élastiques, which was written on August 1, 1814, published by extract in the May, 1815, 
issue of Tome III of the Correspondence sur l’Ecole Polytechnique, pp. 154-159, and then in the Mémoires 
de l’Institut de France, 1812, Part two, which appeared in 1816. 



THE DEFORMABLE SURFACE 113 

00 in W('1, '2, (, /, 0) is given, that one does not know the values of the derivatives of 

W with respect to (, /, 0 for ( = (0, / = /0, 0 = 00, and that W is hidden as well, then we 

see that N1, T, N2 become three auxiliary functions that one must adjoin to x, y, z in such a 
way that we have six partial differential equations in six unknowns in  the case where the 
forces acting on the elements of the surface are given.  One therefore has a well-defined 
problem only if one adds the accessory conditions.  If the deformed figure is assigned a 
priori then one has three equations between the unknown functions N1, T, N2. 
 The equations that we arrive at are the ones that define the flexible and inextensible 
surface of geometry. 
 
 2.  We may imagine that one seeks to define a surface that is deformable, sui generis, 
whose definition includes the conditions: 
 

( = (0,  / = /0,  0 = 00. 

 
To define the new surface while retaining the same order of ideas as in the preceding we 
again define 0 0 0, , ,F G N! ! !! by the identity: 

 

0000210 )()(
0 0

dsKKyGxFddW
C C

!!++!!+!!=9!! ! +++''+ !  

;)( 210000
0

''+++ ddKNyYxX
C

9!!++!!+!!& !! !  

 
however, this identity no longer applies, by virtue of: 
 

( = (0,  / = /0,  0 = 00. 

 
 In other words, we envision a surface for which the theory results from the a 

posteriori adjunction of the conditions ( = (0, / = /0, 0 = 00 to the knowledge of a 

function W('1, '2, (, /, 0), as well as three auxiliary functions µ1, µ2, µ3 of '1, '2, by 

means of the identity: 
 

0
1 0 2 0 3 0 1 2[ ( ) ( ) ( )]

C
W d d+ µ + µ + µ + ' '+ & + & + & 9!! ( ( / / 0 0  

.)()( 2100000000
00

''++++++ ddKNyYxXdsKKyGxF
CC

9!!++!!+!!&!!++!!+!!= !!! !!  

 

This amounts to replacing W with W1 = W + µ1(( & (0) + µ2(/ & /0) + µ3(0 & 00) in the 

preceding general theory rather than setting ( = (0, / = /0, 0 = 00 . 

 As one sees, we return to the theory of the flexible surface that corresponds to the 
function W1 of '1, '2, (, /, 0 when one confines oneself to studying the deformations 

that correspond to ( = (0, / = /0, 0 = 00 . 

 If we put ourselves in the case of a hidden W1 then if we suppose that one knows 
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simply the value W0('1, '2) that W and W1 take simultaneously for ( = (0, / = /0, 0 = 00 

then we recover the classical theory of the flexible inextensible surface. 
 Observe that if we constitute the flexible and inextensible surface by taking the 
conditions ( = (0, / = /0, 0 = 00 on W into account a priori by a change of variables 

then we are led to replace W with µ1(( & (0) + µ2(/ & /0) + µ3(0 & 00) in the calculations 

relating to the general deformable surface, and we come down to formulas that once 
again bring us back to the study of a flexible surface when one restricts oneself to 
studying the deformations that correspond to ( = (0, / = /0, 0 = 00 .  If we suppose that 

µ1, µ2, µ3 are unknown then these formulas bring us back to the flexible and inextensible 
surface of the geometers.  If we take this latter viewpoint we duplicate the exposition that 
was given by BELTRAMI in sec. 2 of his well-known Mémoire identically.  We may 
observe that in the case where X0, Y0, Z0, as expressed by means of these equations, are 
the partial derivatives of a function 5 of '1, '2, x, y, z with respect to x, y, z the equations 
in which X0, Y0, Z0 figure are none other than the extremal equations of a problem of the 
calculus of variations that consists of determining an extremum for the integral: 
 

0 1 2d d5 ' '9!!  

under the conditions: 
( = (0,  / = /0, 0 = 00. 

 
 We consider the case where the surface (M0) disappears from the givens and does not 
present itself in the question.  The variables '1, '2 appear as a system of coordinates to 
which the surface is referred.  If these variables do not figure in the givens then one may 
introduce two other variables in their place at will.  If we take this viewpoint, which is the 
one that is generally adopted, then the preceding equations, by way of particular cases, 
give the various known equations that were studied by the authors.  We confine ourselves 
to giving several bibliographic indications in the following section. 
 Suppose that we start with a surface formed by means of a function W of '1, '2, 9, or, 

if one prefers, of '1, '2, and .1
0

&
9

9
=µ   Imagine that one pays attention (1) only to the 

deformations of the surface for which one has: 
 

µ = 0. 
 
 One will then find oneself in the case of the incompressible fluid surface.  In the 
definitions of forces, etc., it suffices to introduce this hypothesis, and, if the forces are 
given, to pose this condition.  In the latter case, the habitual problems that correspond to 
the given of a function W and the general case where µ is not null demand that the givens 
be particular cases. 
 If we suppose that only the function W0 that is obtained by setting µ = 0 in W('1, '2, 

                                                
1 This viewpoint appears to be the one that DUHEM assumed in his work: Hydrodynamique, etc.; see pp. 
91 of Tome II, the last four lines, and pp. 92 at the end of sec. 5. 



THE DEFORMABLE SURFACE 115 

µ) is given, and that one does not know the value of 
µ-

-W
 for µ = 0, and that W is hidden, 

as well, then we see that the expression N becomes an auxiliary function that one must 
adjoin to x, y, z, in such a way that we have four equations in four unknowns in the case 
of given forces. 
 One may again start with a function W, which may refer to the "i, #i, $i, as well as the 
pi, qi, ri, and look for the form that it must have in order for the effort that is exerted on an 
arbitrary linear element to be normal and, moreover, in the plane tangent to (M).  It is 
necessary and sufficient that W depend on "i, #i, $i only by the intermediary of the 

expression 29 = &(/ 0 . 

 We also mention the surface that is deduced from a function W('1, '2, (, /, 0) by the 

adjunction of the conditions ( = (0, / = /0, 0 = 00 .  In the case where W does not 

depend on / one arrives at a surface that was first studied by DANIELE (1).  The case in 

which W depends on / agrees with that of the flexible and inextensible surface in an 

interesting manner.  It seems to correspond – better than the latter & to what one may call 
army surfaces, or envelopes, such as those of aerostats that are formed from an elastic 
substance that is woven from inextensible filaments. 
 
 
 
 44.  Several bibliographic indications that relate to the flexible and inextensible 
surface of geometry. – The flexible and inextensible surface of geometry has already 
given rise to a great number of works, at least from the mechanical viewpoint.  It seems 
useful to us to assemble the following bibliographic indications here, which are attached 
to that surface. 
 
LAGRANGE. – Mécanique analytique. 3rd edition, Part 1, Section V, Chap. III, sec. 2, pp. 138-143; Note 
of J. BERTRAND, pp. 140; 4th edition, Tome XI of the Oeuvres de LAGRANGE, Part 1, Section V, Chap. 
III, sec. 2, pp. 156-162; Note of DARBOUX, pp. 160. 
 
POISSON. – Mémoire sur les surfaces élastique; written August 1, 1814; inserted in the Mémoires de la 
classe des sciences mathématiques et physiques de l’Institut de France, 1812, Part 2, pp. 167-225. 
 
CISA DE GROSY. – Considérations sur l’équilibre des surfaces flexible et inextensible (Memorie della R. 
Accademia delle scienze di Torino, vol. XXIII, Part I, pp. 259-294, 1818). 
 
BORDONI. – Sull’ equilibrio astratto delle volte (Memorie di Matematica e di Fisica della Società 
Italiana delle Scienze, residente in Modina, 19, pp. 155-186, 1821); Memorie dell’ I.R. Istituto Lombardo 
di Scienze, Lettere ed Arti, 9, pp. 126-142, 1863; Sulla stabilità e l’equilibrio di un terrapieno (Memorie di 
Matematica et di Fisica della Società Italiana delle Scienze, residente in Modena, 24, pp. 75-112, 1850); 
Considerazioni sulle svolte delle strade (Memorie dell’ I.R. Istituto Lombardo di Scienze.  Lettere ed Arti, 
9, pp. 143-154, 1863). 
 
MOSSOTTI. – Lezioni di Meccanica razionale,  Firenze, 1851. 
 

                                                
1 E. DANIELE. – Sull’ equilibrio delle reti, Rend. del Circolo matematico di Palermo, 13, pp. 28-85, 1899. 
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BRIOSCHI. -  Intorno ad alcuni punti della teorica delle superficie (Annali di Tortolini, 3, pp. 293-321, 
1852). 
 
JELLETT. – On the properties of inextensible surfaces (Transactions of the Royal Irish Academy, 22, pp. 
343-378, 1853). 
 
MAINARDI. – Note che risguardano alcuni argomenti della Maccanica razionale ed applicata (Giornale 
dell’ I.R. Istituto Lombardo di Scienze, Lettere ed Arti, 8, pp. 304-308, 1856). 
 
LECORNU. – Sur l’équilibre des surfaces flexibles et inextensible (C.R., 91, pp. 809-812, 1880; Journal de 
l’Ecole Polytechnique, 48th letter, pp. 1-109, 1880). 
 
BELTRAMI. – Sull’ equilibrio delle superficie flessibili ed inestensibili (Memorie della Academia delle 
Scienze dell’ Istituto di Bologna, Series 4, 3, pp. 217-265, 1882). 
 
KÖTTER. – Über das Gleichgewicht biegsamer unausdehnbarer Flächen , Inaugural Dissertation, Halle, 
6 February 1883; Anwendung der Abelschen Functionen auf ein Problem der Statik biegsamer 
unausdehnbarer Flächen, (Journal fhr die reine und angewandte Mathematik, 103, pp. 44-74, 1888). 
 
MORERA. – Sull’ equilibrio delle superficie flessibili ed inestendibili (Atti della R. Accad. Dei Lincei, 
Rendiconti, Transfunti, Series 3, 7, pp. 268-270, 1883). 
 
VOLTERRA. – Sull’ equilibrio delle superficie flessibili ed inflessibili, Nota I and Nota II (Atti della R. 
Acc. Dei Lincei.  Transunti, Series 3, 8, pp. 214-217, 244-246, 1884); Sulla deformazione delle superficie 
flessibili ed inestensibili (Atti della R. Accad. Dei Lincei, Rendiconti, Series 4, 1, pp. 274-278, 1885). 
 
MAGGI. – Sull’ equilibrio delle superficie flessibili e inestensibili, (Rendiconti del R. Istituto Lombardo di 
Scienze ed Lettere, Series 2, 17, pp. 686-694, 1884). 
 
PADOVA. – Ricerche sull’ equilibrio delle superficie flessibili e inestensibili, Nota I and Nota II, (Atti 
della R. Acc. Dei Lincei, Rendiconti, Series 4, 1, pp. 269-274, 306-309, 1885). 
 
PENNACHIETTI. – Sull’ equilibrio delle superficie flessibili e inestensibili (Palermo Rend., 9, pp. 87-95, 
1895).  Sulle equazioni di equilibrio delle superficie flessibili e inestensibili (Atti Acc. Gioenia (4), 8, 
1895).  Sulla integrazione dell’ equazioni di equilibrio delle superficie flessibili e inestensibili (Atti Acc. 
Gionenia, (4), 8, 1895). 
 
RAKHMANINOV. – Equilibre d’une surface flexible inextensible (in Russian). (Recueil de la Soc. Math. 
de Moscou, 19, pp. 110-181, 1895). 
 
LECORNU. – Sur l’équilibre d’une envelope ellipsoïdale (Comtes rendus, 122, pp. 218-220, 1896; 
Annales de l’Ecole normale supérieure (3), 17, pp. 501-539, 1900.) 
 
DE FRANCESCO. – Sul moto di un filo et sull’ equilibrio di una superficie flessibili ed inestensibili, 
Napoli Rend., (3), 9, pp. 227, 1903; Napoli Atti (2), 12, 1905. 
 
 
 
 45.  The deformable surface that is obtained by supposing that zM !  is normal to 
the surface (M). – We propose to introduce the condition that zM !  is normal to the 
surface (M).  We may imagine that this is accomplished, either by starting with the 
previously-defined deformable surface and studying only the deformations of that surface 
that verify the conditions: 
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(42)    $1 = 0,  $2 = 0, 
 
or by defining a new deformable surface for which one develops the theory, by analogy 
with the first one, but keeping conditions (42) in mind. 
 We take the first viewpoint and study the deformations of (M) that verify the 
conditions (42); suppose, in addition (1), in view of the study of the infinitely small 
deformation and in order to form a continuous sequence of surfaces that start with (M0), 
that one has: .0)0(

2
)0(

1 == %%  
 It suffices to introduce the hypotheses (42) into the formulas of sec. 34 and following 
in order to obtain the expressions of the various elements that figure in the theory.  
Conversely, if, to fix ideas, we are given the forces and external moments then one must 
adjoin the two equations (42) to the six equations that result from that given, which 
shows that if the function W, which serves as the point of departure, is given then one 
may not give the forces and external moments arbitrarily. 
 However, observe that upon confining ourselves to the study of those that verify (42), 
we have, above all, the goal of constituting a particular surface; upon following this idea, 
we are therefore led to distinguish three cases:  1.  the function W is hidden, and we know 
the function W0 relative to the particular deformations under consideration, and 
constituted from the essential elements of the deformations. 2.  the function W is again 
hidden (i.e., not given), and we know relations (differential, for example) that relate W0 
and the traces (here, three functions) of the function W. 3. the function W still hidden, and 
we know the functions that recall the existence of W, either partially or totally. 
 We develop these possibilities by entering into the details of the calculations.  
Because of conditions (42) the triad, instead of depending on the six parameters x, y, z, 
.1, .2, .3, depends on only four parameters, for example x, y, z, m where we are letting m 
designate the angle defined by the formula: 
 

,
1

1

"

#
=mtg  

 
which represents one of the angles that the axis xM !  makes with the curve ('2) in (M). 
 Let 2 2 2, ,! !!9 9 97 7 7 designate the determinants defined by the identity that we gave 
in sec. 38, page (?), which depend only on the derivatives of x, y, z, and are independent 
of m and its derivatives.  In addition, recall the formulas of the same paragraph 
(CHRISTOFFEL symbols): 
 

   2 1 1
1 2

2

2

' ' '

- - -
& + &

- - -
: =

9

( / (
( ( /

, 

                                                
1 The conditions (0) (0)

1 2
% %=  may be omitted in our actual exposition and figure, in summation, only in the 

study of the infinitely small deformation. 
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   1 2
2 22

' '
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9

0 (
( /

, 

 
and, from the conventions we made: 
 

9 = "1#2 & "2#1. 
 

 To determine the rotations p1, q1, r1, p2, q2, r2 one has the following formulas (1): 
 
  1 1 2p " "!= &7 7 ,  1 1 2p " "!= &7 7 , 

  2 1 2p " "!! != &7 7 ,  2 1 2q # #!! != &7 7 , 

  1
1

1

m
r

'

: 9-
= & +

- (
,  2

2
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m
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'

: 9-
= & +

- (
. 

 
The translations are calculated from the prior system: 
 

,
1

1 mtg=
"

#
 2 2

1 1" #+ = ( ,  1 2 1 2" " ##+ = / , 2 2
2 2" #+ = 0 . 

 
 As one sees, the translations are expressed by means of m and the first derivatives of 
x, y, z.  The rotations p1, q1, p2, q2 are expressed by means of m and the first and second 
derivatives of x, y, z.  Finally, the rotations r1, r2 are expressed by means of the 
derivatives of m and the first and second derivatives of x, y, z. 
 If one substitutes these values in the function that is obtained by making $1 = $2 = 0 in 
W, a function that we shall denote by W0, to avoid confusion, then we obtain the function 

W0 of ,,,,,
21

21
''

''
-

-

-

- mm
m  of x, y, z, and their first and second derivatives, which, as a 

result, depend on the expressions 
1

, ,
m

m
'

-

-
!by the intermediary of the nine independent 

expressions: 
m, (, /, 0, r1, r2, , ,! !!7 7 7 , 

 
or, what amounts to the same thing, by the nine independent expressions "1, #1, "2, #2, r1, 
r2, , ,!! !!7 7 7 . 

 Let 0W !  designate the function of these nine latter quantities that gives W0 upon 

substitution for their values; 0W ! results from W0 by the substitution for p1, q1, p2, q2. 

 

                                                
1 DARBOUX, Leçons, T. II., pp. 363, pp. 378-379, nos. 495 and 503 give identical or equivalent formulas; 

we represent the quantities that DARBOUX denoted by , ,! !!7 7 7 in the form 2 2 2, ,9 9 9! !!7 7 7 . 
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 We have a function 0W ! that refers to the nine arguments that we enumerated along 

with '1, '2, whereas W refers to the ten arguments "1, #1, "2, #2, p1, q1, r1, p2, q2, r2,  
along with '1, '2 . 
 We must stop on an important point that results, by definition, from the consideration 
of one of the equations to which DARBOUX gave the name of CODAZZI, namely, p1#2 
& q1"2 & p2#1 + q2"1 = 0, and study the equations of statics for the deformable surface in 
the case that we examine. 
 The function 0W !  is deduced from W0 by substituting the following values for p1, q1, 

p2, q2: 
   1 1 2p " "!= &7 7 ,  1 1 2q # #!= &7 7 , 

   2 1 2p " "!! != &7 7 ,  2 1 2q # #!! != &7 7 , 

 
it results from this that one has: 
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where we are continuing to let W0 designate the result of substituting for p1, q1, p2, q2. 

 Suppose that one introduces the expressions for these variables in terms of 
1

, ,
m

m
'

-

-
!  

in these formulas, and that one takes (42) into account.  Observe that the formulas: 
 

,
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-
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-
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W
C  

 
do not permit us to calculate ,, 21 CC !!  if W is hidden because we must account for (42); 

however, the other formulas give the other expressions ,,1 !A!  in terms of the derivatives 
of W0.  For instance, one has: 
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The nine formulas that we deduce are given by: 
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where we write W0 instead of 0W !  in order to indicate that one must replace the arguments 

1, ," !!! 7 by their values as functions of .,,
1

!

'-

-m
m  

 When only the function W0 is known we no longer have to calculate the ten auxiliary 
functions ,,1 !A!  besides ,, 21 CC !! and the nine equations; by definition, when W0 alone is 

known, what remains are three arbitrary functions. 
 In order to study the system of equations for the statics of the deformable surface we 
apply the formulas that relate to the triad 1 1 1Mx y z! ! !  to the triad .zyxM !!!   In the former triad, 

we find auxiliary functions that are defined by the formulas: 
 

1 2 1 2 1A B" #! ! != +3 ,  2 2 2 2 2A B" #! ! != +3 , 

1 1 1 1 1A B" #! ! != +4 ,  2 1 2 1 2A B" #! ! != +4  

 
and four analogous ones for 1 1 2 2, , ,! ! ! !5 6 5 6   The nine previous formulas may be written: 
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 Consider the six equilibrium equations that were given in sec. 38; the first two of the 
second group give 1C !9  and :2C!9  
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1 2
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 Substitute these values in the three equations of the first group; if we write the third 
equation of the second group, and we are left with the system: 
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upon remarking that for the formation of the first three equations the CODAZZI 
equations are, with our notations (1): 
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where # designates the expression that is formed uniquely from (, /, 0, and their first 

and second derivatives, and represents the total curvature of the surface, and we also 
remark that: 
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 46.  Reduction of the system in the preceding section to a form that is analogous 
to one that presents itself in the calculus of variations. – From the preceding 
calculations it results that the auxiliary variables ,,1 !A!  or, what amounts to the same 

thing, the 1
!3 , … are all eliminated from these equations, even though their number is 

                                                
1 These equations are immediately deduced from the ones that were given in T. III, pp. 246, 248, of Leçons 
by DARBOUX upon performing a change of notations and observing that: 
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greater than one.  This is also an a priori consequence of the habitual considerations that 
one makes in the calculus of variations when the expressions for the external forces and 
moments have a particular form. 
 We shall put the equations that result from this elimination into a form that one may 
deduce from the calculus of variations in the case where expressions for the external 
forces and moments are given in a particular form. 
 We begin by replacing the arguments "1, #1, "2, #2 in W0, which are functions of the 
arguments m, (, /, 0 by their expressions that one deduces from the formulas: 

 

,
1
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#
 2 2

1 1" #+ = ( , 1 2 1 2" " ##+ = / , 2 2
2 2" #+ = 0 , 

 
to which we adjoin the formula we already used: 
 

"1#2 & "2#1 = 9, 
 
which only defines the sign of "2, #2. 
 From this, we deduce: 
 

  1 cos m" = ( ,  2 cos sinm m"
9

= &
/

( (
, 

  1 sin m# = ( ,  2 sin cosm m#
9

= &
/

( (
, 

 

in which (  denotes a determination of the radical. 
 If we let [W0] denote, for the moment, the function of '1, '2, and m, (, /, 0, r1, r2, 

, ,! !!7 7 7 so obtained then we have the relations: 
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To abbreviate the notation, we set: 
 

1 1 1 2a! ! ! ! !! != + +3 75 7 5 ,  2 2 1 2a! ! ! ! != & &3 75 75 , 
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1 1 1 2b! ! ! ! !! != + +4 76 7 6 , 2 2 1 2b! ! ! ! != & &4 76 76 . 

 
We have the relations: 
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from which we deduce the following expressions for the derivatives of (W090): 
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which permits us to calculate the different combinations formed from the derivatives of 
(W090) in terms .,,, 2211 baba !!!!   We thus obtain: 
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from which one deduces: 
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in such a way that if we denote the function [W0] by W0 then the ten auxiliary functions 
other than 1 2,C C! !  are defined by the following nine formulas: 
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Define the direction cosines , ,) ) )! !!  of the normal Mz! to (M) by the formulas: 
 

,
),(

),(1

21 ''
)

-

-

9
=

zy
 ,

),(

),(1

21 ''
)

-

-

9
=!

xz
 .

),(

),(1

21 ''
)

-

-

9
=!!

yx
 

 
 First, we have the following identity, in which we introduce the notations that we just 
now defined in place of the derivatives of W0: 
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In order to obtain this identity in the form that we used we have to use the relations (1): 
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whose solution gives the values of the CHRISTOFFEL symbols :1, :2, :3, <1, <2, <3, or, 

conversely, the values of the six derivatives of (, /, 0, and this permits us to eliminate 

these derivatives of (, /, 0.  We have also used the relations (2): 
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which permits us to eliminate the second derivatives of x, y, z, and gives rise to two series 
of formulas that are analogous to the ones obtained by replacing x, ) by ,y ) !  and ,z ) !!  

                                                

1 We continue to use the relations: ,21
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2 DARBOUX. – Leçons, T. III, no. 702, pp. 251. 
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with the direction cosines defined by formulas that are deduced from the formula for ) by 
circular permutation. 
 Consider the different expressions that are presented in the preceding calculations. 
 First, let: 
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on the other hand, one has: 
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From this, it results that: 
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Similarly, one has: 
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 On the other hand: 
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from which, it results that: 
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Furthermore, one has: 
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We modify the identity that we obtained, which gives us two analogous ones upon 
replacing x, ) with ,,) !y  and then by .,) !!z  
 We shall develop the parentheses in such a way as to show us the left-hand sides of 
the equations of statics of the deformable surface with the forces abstracted.  To that 
effect, we use the relations (1): 
 

1 1 2

x x)

' ' '

! !- & - & -
= +

- 9 - 9 -

/7 07 /7 (7
, 

2 1 2

x x)

' ' '

!! ! ! !!- & - & -
= +

- 9 - 9 -

/7 07 /7 (7
, 

 
which gives rise to two analogous systems that are obtained by replacing x, ) with ,,) !y  
and then by ,,) !!z  and which entails that: 
 

1 2
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x x
)

)
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2 3
2 2

2 1 2

x x
)

)
' ' '

- !! ! ! !! < +:& - & -9 = + &
- 9 - 9 - 9

/7 07 /7 (7
, 

i.e.: 

                                                
1 DARBOUX. – Leçons, T. III, no. 698, pp. 244-245. 
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 We thus arrive at the statement that if one denotes the left-hand sides of the equations 
of statics of the deformable surface by U2, U1, V, 2 then they express that we are led to 

consider reproducing all of the terms that are independent of the external forces and 
moments that figure in: 
 

1 2 2 1 2 1
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Changing x, ) into ,,) !y  and then into ,z ) !!  gives two analogous results. 

 On the other hand, 2 = 0, may be written: 
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One therefore sees that if one sets: 
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and two analogous formulas that are obtained by replacing +0, X0, x, ) with ,0, Y0, y, 

,) ! and then with -0, Z0, z, ,) !!  respectively (along with !+
-

-

1
0
'

x
L  and !+

-

-

1
0
'

x
L ), the 

equations of statics for a deformable surface may be summarized in the following relation 
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(1):  0 0 1 2 0 0 0 0 0 1 2( ) ( ) 0W d d x y z N m d d+ ' ' + + + + ' '!9 + 9 + + & =!! !! + , - , 

 
in which one considers only the terms that are ultimately presented under the double 
integral sign. 
 The preceding result may be generalized: suppose that one expresses "1, #1, "2, #2 as 
a function m, (, /, 0 by the formulas: 

 

1 cos( )m u" = +( ,  2 cos( ) sin( )m u m u"
9

= + & +
/

( (
 

1 sin( )m u# = +(   2 sin( ) cos( )m u m u#
9

= + + +
/

( (
, 

 
where u denotes an arbitrary function of just (, /, 0; the equation 2 = 0 may then be 

written: 
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Upon forming the combination: 
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and the two analogous ones that are obtained by replacing x, ) with y, ,) !  and then with 
z, ,) !! one finds three equations, the first of which is: 
 

2 2 2
0 0 0 0 0 0 0 0 0 0

0 02 2 22 2
1 1 2 2 1 2

2 2
1 21 1 2 2
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upon setting: 
 

                                                
1 This relation is analogous to the formula

1

0

( ) 0
t

t
T U dt+ !+ =! that TISSERAND gave for HAMILTON’s 

principle on pp. 4 of T. I in his Traité de Mécanique céleste. 
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These four equations may be summarized by: 
 

0
0 0 0 0 0 0 0 1 2{ ( ) ( )} 0

C
W x x x N m d d+ + + + + ' '!9 + 9 + + & =!! + , - , 

 
in which one considers only terms that are ultimately presented under the double integral. 
 The summary form that one is led to, and which will be treated according to the rules 
of the calculus of variations, is particularly convenient for performing changes of 
variables. 
 If we suppose that the expressions +0, ,0, -0, 0N !  have a particular form then we will 

have the extremal equations for a problem of the calculus of variations. 
 We consider the particular case (1) in which W090 does not depend on r1, r2 and 
depends on "1, "2, #1, #2 only by the intermediary of (, /, 0; this amounts to saying that 

the final expression for W090 does not depend on ,,,
21 '' -

-

-

- mm
m  and is a function of '1, 

'2, and the six functions: 
, , , , ,! !!( / 0 7 7 7  

 
of the first and second derivatives of x, y, z. 
 In addition, if we suppose that ;00 =!N if +0, ,0, -0 do not depend on m then we 

ultimately have three equations that relate to only x, y, z, and which may be summarized 
in the formula: 
 

0 0
0 0 1 2 0 0 0 0 1 2( ) ( ) 0

C C
W d d x y z d d+ ' ' + + + ' '9 + 9 + + =!! !! + , - . 

 
 In the particular case in which U denotes a function of '1, '2, and x, y, z, and 

                                                
1 What follows may also be applied to the case in which W090 is arbitrary; the essential hypothesis is the 
one made for $0, %0, &0.  One may also imagine the case in which W090 is of degree one with respect to 

r1, r2 .  The coefficients of the latter are constants or, more generally, independent of '2 and '1, 
respectively. 
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and two analogous formulas, and one obtains the three equations for the extremals 
relative to the integral: 
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all of which result from the fact that the , ,) ) )! !!  verify the following system, which 

defines a function F of :,,,
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 An interesting particular case of the preceding one is the case in which the expression 

,00

9

9 W
when one takes x and y as the variables, depends – other than on x, y – only on the 

derivatives of z with respect to x, y; it is easy to find the form of W0. 
 Observe that the two expressions: 
 

,222 dzdydx ++  ),( dzddyddxd ))) !!+!+&  
may be written: 
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from which it results, by virtue of the formulas: 
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that one has the identities: 
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From the theory of the invariants of quadratic forms, one has: 
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and, as a result, when we pass to absolute invariants, we get: 
 

2
2

2 2 2(1 )

rt s

p q

&
!! !& =

+ +
77 7 , 

2 2

2 2 3/ 2

2 (1 ) 2 (1 )

(1 )

q r pqs p t

p q

!!! !+ & + & + +
=

9 + +

07 (7 /7
. 

 
We recover two well-known expressions for the total curvature and the mean curvature.  
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 The case that we are dealing with then the one in which 
9

9 00W  is a function 5 of '1, 

'2, and the two expressions: 
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!! != &77 7
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,  

1 2

1 1 2!! !+ &
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9

07 (7 /7

8 8
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in which 81 and 82 denote the radii of the principal curvatures. 

 If we take x, y for variables then the formula that summarizes the equations of statics 
of the deformable surface may be written: 
 

2 2 2 20
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 The function under the !! in the second integral is: 
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and, as a result, since 5 does not refer to the derivatives of '1, '2 the equations of the 
problem become: 
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 In particular, suppose that 5 does not depend on '1, '2, and it depends uniquely on 
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+8 8
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; this gives the equations: 
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+0 = 0,  ,0 = 0. 

 
One may write: 
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 We may combine the two equations +0 = 0, ,0 = 0 with the preceding ones.  For 

example, we may introduce the combination 0 0 0) ) )! !!+ ++ , -  upon taking: 
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 If the givens in the equation that we write, or in other combinations, are suitable then 
'1, '2 might no longer appear and, by the preceding equation, one will thus have an 
equation for the surface.  The equations: 
 

9+0 = 0,  ,0 = 0, 

 
serve to define '1, '2 as a function of x, y (or inversely), and may be left aside if one 
abstracts from the natural state. 
 Consider the particular case in which the function 5 is a linear function with constant 

coefficients with respect to 

2

1 2

1, )
* '

++ (8 8
 and 

1 2

1

88
; i.e., a function of the form: 
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1 1
A B C
, )

+ +* '
++ (8 8 88

, 

 
in which A, B, C are constants.  The constant B disappears from the question according to 
a remark that was first made by POISSON in his memoir on elastic surfaces (1), and was 
then reprised and generalized by OLINDE RODRIGUES (2), and, in the case in which all 
of the external forces are null, we summarize the equation in question by: 

                                                
1 POISSON. – Mémoire sur les surfaces élastique, dated August 1, 1814 (Mémoires de la Classe des 
Sciences mathématiques et physiques, of l’Institut de France, year of 1812, second Part, pp. 167-225); an 
extract of this memoir first appeared in the Bulletin de la SociJté Philomatique, and then in the 
Correspondance sur l’Ecole Polytechnique, T. III, pp. 154-159, 1815. 
 
2 RODRIGUES. – Recherches sur la théorie analytique des lignes et des rayons de courbure des surfaces 
et sur la transformation d’une classe d’intégrales doubles, qui ont un rapport direct aves les formulas de 
cette theorie.  Correspondence to l’Ecole Polytechnique, T. III, pp. 162-182, 1815; in particular, see pp. 
172, et seq. 
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2

2 2 2 2
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+ (
!! !!8 8
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which is the conclusion that POISSON arrived at in his own researches. 
 In conclusion, observe that by the consideration of infinitely small deformations the 
general developments of this section easily lead to the theories of THOMSON and TAIT 
(1) and LORD RAYLEIGH (2); we leave to the reader the burden of taking this approach 
and studying the case with which one is concerned in detail (3). 
 
 
 47.  Dynamics of the deformable line. – The dynamics of the deformable line are 
attached to the preceding exposition.  To see this, it suffices to regard one of the 
parameters – '1, for example – as time t.  One will then have an action consisting of 
simultaneous deformation and movement.  Under the influence of the triad, the velocity 
of a point of the deformable line enters into W by way of the three arguments "2, #2, $2 , 
and one finds oneself in the presence of the notion of anisotropic kinematics that was 
already envisioned by RANKINE, and which has since been introduced into several 
theories of physics, such as the theories of double refraction and rotational polarization, 
for example. 
 Similarly, if W is independent of rotations and leads to null external moments then the 
argument of pure deformation 2 2 2

1 1 1" # %+ +  and the argument 2 2 2
2 2 2" # %+ +  are generally 

accompanied by the argument .212121 %%##"" ++   Such a type of argument is no longer 
new in mechanics and appears, notably, in the theory of forces at a distance, as we shall 
show later on. 
 When W does not contain the mixed argument 1 2 1 2 1 2" " ## % %+ +  it is necessary, in 

general, to consider the infinitesimal state of deformation and motion of the natural state 
in order to find oneself in the case of classical mechanics in which the action of 
deformation is completely separate from the kinematical action.  One thus obtains 
D’ALEMBERT’S principle upon supposing that the external force and moment are null, 
i.e., upon expressing that the deformable line is not subject to any action from the 
external world, and introducing, as a result, the fundamental notion of an isolated system, 
of which we spoke at the beginning of this note. 
 The dynamics of the deformable surface may be established in the same manner by 
means of the theory of the deformable medium of three dimensions, which we shall now 
discuss. 

                                                
1 THOMSON and TAIT. – Treatise, Part II, no. 644. 
 
2 LORD RAYLEIGH. – Theory of Sound, vol. I, 2nd ed., 1894, pp. 352. 
 
3 It amounts to the infinitely small deformation of an originally planar surface. 
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 48.  Deformable medium.  Natural state and deformed state. – The theories of the 
deformable line and the deformable surface that we discussed lead, in a very natural 
manner, to envisioning a more general deformable medium than the one that is habitually 
considered in the theory of elasticity, and seems, to us, to achieve the goal that was 
pursued by LORD KELVIN and HELMHOLTZ in the theories of light and magnetism. 
 Consider a space (M0) that is described by a point M0, whose coordinates x0, y0, z0 
with respect to three fixed rectangular axes Ox, Oy, Oz.  We may regard these coordinates 
as functions of the three parameters !1, !2, !3, which are chosen in an arbitrary manner; 
however, to simplify, we suppose that these coordinates are taken to be independent 
variables.  Affix a tri-rectangular triad to each point M0 of the space (M0), whose axes 

0 0 0 0 0 0, ,M x M y M z" " "  have direction cosines ;,,;,, 000000 ###$$$ """"""
0 0 0, ,% % %" ""  with respect to 

the axes Ox, Oy, Oz, and which are functions of the independent variables x0, y0, z0 . 
 The continuous three-dimensional set of all such triads 0 0 0 0M x y z" " "  will be what we call 

a deformable medium. 
 Give a displacement M0M to a point M0; let x, y, z be the coordinates of the point M 
with respect to the fixed triad Oxyz.  In addition, endow the triad 0 0 0 0M x y z" " "  with a 

rotation that will ultimately bring its axes into agreement with those of a triad Mx y z" " "  
that we affix to the point M.  We define that rotation by giving the direction cosines 

;,,;,, ###$$$ """""" , ,% % %" ""  of the axes , ,Mx My Mz" " "  with respect to the fixed axes. 
 The continuous three-dimensional set of all such triads Mx y z" " "  will be what we call 
the deformed state of the deformable medium under consideration, which will be called 
the natural state in its original state. 
 
 
 49.  Kinematical elements that relate to the states of the deformable medium. – 
For ease of notation, we sometimes introduce the letters !1, !2, !3, instead of x0, y0, z0 in 
the sequel, as expressed by the formulas: 
 

x0 = !1,  y0 = !2,  z0 = !2, 
 
so it will suffice to keep them in mind. 
 Denote the components of the velocity of the origin M0 of the axes 0 0 0 0 0 0, ,M x M y M z" " "  

with respect to these axes by (0) (0) (0), ,i i i& ' (  when !i alone varies and plays the role of 

time.  Likewise, let (0) (0) (0), ,i i ip q r  be the projections on these axes of the instantaneous 

rotation of the triad 0 0 0 0M x y z" " "  relative to the parameter !i .  We denote the analogous 

quantities for the triad Mx y z" " "  by &i, 'i, )i, and pi, qi, ri when they, like the triad 

,0000 zyxM """  are referred to the fixed triad Oxyz. 

 The elements that we introduced before are calculated in the usual fashion; in 
particular, one has: 
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The linear element of the deformed medium (M), when referred to the independent 
variables x0, y0, z0, is defined by the formula: 
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in which ,1, ,2, ,3, %1, %2, %3 are calculated by the following double formulas: 
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 Denote the projections of the segment OM onto the axes , ,Mx My Mz" " "  by ,,, zyx """  in 
such a way that the coordinates of the fixed point O with respect to these axes become 

.,, zyx "+"+"+   We have the following well-known formulas: 
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which gives new expressions for &i, 'i, )i . 
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 50.  Expressions for the variations of the velocities of translation and rotation of 
the triad relative to the deformed state. – Suppose that one endows each of the triads 
of the deformed state with an infinitely small displacement that may vary in a continuous 
fashion with these triads.  Denote the variations of x, y, z; ;,, zyx """ , , ,$ $ %" ""! by -x, -y, 

-z; ;,, zyx """ --- ,,,, %-$--$ """!  respectively.  The variations , , ,-$ -$ -%" ""!  are 
expressed by formulas such as the following: 
  
(47)     ,JK "+"= %-#--$  
 
by means of the three auxiliary functions ,,, KJI """ ---  which are the components of well-
known instantaneous rotation that is attached to the infinitely small displacement in 
question with respect to .,, zMyMxM """   The variations -x, -y, -z are the projections of the 
infinitely small displacement  felt by the point M onto Ox, Oy, Oz.  The 
projections , ,x y z- - -" " " of this displacement onto , ,Mx My Mz" " "  are deduced immediately 
and have the values: 
 
(48) ,KyJzxx ""+""+"=" ----   ,IzKxyy ""+""+"=" ----   .JxIyzz ""+""+"=" ----  
 
 We propose to determine the variations -&i, -'i, -)i, -pi, -qi, -ri felt by 
&i, 'i, )i, pi, qi, ri, respectively.  From the formulas (44), we have: 
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 Replace -$ by its value ,JK "+" %-#-  and , ,-$ -%" ""!  with their analogous values; we 
obtain: 
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 Similarly, formulas (46) give us three formulas, the first of which is: 
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 Replace -pi, -qi, -ri with their values as given by formulas (49);  we obtain: 
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in which we have introduced the three symbols , ,x y z- - -" " "  defined by formulas (48). 
 
 
 51.  Euclidian action of deformation on a deformable medium. – We preserve the 
notations of sec. 49 and introduce the known quantity, ., which is defined by the 
formula: 
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and whose square, which is formed by the rule for multiplication of determinants, is 
expressed as a function of ,1, ,2, ,3, %1, %2, %3 by the formula: 
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 Consider a function W of two infinitely close positions of the triad ,zyxM """  i.e., a 

function from x0, y0, z0 to x, y, z, $, #, %, ,,,,,, %#$%#$ """""""""  and their first derivatives 
with respect to x0, y0, z0.  We propose to determine the form that W must take in order for 
the integral: 

222 ,000 dzdyWdx  

 
when taken over an arbitrary portion of the space (M0) to have null variation when one 
subjects the set of all triads of the deformable medium, taken in its deformed state, to the 
same arbitrary infinitesimal transformation of the group of Euclidian displacements. 
 By definition, this amounts to determining W in such a way that one has: 
 

-W = 0, 
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when, on the one hand, the origin M of the triad Mx y z" " "  is subjected to an infinitely small 

displacement whose projections -x, -y, -z on the axes Ox, Oy, Oz are: 
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where a1, a2, a3, /1, /2, /3 are six arbitrary constants and -t is an infinitely small quantity 
that is independent of x0, y0, z0, and when, on the other hand, the triad Mx y z" " "  is 
subjected to an infinitely small rotation whose components along the axes Ox, Oy, Oz are: 
 

/1-t,  /2-t, /3-t. 
 
 Observe that in the present case the variations -&i, -'i, -)i; -pi, -qi, -ri of the eighteen 
expressions &i, 'i, )i; pi, qi, ri are null, since this results from the well-known theory of 
moving frames, and as we may, moreover, verify immediately by means of formulas (49) 
and (50) by replacing , , ; , ,x y z I J K- - - - - -" " " " " "  by their actual values.  It results from 
this that we obtain a solution to the question by taking W to be an arbitrary function of x0, 
y0, z0, and the eighteen expressions &i, 'i, )i; pi, qi, ri.  We shall now show that we thus 
obtain the general solution (1) of a problem that we now pose. 
 To that effect, we remark that the relations (44) permit us to express the first 
derivatives of the nine cosines , , ,$ $ %" ""!  with respect to x0, y0, z0 by means of these 

cosines and pi, qi, ri using well-known formulas.  On the other hand, formulas (43) permit 
us to think of expressing the nine cosines , , ,$ $ %" ""!  by means of &1, '1, )1, and the first 

derivatives of x, y, z with respect to x0, or by means of &2, '2, )2, and the first derivatives 
of x, y, z with respect to y0, or, finally, by means of &3, '3, )3, and the first derivatives of 
x, y, z with respect to z0.  Furthermore, it is useless in this case for us to make any 
hypothesis on the mode of solution because it is clear that we will not obtain a more 
general form than the one that we started with by supposing that the function W that we 
seek is an arbitrary function of x0, y0, z0 and x, y, z, and their first derivatives with respect 
to x0, y0, z0, and of &i, 'i, )i; pi, qi, ri, which we indicate by using the notations !1 = x0, !2 
= y0, !3 = z0, by writing: 
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Since the variations -&i, -'i, -)i; -pi, -qi, -ri are non-null in the actual case one remarks 
that there is an instant, which we shall ultimately describe, for which we have, by virtue 
of formulas (51), the new form for W for any a1, a2, a3, /1, /2, /3 : 

                                                
1 In all of what follows we suppose that the medium is susceptible to all possible deformations, so that, as a 
result the deformed state may be taken absolutely arbitrarily.  
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 We replace -x, -y, -z  with their values (51) and , ,
i i i

x y z
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! ! !

* * *

* * *
 with the values 

that one deduces by differentiation.  We set the coefficients of a1, a2, a3, /1, /2, /3; we 
obtain the following six conditions: 
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which are identities, if we assume that the expressions that figure in W have been reduced 
to the smallest number. 
 The first three show us, as one may easily foresee, that W is independent of x, y, z.  
The last three express that W depends on the first derivatives of x, y, z with respect to x0, 
y0, z0 only by the intermediary of the quantities ,1, ,2, ,3, %1, %2, %3 that were defined by 
the formulas (45).  Finally, we see that the desired function W has the remarkable form: 
 

W(x0, y0, z0, &i, 'i, )i; pi, qi, ri), 
 
which is analogous to the one that we encountered before for the deformable line and the 
deformable surface. 
 If we multiply W by the volume element dx0dy0dz0 of the space (M0) then the product 
Wdx0dy0dz0 so obtained is an invariant in the group of Euclidian displacements that is 
analogous to the volume element of the medium (M). 
 Just as the common value of the integrals: 
 

222 .
0

,|| 000S
dzdydx   222S dxdydz,  

 
taken over the interior of a surface S0 of the medium (M0) and the interior of the 
corresponding surface S of the medium (M), respectively, determines the volume of the 
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domain bounded by the surface S.  Likewise, if we associate, in the same spirit, the notion 
of the action for the passage from the natural state (M0) to the deformed state (M) then we 
add the function W to the elements in the definition of a deformable medium, and we say 
that the integral: 

222
0

,000S
dzdyWdx  

 
is the action of deformation for the interior of the surface S in the deformed medium. 
 On the other hand, we say that W is the density of the action of deformation at a point 
of the deformed medium when referred to the unit of volume of the undeformed medium, 

and that 
|| .

W
is the density of that action at a point when referred to the unit of volume of 

the deformed medium. 
 
 
 52.  The external force and moment.  The external moment and effort.  The 
effort and moment of deformation at a point of the deformed medium. – Consider an 
arbitrary variation of the action of deformation of the interior of a surface S in the 
medium (M), namely: 
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 By virtue of formulas (49) and (50) of sec. 50, we may write: 
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 We apply the GREEN formula to the terms that explicitly refer to the derivative with 
respect to one of the variables !1, !2, !3.  If we let l0, m0, n0 denote the direction cosines 
with respect to Ox, Oy, Oz of the exterior normal to the surface S0 that bounds the 
medium before deformation and the area element of that surface by d00 then this gives: 



THE DEFORMABLE MEDIUM 145 

x
W

n
W

m
W

ldzdyWdx
S S

-
&&&

- "

"
#
$

,,
-

.
//
0

1

*

*
+

*

*
+

*

*
=222 22

0 0
3

0
2

0
1

0000  

 z
W

n
W

m
W

ly
W

n
W

m
W

l -
(((

-
'''

",,
-

.
//
0

1

*

*
+

*

*
+

*

*
+",,

-

.
//
0

1

*

*
+

*

*
+

*

*
+

3
0

2
0

1
0

3
0

2
0

1
0  

 

 J
q

W
n

q

W
m

q

W
lI

p

W
n

p

W
m

p

W
l ",,

-

.
//
0

1

*

*
+

*

*
+

*

*
+",,

-

.
//
0

1

*

*
+

*

*
+

*

*
+ --

3
0

2
0

1
0

3
0

2
0

1
0  

 0
3

0
2

0
1

0 0- dK
r

W
n

r

W
m

r

W
l

3
4
5
",,

-

.
//
0

1

*

*
+

*

*
+

*

*
+  

x
W

r
W

q
W

S
i

i
i

i
ii

-
'(&!

"
!"

!
#
$

&
'

(
)
*

+
,,
-

.
//
0

1

*

*
+

*

*
+

*

*

*

*
+ 222 %

0

  

y
W

p
W

r
W

i
i

i
i

ii

-
(&'!

"&
'

(
)
*

+
,,
-

.
//
0

1

*

*
+

*

*
+

*

*

*

*
+ %  

z
W

q
W

p
W

i
i

i
i

ii

-
&'(!

"&
'

(
)
*

+
,,
-

.
//
0

1

*

*
+

*

*
+

*

*

*

*
+ %  

I
WW

q

W
r

r

W
q

p

W

i
i

i
i

i
i

i
i

ii

"&
'

(
)
*

+
,,
-

.
//
0

1

*

*
+

*

*
+

*

*
+

*

*
+

*

*

*

*
+ % -

'
(

(
'

!
 

J
WW

r

W
p

p

W
r

q

W

i
i

i
i

i
i

i
i

ii

"&
'

(
)
*

+
,,
-

.
//
0

1

*

*
+

*

*
+

*

*
+

*

*
+

*

*

*

*
+ % -

(
&

&
(

!
 

.000 dzdydxK
WW

p

W
q

q

W
p

r

W

i
i

i
i

i
i

i
i

ii !3

!
4
5
"&

'

(
)
*

+
,,
-

.
//
0

1

*

*
+

*

*
+

*

*
+

*

*
+

*

*

*

*
+ % -

&
'

'
&

!
 

 
Set: 

,
3

0
2

0
1

00
&&& *

*
+

*

*
+

*

*
="

W
n

W
m

W
lF  ,

3
0

2
0

1
00 p

W
n

p

W
m

p

W
lI

*

*
+

*

*
+

*

*
="  

,
3

0
2

0
1

00
''' *

*
+

*

*
+

*

*
="

W
n

W
m

W
lG  ,

3
0

2
0

1
00 q

W
n

q

W
m

q

W
lJ

*

*
+

*

*
+

*

*
="  

,
3

0
2

0
1

00
((( *

*
+

*

*
+

*

*
="

W
n

W
m

W
lH  ,

3
0

2
0

1
00 r

W
n

r

W
m

r

W
lK

*

*
+

*

*
+

*

*
="  

,0 % &
'

(
)
*

+

*

*
+

*

*
+

*

*

*

*
="

i
i

i
i

ii

W
r

W
q

W
X

&(&!
 

,0 % &
'

(
)
*

+

*

*
+

*

*
+

*

*

*

*
="

i
i

i
i

ii

W
p

W
r

W
Y

(&'!
 



146 THEORY OF DEFORMABLE MEDIA 

,0 % &
'

(
)
*

+

*

*
+

*

*
+

*

*

*

*
="

i
i

i
i

ii

W
q

W
p

W
Z

&'(!
 

,0 % &
'

(
)
*

+

*

*
+

*

*
+

*

*
+

*

*
+

*

*

*

*
="

i
i

i
i

i
i

i
i

ii

WW

q

W
r

r

W
q

p

W
L

'
(

(
'

!
 

,0 % &
'

(
)
*

+

*

*
+

*

*
+

*

*
+

*

*
+

*

*

*

*
="

i
i

i
i

i
i

i
i

ii

WW

r

W
p

p

W
r

q

W
M

(
&

&
(

!
 

,0 % &
'

(
)
*

+

*

*
+

*

*
+

*

*
+

*

*
+

*

*

*

*
="

i
i

i
i

i
i

i
i

ii

WW

p

W
q

q

W
p

r

W
N

&
'

'
&

!
 

 
we have: 
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0------- dKKJJIIzHyGxFdzdyWdx
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 If we first direct our attention to the triple integral that figures in the expression 

for
0

0 0 0S
Wdx dy dz- 222 then we call the segments that have their origin at M and whose 

projections onto the axes , ,Mx My Mz" " "  are 0 0 0, ,X Y Z" " "  and ,,, 000 NML """  respectively, the 

external force and external moment at the point M referred to the unit of volume of the 
undeformed medium. 
 Next, directing our attention to the surface integral that figures in: 
 

,
0

000222S dzdyWdx-  

 
we call the segments that issue from the point M and have projections 0 0 0, ,F G H" " "+ + +  

and 0 0 0, ,I J K" " "+ + + on the axes ,,, zMyMxM """ respectively, the external effort and external 

moment of deformation at the point M of the surface S0 that bounds the medium referred 
to the unit of area of the surface S0.  At a definite point M of (S) these last six quantities 
depend only on the direction of the exterior normal to the surface (S).  They remain 
invariant if the region in question is varied and the direction of the exterior normal does 
not change, but they change sign if this direction is replaced by the opposite direction.   
 Suppose that one traces a surface (1) in the interior of the deformed medium that is 
bounded by the surface (S) in such a way that (1), together with a portion of surface (S), 
uniquely circumscribes a subset (A) of the medium, and let (B) denote the rest of the 
medium outside of the subset (A).  Let (10) be the surface of (M0) that corresponds to the 
surface (S) of (M), and let (A0) and (B0) be the regions of (M0) that correspond to the 
regions (A) and (B) of (M).  Mentally separate the two subsets (A) and (B).  One may 
regard the two segments ),,( 000 HGF "+"+"+ and 0 0 0( , , )I J K" " "+ + +  that are determined by the 

point M and the direction of the normal to (10) that points towards the exterior of (A0) as 
the external effort and moment of deformation at the point M of the frontier (1) of the 
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region (A).  Similarly, one may regard the two segments ),,( 000 HGF """ and 0 0 0( , , )I J K" " "  as 

the external effort and moment of deformation at the point M of the frontier (1) of the 
region (B).  By reason of that remark, we say that 0 0 0, ,F G H" " "+ + +  and 0 0 0, ,I J K" " "+ + +  are 

the components with respect to the axes , ,Mx My Mz" " "  of the effort and moment of 
deformation that are exerted at M on the portion (A) of the medium (M), and that 

0 0 0, ,F G H" " "  and 0 0 0, ,I J K" " "  are the components with respect to the axes , ,Mx My Mz" " "of the 

effort and moment of deformation that are exerted at M on the portion (B) of the medium 
(M). 
 The observation made at the end of secs. 9 and 34 on the subject of replacing the triad 
Mx y z" " "  by a triad that is invariantly related to it may be repeated here without 
modification. 
 
 
 53.  Various ways of specifying the effort and moment of deformation. – Set: 
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, ,i i iA B C" " "  and , ,i i iP Q R" " "  represent the projections onto , ,Mx My Mz" " "  of the effort and 

moment of deformation, respectively, that are exerted at the point M on a surface that has 
an interior normal at the point M0 that is parallel to the coordinate axis Ox, Oy, Oz that 
corresponds to the index i before deformation.  Indeed, it suffices to recall that one has 
already agreed to replace the letters x0, y0, z0, which correspond, by this notation, to the 
indices 1, 2, 3, respectively, with !1, !2, !3.  If you recall, that effort and moment of 
deformation are referred to the unit of area of the undeformed surface. 
 The new efforts and moments of deformation that we define are related to the 
elements introduced in the preceding section by the following relations: 
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 We propose to transform these relations into ones that are independent of the values 
of the quantities that we calculated by means of W that figure in them.  Indeed, these 
relations pertain to the segments that are attached to the point M to which we gave the 
names.  Instead of defining these segments by their projections on ,,, zMyMxM """ we may 
define them by their projections on the other axes; the latter projections will be coupled 
by relations that are transforms of the preceding ones. 
 Moreover, the transformed relations are obtained immediately if one remarks that the 
original formulas have simple and immediate interpretations (1) by the adjunction to these 
moving axes of axes that are parallel to them at the point O. 
 
 1.  We confine ourselves to the consideration of fixed axes Ox, Oy, Oz.  Denote the 
projections of the external force and external moment at an arbitrary point M of the 
deformed medium onto these axes by X0, Y0, Z0, and L0, M0, N0, respectively, and the 
projections of effort and moment of deformation on a surface whose interior normal has 
the direction cosines l0, m0, n0 before deformation by F0, G0, H0 and I0, J0, K0, 
respectively.  The projections of the effort ( , , )i i iA B C" " "  and the moment of deformation 

( , , )i i iP Q R" " "  are denoted by Ai, Bi, Ci and Pi, Qi, Ri, respectively.  The transforms of the 

preceding relations are obviously: 
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1 An interesting interpretation to note is the analogy with the one given by P. SAINT-GUILHEM in the 
context of the dynamics of triads. 
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relations that are the three-dimensional generalizations of the two-dimensional equations 
of LORD KELVIN and TAIT. 
 
 2.  Now observe that we may express the nine cosines , , ,$ $ %" ""!  by means of three 

auxiliary functions; let 21, 22, 23 be three such auxiliary functions.  Set: 
 

% % "+"+"=+= ,332211 232323%##% ddddd  

% % "+"+"=+= ,332211 242424$%%$ ddddd  

% % "+"+"=+= .332211 202020#$$# ddddd  

 
The functions , ,i i i3 4 0" " "  of 21, 22, 23 so defined satisfy the relations: 

 

  ,0=""+""+
*

"*
+

*

"*
ijji

j

i

i

j
0404

2

3

2

3
 

  ,0=""+""+
*

"*
+

*

"*
ijji

j

i

i

j
3030

2

4

2

4
 (i, j) = 1, 2, 3. 

  ,0=""+""+
*

"*
+

*

"*
iiii

j

i

i

j
4343

2

0

2

0
 

and one has: 
 

,3
3

2
2

1
1

iii
ip

!

2
3

!

2
3

!

2
3

*

*
"+

*

*
"+

*

*
"=  

,3
3

2
2

1
1

iii
iq

!

2
4

!

2
4

!

2
4

*

*
"+

*

*
"+

*

*
"=  (or x0 = !1, y0 = !2, z0 = !3)  

.3
3

2
2

1
1

iii
ir

!

2
0

!

2
0

!

2
0

*

*
"+

*

*
"+

*

*
"=  

 
 Let 3i, 4i, 0i denote the projections onto the fixed axes Ox, Oy, Oz of the segment 
whose projections onto the axes , ,Mx My Mz" " "  are ;,, iii 043 """  we have: 

 

% % ++="""+=""" ,332211 232323$$$$ ddddd  

% % ++=""+="" ,332211 242424$$$$ ddddd  

% % ++="+=" ,332211 202020$$$$ ddddd  
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by virtue of which (1), the new functions 3i, 4i, 0i of 21, 22, 23 satisfy the relations: 
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 Again, we make the remark, which will be of use later on, that if one lets 
-21, -22, -23 denote the variations of 21, 22, 23 that correspond to the variations 

, , ,-$ -$ -%" ""!  of , , ,$ $ %" ""!  then one will have: 
 
  ,332211 -23-23-23- "+"+"="I  

  ,332211 -24-24-24- "+"+"="J  

  ,332211 -20-20-20- "+"+"="K  

  ,332211 -23-23-23%-#-$-- ++="+"+"= KJII  

  ,332211 -24-24-24-%-#-$- ++=""+""+""= KJIJ  

,332211 -20-20-20-%-#-$- ++="""+"""+"""= KJIK  

 
in which -I, -J, -K are the projections onto the fixed axes of the segment whose 
projections onto , ,Mx My Mz" " "are .,, KJI """ ---  
 Now set: 
  0 1 0 1 0 1 0 1 0 1 0 1 0I J K I J K3 4 0 3 4 0" " " " " "= + + = + +! , 

  0 2 0 2 0 2 0 2 0 2 0 2 0I J K I J K3 4 0 3 4 0" " " " " "= + + = + +" , 

  0 3 0 3 0 3 0 3 0 3 0 3 0I J K I J K3 4 0 3 4 0" " " " " "= + + = + +# , 
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In addition, we introduce the following notations: 
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1 These formulas may serve to define the functions 3i, 4i, 0i, directly, and the substitution is defined by: 
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then, instead of the latter system in which either , ,i i iP Q R" " "or Pi, Qi, Ri figure, we have the 

following: 
 

0 1 1 1 1 1 1
i i i i

i i i i i i i i ii
i i i i

P q r Q r p R p q
3 4 0

0 4 3 0 4 3
! ! ! !

+ 1 . 1 . 1 ." " "*5 * * *
" " " " " " " " "= + + + + + + + + +) / , / , / ,

* * * *0 - 0 - 0 -*
%$  

 ],)()()( 111111 iiiiiiiii CBA &4'3(3&0'0(4 "+""+"+""+"+""+  
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that result from the defining relations of the functions ,,, iii 043 """  and the nine identities 

that they verify, then one may give the preceding system the new form: 
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with two analogous equations. 
 
 3.  The preceding equations that we introduced also constitute the generalization of 
the ones we developed in an earlier work (1).  We may transform them in such a way as to 
obtain the generalization of the well-known equations of the theory of elasticity that 
relate to effort.  To that effect, it will suffice to reproduce the method we already 
employed in the work that we mentioned. 
 To abbreviate the writing, let 0 0 0, ," " "' ( )  and 0 0 0, ," " "$ % &  denote + for the moment – 

the left-hand sides of the transformation relations, which refer to X0, Y0, Z0, L0, M0, N0, 
respectively, and observe that one may summarize the twelve relations that we 
established by the following: 

                                                
1 E. and F. COSSERAT. – Premier mémoire sur la théorie de l’élasticité; Annales de la Faculté des 
sciences de Toulouse (1), 10, pp. I1 – I116, 1896. 
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0 1 0 2 0 3 0 1 0 2 0 3 0 0 0( ) dx dy dz2 2 2 µ µ µ" " " " " "+ + + + +222 ' ( ) $ % &  
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in which 21, 22, 23, µ1, µ2, µ3 are arbitrary functions and the integrals are taken over the 
surface S0 of the medium (M0) and the domain bounded by it.  If we apply GREEN’S 
formula then the relation that we wrote becomes the following one: 
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 We seek the transform of this latter relation when one takes the functions x, y, z of x0, 
y0, z0 for the new variables.  If one lets 7 denote an arbitrary function of x0, y0, z0 that 
becomes a function of x, y, z then the elementary formulas for the change of variables are: 
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 Apply these formulas to the functions 21, 22, 23, µ1, µ2, µ3.  With S always denoting 
the surface of the medium (M) that corresponds to the surface S0 of (M0), we further 
denote the projections onto Ox, Oy, Oz of the external force and external moment applied 
to the point M by X, Y, Z, L, M, N, which are referred to the unit of volume of the 
deformed medium (M), and the projection onto Ox, Oy, Oz of the effort and the moment 
of deformation that are exerted at the point M of S by F, G, H, I, J, K referred to the unit 
of area on S.  Finally, introduce the eighteen new auxiliary functions pxx, pyx, pzx, pxy, pyy, 
pzy, pxz, pyz, pzz, qxx, qyx, qzx, qxy, qyy, qzy, qxz, qyz, qzz by the formulas: 
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and the analogous ones that are obtained by replacing: 
 
   A1, A2, A3, pxx, pyx, pzx, P1, P2, P3, qxx, qyx, qzx 
with: 
   B1, B2, B3, pxy, pyy, pzz, Q1, Q2, Q3, qxy, qyy, qzy, 
and then by: 
   C1, C2, C3, pxz, pyz, pzz, R1, R2, R3, qxz, qyz, qzz, 
respectively. 
 We obtain the transformed relation: 
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in which the integrals are taken over the surface S of the medium (M), and the domain 
bounded by it, with d0 designating the area element of S. 
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 Once more, apply GREEN’S formula to the terms that refer to the derivatives of 
21, 22, 23, µ1, µ2, µ3 with respect to x, y, z, and let l, m, n denote the direction cosines of 
the exterior normal to the surface S with respect to the fixed axes.  Since 21, 22, 23, 
µ1, µ2, µ3 are arbitrary, they become: 
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 The significance of the eighteen new auxiliary functions pxx, …, qxx, … results 
immediately from the relations that we just found.  Indeed, it is clear that the coefficients 
pxx, pxy, pxz of l in the expressions for F, G, H represent the projections onto Ox, Oy, Oz of 
the effort that is exerted at the point M on the surface whose exterior normal is parallel to 
Ox, and that the coefficients qxx, qxy, qxz of l in the expressions for I, J, K are the 
projections onto Ox, Oy, Oz of the moment of deformation at M relative to the same 
surface.  The coefficients of m and of n give rise to an analogous interpretation in regard 
to surfaces whose interior normals are parallel to Oy and Oz. 
 The auxiliary functions that we just introduced and the equations that relate them do 
not appear to have been envisioned in a form that was that general up till now;  to our 
knowledge, they have been considered only in the particular case in which the nine 
quantities qxx, …, qzz are null, and the first work to treat that question seems to be that of 
VOIGT (1).  

                                                
1 WALDEMAR VOIGT. – Theoretische Studien über die Elasticitätsverhältnisse der Krystalle, I, II, 
Abhandlungen der königlichen Gesellschaft der Wissenschaften zu Göttingen, Bd. 34, 1887.  The first 
section, entitled: Ableitung der Grundgleichungen aus der Annahme mit Polarität  begabter Moleküle, has 
49 pages (3-52), the second one, entitled: Untersuchung des elastische Verhaltens eines Cylinders aus 
krystallinscher Substanz, auf dessen Mantelfläche keine Kräfte wirken, wenn in seinem Innern wirkenden 
Spannungen längs der Cylinderaxe constant sind, is 48 pages (53-100).  One may likewise consult the 
work of VOIGT: L’État actuel de nos connaissances sur l’élasticité des cristaux (Report presented at the 
International Congress of Physics convened in Paris in 1900, T. I, pp. 277-347), in which he alludes to 
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 In conclusion, we observe that if one performs a change of variables in the six 
equations that involve X, Y, Z, F, G, H in such a fashion as to introduce the original 
variables x0, y0, z0 then one immediately finds equations whose first three constitute the 
generalization of the equations that were established by BOUSSINESQ. 
 
 
 54.  External virtual work.  Theorem analogous to those of Varignon and Saint-

Guilhem.  Remarks on the auxiliary functions that were introduced in the preceding 

section. –We give the name of external virtual work on the deformed medium (M) for an 
arbitrary virtual deformation, to the expression: 
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 We refer to the notations of sec. 50, and let -I, -J, -K denote the projections onto the 
fixed axes of the segment whose projections onto , ,Mx My Mz" " "  are ,,, KJI """ ---  in such 
a way that one has, for example: 
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upon always supposing that the axes in question have the same orientation. 
 This being the case, suppose as in sec. 53 that one gives the arbitrary functions 21, 
22, 23, µ1, µ2, µ3 the significance defined from the formulas: 
 

21 = -x,  22 = -y,  23 = -z, µ1 = -I,  µ2 = -J,  µ3 = -K. 
 
We then see that the previously-obtained relations between the auxiliary functions that 
we introduced serves only to express the following condition: 
 When any of the virtual displacements in sec. 50 are given to the deformed medium 
the external virtual work -*e is given, either by the relation: 
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POISSON, Mém. de l’Acad., T. XVIII, pp. 3, 1842 (see pp. 289).  Also consult LARMOR, On the 
propagation of a disturbance in a gyrostatically loaded medium (Proc. Lond. Math. Soc., Nov., 1891); 
LOVE, Treatise on the Mathematical Theory of Elasticity (Camb. University Press, 1st ed., 1892, 2nd ed., 
1906); COMBEBIAC, Sur les équations générales de l’élasticité, Bull. De la Soc. Math. De France, T. 
XXX, pp. 108-110, and pp. 242-247, 1902. 
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where the integrals are taken over the deformed medium, or by the relation: 
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in which the integrals are taken over the undeformed medium, because the formula we 
gave above: 
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to serve as the definition of external virtual work may also be written: 
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by virtue of the significance of X0, Y0, …, N0, F0, G0, …, K0, and likewise: 
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by virtue of the significance of X, Y, …, N, F, G, …, K. 
 Start with the formula: 
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which is applied to an arbitrary portion of a medium that is bounded by a surface S0. 
 Since -W must be identically null, by virtue of the invariance of W under the group of 
Euclidean displacements with the variations given by formulas (51), namely: 
 

-x = (a1 + /2z – /3y)dt, 
-y = (a2 + /3z – /1y)dt, 
-z = (a3 + /1z – /2y)dt, 

and -I, -J, -K by: 
-I = /1-t,  -J = /2-t, -K= /3-t, 

 
and from this, and the expressions for -*e on which we must insist (1), we conclude that 

one has: 
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and four analogous equations.  These six formulas are easily deduced from the ones that 
one ordinarily writes by means of the principle of solidification. 
 One may imagine that the frontier S is variable in these formulas. 
 The auxiliary functions that were introduced in the preceding paragraphs are not the 
only ones that may be envisioned; if we confine ourselves to their consideration then we 
simply add a few obvious remarks. 
 By definition, we have introduced two systems of efforts and moments of 
deformation relative to a point M of the deformed medium.  The first are the ones that are 
exerted on surfaces that have their normal parallel to one of the fixed axes Ox, Oy, Oz 
before deformation.  The second are the ones that are exerted on surfaces that have their 
normal parallel to one of the same fixed axes Ox, Oy, Oz. 
 The formulas that we have indicated give the latter elements by means of the former; 
however, by an immediate solution, which we shall not stop to perform, one obtains, 
conversely, the former elements in terms of the latter. 
 Now suppose that we have introduced the function W.  The former efforts and 
moments of deformation have the expressions we already gave, and one immediately 
deduces their expressions in terms of the latter from this.  Nevertheless, in these 
calculations one may specify the functions that one must introduce according to the 

                                                
1 The passage from elements referred to the unit of volume of the undeformed medium and area of the 
frontier S0 to the elements referred to unit of volume for the deformed medium and the area of the frontier S 
sufficiently immediate that it suffices to confine ourselves to the former as we have done, for example. 
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nature of the problem, and which will be, for example, x, y, z or ,,, zyx """  and three 

parameters (1) 21, 22, 23 by means of which one expresses .,,, %$$ """!   

 If one introduces x, y, z, 21, 22, 23, and if one continues to let W denote the function 
that depends on x0, y0, z0, the first derivatives of x, y, z with respect to x0, y0, z0 on 
21, 22, 23, and their first derivatives with respect to x0, y0, z0, and is obtained by replacing 
the different quantities &i, 'i, )i, pi, qi, ri in the function W(x0, y0, z0, &i, 'i, )i, pi, qi, ri,) 
with their values as given by formulas (43) and (44), then one will have: 
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 55.  Notion of energy of deformation.  Theorem that leads to that of Clapeyron 

as a particular case. +  Envision the two states, (M0) and (M) of the deformable medium 
bounded by the surfaces (S0) and (S), and consider an arbitrary sequence of states that 
start with (M0) and end with (M).  To that end, it suffices to consider functions x, y, z, 

, , ,$ $ %" ""!  of x0, y0, z0, and one variable h that reduce to x0, y0, z0, ,,,, 000 %$$ """ !  

respectively, when h is zero, and reduce to the values x, y, z, ,,,, %$$ """! respectively, for 
non-zero h relative to (M). 
 If we make the parameter h vary in a continuous fashion from 0 to h then we obtain a 
continuous deformation that permits us to pass from the state (M0) to the state (M).  For 
this continuous deformation, consider the total work performed by the forces and external 
moments that are applied to the different volume elements of the medium and by the 
efforts and moments of deformation that are applied to the surface elements of the 
frontier.  To obtain this total work, it suffices to integrate the differential so obtained 
from 0 to h, starting with one of the expressions for -*e in the preceding section and 

substituting the partial differentials that correspond to the increase dh in h for the 
variations of x, y, z, ;,,, %$$ """!  the formula: 
 

                                                
1 For such auxiliary functions 21, 22, 23, one may take, for example, the components of the rotation that 
makes the axes Ox, Oy, Oz parallel to ,,, zMyMxM """ respectively. 
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for the total work.  The work in question is independent of the intermediary states and 
depends only on the extreme states (M0) and (M). 
 This leads us to introduce the notion of energy of deformation, which must be 
distinguished from that of the action of deformation that we previously envisioned.  We 
say that – W is the density of the energy of deformation, referred to the unit of volume of 
the undeformed medium. 
 The proposition that we must encounter, which determines the total work that is 
performed by the external forces and moments, as well as the efforts and moments of 
deformation that are applied to the frontier, gives CLAPEYRON’S theorem (1) when we 
consider an infinitely small deformation and specify the medium.  Indeed, first introduce 
simply the hypothesis + and we refer to sec. 58 for the more general form + that W is a 
simple function of ,1, ,2, ,3, 21, 22, 23.  We may then envision the formulas: 
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as defining a change of variables that replaces the letters ,1, ,2, ,3, 21, 22, 23 with the 
letters 81, 82, 83, 91, 92, 93.  By virtue of this change of variables, W becomes a 
function W " of 81, 82, 83, 91, 92, 93. 
 Having said this, we pass to infinitely small deformations and put ourselves into the 
situation envisioned in sec. 31, pp. 74-76, of our Premier mémoire sur la théorie de 

l’élasticité; W and W "  become quadratic forms W2 of e1, e2, e3, g1, g2, g3, and ,2W "  of &1, 

&2, &3, *1, *2, *3; the latter is, up to a factor of !, what one calls the adjoint form to W2.  

When this is of issue, and in the case of infinitely small deformations, one obtains the 
following expression for the total work: 
 

222 .0002 dzdydxW  

 

                                                
1 LAMÉ seems to have been credited with making CLAPEYRON’S theorem known in his Note to the 
Comptes Rendus, T. XXXV, pp. 459-464, 1852, then in his Leçons sur la théorie mathématique de 
l’élasticité des corps solides, (1st ed., 1852, 2nd ed., 1866); indeed, it was only in the 1st of February, 1858, 
that the following note appeared: CLAPEYRON, Mémoire sur le travail des forces élastiques, dans un 
corps solide déformé par l’action de forces exterieures, Comtes rendus, T. XLVI, pp. 208, 1858.  Also 
consult TODHUNTER and PEARSON, A History of the Theory of Elasticity, etc., secs., 1041 and 1067-

1070. 
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To be more specific, if we suppose that we have (1): 
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 One sees that one has recovered the result of LAMÉ precisely, if one remarks that the 
total work of the external forces and efforts on the frontier obviously reduces to the 
indicated expression in the case of infinitely small deformations. 
 
 
 56.  Natural state of the deformable medium. – In the preceding we started with a 
natural state of a deformable medium and then we were given a state we called 
“deformed.”  We indicated the formulas that permit us to calculate external force and the 
analogous elements that are adjoined to the function W for the deformable medium and 
represent the action of deformation at a point. 
 As before, let us stop for a moment on this notion of natural state. 
 Up till now, the latter is a state that has not been subjected to any deformation.  
Imagine that the functions x, y, z, , , ,$ $ %" ""!  that define the deformed state depend on 
one parameter, and that one recovers the natural state for a particular value of this 
parameter.  The latter then seems to us to be a special case of a deformed state, and we 
are led to attempt to apply the notions relating to the latter to it.  
 Without changing the values of the elements that are defined by the formulas of sec. 
52, one may replace the function W with this function augmented by an arbitrary definite 
function of x0, y0, z0, and, if one is inspired by the idea of action that we associate to the 
passage from the natural state (M0) to the deformed state (M) then one may, if one 
prefers, suppose that the function of x0, y0, z0 that is defined by the expression: 
 

(0) (0) (0) (0) (0) (0)
0 0 0( , , , , , , , , )i i i i i iW x y z p q r& ' (  

 
is identically null; however, the values obtained for the external force and the analogous 
elements with regard to the natural state will not necessarily be null.  We say that they 
define the external force and the analogous elements relative to the natural state (1). 

                                                
1 E. and F. COSSERAT. – Premier mémoire sur la théorie de l’élasticité, pp. 77. 
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 In our way of speaking, the natural state presents itself as the initial state of a 
sequence of deformed states, a state that we start with in order to study the deformation.  
As a result, one is led to demand that it is not possible to make one of the deformed states 
play the role that we have the natural state play, and that this must be true in such a way 
that the elements that we defined in sec. 52 (external force and moment, external effort 
and moment of deformation), which were calculated for the other deformed states, have 
the same values if one refers the first of these elements to the unit of volume of the 
deformed medium and the second of these to the unit of area of the deformed surface.  
This question may receive a response only if one introduces and specifies the notion of 
the action that corresponds to the passage from one deformed state to another state. 
 The simplest hypothesis consists of assuming that this latter action is obtained by 
subtracting the action that corresponds to the passage from the natural state (M0) to the 
first deformed state( )M " from the action that corresponds to the passage from the natural 
state to the second deformed state (M).  With regard to ),(M " if we denote the quantities 

that are analogous (2) to &i, 'i, )i, pi, qi, ri relative to (M) by ,,, iii ('& """  ,,, iii rqp """  then we 

are led to adopt the following expression for the action of the deformation relating to the 
passage from the state( )M "  to the state (M): 
 

(52)  222 """"""+
0

,)},,,,,,,,(),,,,,,,,({ 000000000S iiiiiiiiiiii dzdydxrqpzyxWrqpzyxW ('&('&  

 
which one may write, if ." is the value of . for :)(M "  
 

(53) 222 .""
0

,||),,,,,,,,( 0000000S iiiiii dzdydxrqpzyxW ('&  

 
in which we have let S "denote the surface of )(M " that corresponds to S0 for (M0), and  

),,,,,,,,( 0000 iiiiii rqpzyxW ('&"  denotes the expression: 

.
||

1
)},,,,,,,,(),,,,,,,,({ 000000

."
""""""+ iiiiiiiiiiii rqpzyxWrqpzyxW ('&('&  

 
 Furthermore, from the remark made at the beginning of this paragraph, one may, if 
one prefers, substitute the following expressions for (33): 
 

)35( "  222 .""
0

,||),,,,,,,,( 000000S iiiiii dzdydxrqpzyxW ('&  

                                                                                                                                            
1 We may then speak of the force, effort, etc., since we regard the natural state as the limit of a sequence of 
states for which we know the force, effort, etc.  Up till now, the force, effort, etc. were defined for us only 
when there was a deformation capable of manifesting and measuring them. 
 
2 One must remark that ,,,,,,

iiiiii
rqp """""" ('& are not analogous to ,,,,,, )0()0()0()0()0()0(

iiiiii rqp('& because they 

are not formed by means of the coordinates , ,x y z" " " of )(M " in the same way that ,,, )0()0()0(

iii ('&  
(0) (0) (0), ,i i ip q r are formed by means of x0, y0, z0. 
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in which ),,,,,,,,( 000 iiiiii rqpzyxW ('&"  denotes the expression: 

 

.
||

1
),,,,,,,,( 000
."

iiiiii rqpzyxW ('&  

 
 If one remarks that one has, for example: 
 

,
),,,,,(),,,,,(

|| 000000

i

ii

i

ii rzyxWrzyxW

&

&

&

&

*

*
=

*

"*
."

!!
 

 
then it is clear that applying formulas that are analogous to those of sec. 52 to expressions 
(53) or )35( "  and starting with )(M "  as the natural state, but while supposing that )(M " is 
referred to the system of coordinates x0, y0, z0, and assuming that the formulas of sec. 52 
are modified as a consequence, will give the same values for the exterior force and 
moment relative to the state (M) referred to the unit of volume of (M), as well as the same 
values for the effort and the moment of deformation referred to the unit of area for (S). 
 Therefore we may consider (M) to be a deformed state for which )(M " is a natural 

state, provided that the function W associated with the state (M) is actually (1) 0W "  or .W "  

 Conforming to these indications, suppose, to fix ideas, that the external force and 
moment are given by means of simple functions of x0, y0, z0 and elements that fix the 
position of the triad .zyxM """   Suppose, moreover, that the natural state is given.  We may 
consider the equations of sec. 52 relating to the external force and moment to be partial 
differential equations in the unknowns x, y, z and the three parameters 21, 22, 23 by means 
of which one may express .,,, %$$ """!   The expressions &i, 'i, )i, pi, qi, ri are then 

functions of 31 2
1 2 3, , , , , , , ,

i i i i i i

x y z 22 2
2 2 2

! ! ! ! ! !

** ** * *

* * * * * *
 (always setting !1 = x0, !2 = y0, !3 = 

z0) that one calculates by means of formulas (43) and (44). 
 Suppose that ,,,,,, 000000 NMLZYX """""" or, what amounts to the same thing, X0, Y0, Z0, 

L0, M0, N0 are given functions of x0, y0, z0, x, y, z, 21, 22, 23 .  The expression W is, after 
substituting for the values of &i, 'i, )i, pi, qi, ri by means of formulas (43) and (44), a 

definite function of x0, y0, z0, ,,,,,,,,,
0

3

0

1
321

00 zxz

z

x

x

*

*

*

*

*

*

*

* 22
222 !! which we continue to 

denote by W, and the equations of the problem may be written: 
 
 

                                                
1 As we said at the beginning of this section, this permits us to generalize the notion of natural state that we 
first introduced.  Instead of making this word correspond to the idea of a particular state, we may, in a more 
general fashion, make it correspond to the idea of an arbitrary state, starting from which we may study the 
deformation.  The fact that we introduced x0, y0, z0 at the beginning of the theory seems to make (M0) play a 
particular role; however, one must not consider x0, y0, z0 as anything but the coordinates that serve to define 
the different media, and not only (M0).  One has chosen these coordinates in a particular fashion, and in 
relation to a particular medium, in order that one must, as a result, pay attention to (M0) in the context of 
infinitely small deformations. 
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in which $0, %0, &0 are functions of x0, y0, z0, x, y, z, 21, 22, 23 that result from the 

definitions of sec. 53. 
 It results directly from the formulas of the preceding paragraphs that a more 

immediate way of defining X0, Y0, Z0, $0, %0, &0 may be summarized in the relation: 

 

0 0 0 0eWdx dy dz- -+ =222 * , 

i.e., in: 

0 0 0 0 0 0 0 1 0 2 0 3( )Wdx dy dz F x G y H z d- - - - -2 -2 -2 0= + + + + +222 22 ! " #  

0 0 0 0 1 0 2 0 3 0 0 0( )X x Y y Z z dx dy dz- - - -2 -2 -2+ + + + + +222 $ % &  

 
 
 57.  Notions of hidden triad and hidden W. – In the study of deformable media, as 
in the study of deformable lines and surfaces, it is natural to pay particular attention to the 
pointlike media that are described by the deformable media.  This amounts to envisioning 
x, y, z separately and considering , , ,$ $ %" ""! as simply auxiliary functions. This is what 
we likewise express by imagining that one ignores the existence of the triads that 
determine the deformable medium, and that one knows only the vertices of those triads.  
If we adopt that viewpoint in order to envision the partial differential equations that one 
is led to in this case then we may introduce the notion of hidden triad, and we are led to a 
resulting classification of the diverse circumstances that may be produced by the 
elimination the .,,, %$$ """!  
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 Therefore, a primary study that presents itself is that of the reductions that relate to 
the elimination of the .,,, %$$ """!  Likewise, in the corresponding particular cases in 
which the attention is directed almost exclusively to the pointlike media that are 
described by the deformed medium (M) one may sometimes abstract from (M0), and, as a 
result, from the deformation that permits us to pass from (M0) to (M). 
 As we already said for the deformable line and surface, the triad may be employed in 
another fashion.  We may make particular hypotheses on it and the medium (M); all of 
this amounts to envisioning particular deformations of the free deformable line.  If the 
relations that we impose are simple relations between &i, 'i, )i, pi, qi, ri, as will be the 
case in the applications that we shall study, we may account for these relations in the 
calculation of W and deduce more particular functions from W.  The interesting question 
that this poses is that of introducing these particular forms simply, and to consider the 
general W that serves as the point of departure as being hidden, in some sense.  We thus 
have a theory that will be specific to the particular deformations brought to light by the 
given relations between &i, 'i, )i, pi, qi, ri. 
 We confirm that by means of the theory of free deformable media one may therefore 
combine the particular cases and provide a common origin to the equations that are the 
result of special theories that one encounters in physics (1). 
 In the particular cases, one sometimes finds oneself in the proper circumstances to 
avoid the consideration of these deformations; in reality, they must sometimes be 
completed.  This is what one may do in practical applications when one envisions 
infinitely small deformations. 
 Take the case in which the external force and moment refer only to the first 
derivatives of the unknowns x, y, z and 21, 22, 23; the second derivatives of these 
unknowns will be introduced into these partial differential equations only for W; 
however, the derivatives of x, y, z figure only in &i, 'i, )i, and those of 21, 22, 23 show up 
only in pi, qi, ri.  One therefore sees that if W depends only on &i, 'i, )i, or only on pi, qi, 
ri, then there will be a reduction in the order of the derivatives that enter into the partial 
differential equations.  Here, we examine the first of these two cases, which corresponds 
to the ordinary theory of elasticity for material media and to the theory of the various 
ethereal media that are envisioned in the doctrine of luminous waves. 
 
 
 58.  Case in which W depends only on x0, y0, z0, &i, 'i, )i, and is independent of pi, 
qi, ri.  How one recovers the equations that relate to the deformable body of the 

classical theory and to the media of hydrostatics. – Suppose that W depends only on 
the quantities x0, y0, z0, &i, 'i, )i, and not on pi, qi, ri.  The equations of sec. 56, which 
reduce to the following: 

                                                
1 All of our considerations heretofore may be applied just the same to material media as to various ethereal 
media.  We have declared the word matter to be invalid, and what we expose is, as we said to begin with, a 
theory of action for extension and movement.  To have a more complete idea of the notion of matter, we 
shall explain later on how one must approach the latter from the concept of entropy according to the 
profound viewpoint that LIPPMANN introduced into electricity.  
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in which W depends only on x0, y0, z0, ,,,
00 z

z

x

x

*

*

*

*
! 21, 22, 23, we show that if one takes 

the simple case in which X0, Y0, Z0, $0, %0, &0 are given functions (1) of x0, y0, z0, x, y, z, 

,,,
00 z

z

x

x

*

*

*

*
! 21, 22, 23 then the three equations may be solved for 21, 22, 23, and one 

finally obtains three partial differential equations that, from our hypotheses, refer to only 
the x0, y0, z0, and to x, y, z, and their first and second derivatives. 
 First, envision the particular case in which the given functions $0, %0, &0 are null; 

the same will be true for the corresponding values of the functions of one of the systems 
),,,( 000 NML """ (L0, M0, N0),(L, M, N).  It results from this that the equations: 
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i.e., 
pyz = pzy , pzx = pxz , pxy = pyx , 

 
whose interpretation is immediate. 
 Haing said this, observe that if one of the two positions (M0) and (M) is assumed to be 
given, and that if one deduces the functions $0, %0, &0 from this, as in sec. 53, then in 

the case in which these three functions are null one may arrive at this result accidentally, 

                                                
1 In order to simplify the exposition, and to indicate more easily what we are alluding to, we suppose that 
X0, Y0, Z0, L0, M0, N0 do not refer to the derivatives of 21, 22, 23. 
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i.e., for a certain set of particular deformations; however, one may arrive at this result for 
any deformation (M) since it is a consequence of the nature of the medium (M), i.e., of 
the form of W. 
 Consider this latter case, which is particularly interesting; W is then a simple function 
(1) of !1, !2, !3, and the six expressions ,1, ,2, ,3, 21, 22, 23, which are defined by the 
formulas (45). 
 The equations deduced from sec. 52 and 53 reduce to either: 
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 (i, j, k = 1, 2, 3). 

or to (2): 
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1 The triad is completely hidden; we may also conceive that we have a simple pointlike medium. 
 
2 Compare E. and F. COSSERAT. – Premier Mémoire sur la théorie de l’élasticité, pp. 45, 46, 65. 
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and analogous formulas for pyz, …  . has the significance that we gave it in sec. 51, 
which we shall recall in a moment. 
 As one sees, we recover the continuous deformable medium as it is treated in the 
ordinary theory of elasticity. 
 A particularly interesting case is obtained by looking for a form for W that gives the 
identities: 

pyz = 0,  pyx = 0,  pxy = 0, 
 

for any !,
0x

x

*

*
  One finds that W must be a simple function of x0, y0, z0, and the 

expression ., which is defined by the formulas (1): 

                                                
1 Compare E. and F. COSSERAT. – Premier Mémoire sur la théorie de l’élasticité, pp. 40, 44, 65. 
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from which one may see, upon remarking that if one refers to the previous formulas (2) 
that gave us pyz, pyx, pzx,… as a function of A1, … then one has: 
 

,

0

0

0

0

0

0

z

x

z

x
W

y

x

y

x
W

x

x

x

x
W

*

*
*

.*

*

*
*

*

=

*

*
*

.*

*

*
*

*

=

*

*
*

.*

*

*
*

*

 

 
and two analogous systems; since W is assumed to be a simple function of x0, y0, z0, and 
., one has, as a result: 
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 If we consider the particular case in which W depends only on ., and if we assume 
that we are given X, Y, Z expressed as functions of x, y, z then the equations in question, 
which are: 
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 F = lp,  G = mp, H = np, 

 

upon setting ,
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*
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W
p become those which serve as the basis for hydrostatics (3).  The 

initial medium (M0) appears only by way of ., and one may replace the unknown . with 

the unknown p that is related to it by the relation .
.*

*
=

W
p   If the function W, which is 

not given, is hidden then one has the preceding equations, in which p is an auxiliary 
function whose significance is well known. 
 It will suffice for us to indicate that the case in which the functions $0, %0, &0 are 

non-null comprises the theory of all the ethereal media that have been considered for the 
study of luminous waves from MACCULLAGH to LORD KELVIN, but here the theory 
of these media is completely mechanical.  We likewise mention that the most general 

                                                                                                                                            
1 Compare E. and F. COSSERAT. – Premier Mémoire sur la théorie de l’élasticité, pp. 23, 24. 
 
2 These formulas are actually the ones on page 47 of our Premier Mémoire sur la théorie de l’élasticité. 
 
3 Compare DUHEM. – Hydrodynamique, Elasticité, Acoustique. 
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case, in which the trace of the derivatives of the action W with respect to the rotations pi, 
qi, ri remains in the expression for the external moment leads in the most natural manner 
to the notion of magnetic induction that was introduced by MAXWELL. 
 
 
 59.  The rigid body. – We have considered the particular case in which W does not 
depend on pi, qi, ri, and different special cases of this case.  One may arrive at the other 
media that were considered, at least in part, by the authors, either by the study of 
particular deformations, or by the study of new media that are defined by a theory of 
constraints that profits from the results that we already acquired. 
 For example, start with the simple case, in which the triad is hidden, i.e., by 
definition, it is a pointlike medium in which W is a function of x0, y0, z0, 
,1, ,2, ,3, %1, %2, %3. 
 
 1.  We may imagine that one pays attention only to the deformations of the medium 
for which one has: 

,1 = ,2 = ,3 = %1 = %2 = %3 = 0. 
 

 In the definitions of forces, etc., it suffices to introduce these hypotheses, and, if the 
forces are given, to introduce these six conditions.  In the latter case, the habitual 
problems, which correspond to the given of the function W, and to the general case in 
which the ,i, %i are non-null, may be posed only for particular givens. 
 If we suppose only that the function W0 that is obtained by taking ,1 = ,2 = ,3 = %1 = %2 
= %3 = 0 in W(!1, !2, ,1, …) is given, that one does not know the values of the derivatives 
of W with respect to ,1, ,2, ...,%3 for ,1 = ,2 = ...= %3 = 0, so that W is hidden, then we see 
that pxx, …, pzz , for example, become six auxiliary functions that one must adjoin to x, y, 
z, in such a way that, for the case in which the forces that act on the volume elements are 
given,  we have nine partial differential equations in nine unknowns in the case, to which 
one must adjoin accessory conditions. 
 Now we remark that one knows how to integrate the system: 
 

,1 = ,2 = ,3 = %1 = %2 = %3 = 0. 
 
 Since the deformation is supposed continuous, the integral corresponds to a 
displacement of the set of the medium; it thus remains for us to determine the six 
constants of integration and the auxiliary functions pxx, …   
 If the forces and efforts that act on the medium are given, and we suppose that X, … 
are known as functions of x, y, z then the six equations of sec. 54, with the simplifications 
implied for the form of W, when applied to the entire body, determine the six integration 
constants.  To complete the process, what remains is for us to ultimately determine pxx, …   
 If we leave aside the problem of this ultimate determination, then one sees that we 
recover the habitual problems of the mechanics of rigid bodies, in which one might 
ordinarily suppose that the hidden function W depends only on .. 
 
 2.  We may imagine that we seek to define a medium whose definition already takes 
the conditions: 
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,1 = ,2 = ,3 = %1 = %2 = %3 = 0 
into account, sui generis. 
 In order to define the new medium, while thinking along the same lines as before, we 
further define 0 0, ,F N" "! by the identity: 

 

222 22 ""++""=
0 0

000000 )(
S S

dKKxFdzdyWdx 0--- !  

222 ""++""+
0

.)( 00000S
dzdydxKNxX -- !  

 
 However, this identity must no longer hold, by virtue of the fact that ,1 =  … = %3 = 0. 
In other words, we envision a medium in which the theory must result from the a 
posteriori addition of the conditions ,1 =  … = %3 = 0 to the knowledge of a function 
W(x0, y0, z0, ,1, ,2,…, %3) and six auxiliary functions µ1,…, µ6 of x0, y0, z0, by means of the 
identity: 

222 22 +""=++++
0 0

00000362211 )()(
S S

dxFdzdydxW 0-%µ,µ,µ- !!  

222 +""+
0

,)( 0000S
dzdydxxX !-  

 
which amounts to setting ,1 =  … = %3 = 0 in the general theory that preceded, in which 
one has replaced W with W1 = W + µ1,1 + … + µ6,3 . 
 As one sees, we come down to the theory of elastic media that correspond to the 
function W of x0, y0, z0, ,1, ,2,…, %3 when one restricts oneself to the study of deformations 
that correspond to ,1 =  … = %3 = 0.  Therefore, if we consider the case of a hidden W 
then if we suppose that we known simply the value W(x0, y0, z0) that W and W1 take 
simultaneously when ,1 =  … = %3 = 0 then we recover the habitual theory of the rigid 
body. 
 Observe that if we account for the conditions ,1 =  … = %3 = 0 in W a priori by a 
change of auxiliary functions then we are led to replace W with µ1,1 + … + µ6,3 in the 
calculations that relate to the general medium, and we likewise find formulas that come 
down to the study of an elastic medium in which we are confined to studying 
deformations that correspond to ,1 =  … = %3 = 0.  Upon supposing that µ1,…, µ6 are 
unknown, we once more come down to theory that comprises the habitual theory of the 
rigid body.  From this latter viewpoint, we return to the exposition that one may make 
about the ideas of LAGRANGE.  In particular, we may observe that in the case in which 
X0, Y0, Z0 are given as the partial derivatives with respect to x, y, z of a function 7 of x0, 
y0, z0, x, y, z the equations in which X0, Y0, Z0 figure are none other than the equations that 
one is led to when one seeks to determine the extremum of the integral: 
 

222 ,000 dzdydx7  

given the conditions: 
,1 = ,2 = ,3 = %1 = %2 = %3 = 0. 
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 3.  We discuss a third procedure (1) for constituting a medium for which the theory 
always leads to the same equations, and which will be a limiting case of the original 
theory.  This procedure agrees with the first one, and it may also be applied to the cases 
of the deformable line and surface. 
 Imagine that the W that serves to define the original medium is variable, and, to fix 
ideas, suppose that the values of ,1, … , %3 are developable in a MACLAURIN series in a 
neighborhood of zero by the formula: 
 

W = W1 + W2 + …+ Wi +…, 
 
in which Wi represents the set of terms of the ith degree.  Assume that the coefficients of 
W2 (which may depend on x0, y0, z0) increase indefinitely in their variation.  If we want W 
to conserve a finite value then we must suppose that ,1, … , %3 tend towards zero.  In 
other words, we may then consider only deformations that satisfy ,1 =  … = %3 = 0.  In 
other words, the body that we approach in the limit may take only displacements of the 

set.  We may suppose that one makes the derivatives !,
1,*

*W
, which approach limits 

when W varies in a manner we shall describe, likewise vary as a consequence of a studied 
deformation for this medium. 
 To explain this in a more precise fashion, imagine that the coefficients of W1, W2, … 
depend on one parameter h, in such a way that when h tends towards zero the coefficients 
of W2 increase indefinitely.  To fix ideas, suppose that the latter coefficients are linear 

with respect to .
1

h
  Likewise, imagine that x, y, z, which define the deformation in 

question, vary with h in such a way that ,1, … tend to zero.  In addition, we suppose that 
,1, … are infinitely small of first order with respect to h; for example, ,1, …might be 
developed in powers of h, and the first terms of that development are the ones in h.  With 

these conditions, W tends to zero, and 
1 3

, ,
W W

, %

* *

* *
! tend to certain limits (which may be 

functions of x0, y0, z0).  Therefore if we consider the equations of sec. 52 that serve to 
define external force and moment then we are finally led to formulas that permit us to 
define them, and which are none other than equations of our point of departure, in which 
the notion of the function W has disappeared, and in which six auxiliary functions 

0 0 0 0 0 0, , , , ,F G H I J K" " " " " "  figure. 

 
 
 60.  Deformable media in motion. – The theory of motion for the deformable line 
and that of the motion of the deformable surface present themselves very naturally as 
special cases of the theory of the deformable surface and that of the deformable medium.  
To see this, it suffices to give one of the parameters !i of the surface or medium the 
significance of time. As we will not envision the statics of media of dimension greater 
than three here, we must expose the theory of motion of a deformable medium directly in 

                                                
1 Compare THOMSON and TAIT. – Treatise, vol. I., Part. I, pp. 271, starting with the 11th line down. 
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what follows; however, we nevertheless give it a form that is entirely analogous to the 
one that we indicated for the dynamics of deformable line and the deformable surface. 
 Consider a space (M0) that is described by a point M0 whose coordinates are x0, y0, z0 
with respect to the three fixed rectangular axes Ox, Oy, Oz, and adjoin a trirectangular 
triad to each point M0 of the space (M0) whose axes 0 0 0 0 0 0, ,M x M y M z" " "  have the direction 

cosines 0 0 0 0 0 0 0 0 0, , ; , , ; , ,$ $ $ # # # % % %" "" " "" " ""with respect to the axes Ox, Oy, Oz, respectively, 

and which are functions of the independent variables x0, y0, z0. 
 The continuous three-dimensional set of such triads 0 0 0 0M x y z" " "  may be considered as 

the position at a definite instant t of a deformable medium that is defined in the following 
fashion: 
 Give the point M0 a displacement M0M, which is a function of time t and the position 
of the point M0, and is null for t = t0.  Let x, y, z be the coordinates of the point M, which 
we consider to be functions of x0, y0, z0, t.  In addition, endow the triad 0 0 0 0M x y z" " "with a 

rotation that makes its axes finally agree with those of a triad Mx y z" " "  that we adjoin to the 
point M.  We define that rotation by giving the direction cosines ;,, $$$ """  

;,, ### """ , ,% % %" ""  of the axes , ,Mx My Mz" " "with respect to the fixed axes Ox, Oy, Oz.  
Like x, y, z, these cosines will be functions of x0, y0, z0, t.   
 The continuous three-dimensional set of triads ,zyxM """  for a given value of time t, 
will be what we call the deformed state of the deformable medium considered at the 
instant t.  The continuous four-dimensional set of triadsMx y z" " "  that is obtained by 
making t vary will be the trajectory of the deformed state of the deformable medium. 
 For ease of writing and notation in the sequel, we sometimes introduce, as we already 
did, the letters !1, !2, !3, instead of x0, y0, z0.  We continue to denote the components of 
the velocity of the origin M0 of the axes 0 0 0 0 0 0, ,M x M y M z" " " along these axes by 

,,, )0()0()0(
iii ('&  when !i alone varies, and the projections of the instantaneous rotation, 

relative to the parameter !i, of the triad 0 0 0 0M x y z" " "  on these same axes by .,, )0()0()0(
iii rqp  

We denote the analogous expressions for the triadMx y z" " "  by &i, 'i, )i, and pi, qi, ri, when 

one refers them, like the triad ,0000 zyxM """ to the fixed axes Oxyz. 

 When time t varies, and the motion of the triad Mx y z" " "  is referred to the fixed triad 
Oxyz then the origin M has a velocity whose components along the axes , ,Mx My Mz" " "  

will be designated by &, ', ), and the instantaneous rotation of the triadMx y z" " "will be 
defined by the components p, q, r. 
 The elements that must introduce are calculated as in sec. 49; first, one has the 
formulas: 
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to which we adjoin the following: 
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if one now introduces the distinction between the notations for the derivatives with 
respect to time depending on whether one takes x0, y0, z0, t or x, y, z, t for the independent 
variables. 
 Suppose that one endows each of the triads of the trajectory of the deformed state 
with an infinitely small displacement that varies in a continuous fashion with these triads.  
With the same notations as in sec. 50, we have: 
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 61.  Euclidean action of deformation and motion for a deformable medium in 

motion. – Consider a function W of two infinitely close positions of the triad ,zyxM """  i.e., 
a function of x0, y0, z0, t, and of x, y, z, ,,,, %$$ """! and their first derivatives with respect 
to x0, y0, z0, t.  We propose to determine the form that W must take in order for the 
quadruple integral: 

2222 ,000 dtdzdyWdx  
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when taken over an arbitrary portion of space (M0), and the time interval between two 
instants t1 and t2 to have a null variation when one subjects the set of all triads along what 
we are calling the trajectory of the deformable medium + taken its deformed state – to the 
same arbitrary infinitesimal transformation of the group of euclidean displacements. 
 By definition, this amounts to determining W in such a fashion that one has: 
 

-W = 0 
 

when, on the one hand, the origin M of the triad Mx y z" " "  is subjected to an infinitely small 

displacement whose projections -x, -y, -z on the axes Ox, Oy, Oz are: 
 

(60)    
!
"

!
#

$

++=

++=

++=

,)(

,)(

,)(

213

132

321

txyaz

tzxay

tyzax

-//-

-//-

-//-

 

 
in which a1, a2, a3, /1, /2, /3 are six arbitrary constants, and -t is an infinitely small 
quantity that is independent of x0, y0, z0, t, and when, on the other hand, this triad Mx y z" " "  
is subjected to an infinitely small rotation whose components along the Ox, Oy, Oz axes 
are: 

/1 -t,   /2 -t,   /3 -t. 
 

 It suffices for us to repeat the reasoning that we made before, with several reprises, in 
order to see that the desired function W has the remarkable form: 
 

W(x0, y0, z0, t, &i, 'i, )i, pi, qi, ri, &, ', ), p, q, r), 
 

which is analogous to the one we encountered for the deformable line, surface, and 
medium at rest. 
 We say that the integral: 

2 222
2

1 0

,000

t

t S
dtdzdyWdx  

 
is the action of deformation and motion in the interior of the surface S of the deformed 
medium in motion and in the interval of time between the instants t1 and t2.  On the other 
hand, we say that W is the density of the action of deformation and motion at a point of 
the deformed medium when taken at a given instant, and referred to the unit of volume of 
the undeformed medium and the unit of time.  If we give . the same significance as in 

sec. 51 then 
|| .

W
 is the density of that action at a point and a given instant, when referred 

to the unit of volume of the deformed medium and the unit of time. 
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 62.  The external force and moments; the external effort and moment of 

deformation; the effort, moment of deformation, quantity of motion, and the 

moment of the quantity of motion of a deformable medium in motion at a given 
point and instant. – Consider an arbitrary variation of the action of deformation and 
movement in the interior of a surface (S) of the medium (M), and the time interval 
between the instants t1 and t2, namely: 
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 By virtue of formulas (58), ),85( " (59), ),95( " we may write: 
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 We apply GREEN’s formula to the terms that explicitly involve a derivative with 
respect to any of the variables, !1, !2, !3, and perform an integration by parts over the 
terms that explicitly involve a derivative with respect to time, t.  If we let l0, m0, n0, 
designate the direction cosines with respect to the fixed axes, Ox, Oy, Oz, of the exterior 
normal to the surface, S0, that bounds the medium before deformation at the instant, t, 
and designate the area element of that surface by d00, then we obtain: 
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As in sec. 52, set: 
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 If we first consider the quadruple integral that figures in the expression for 
2

1 0
0 0 0

t

t S
Wdx dy dz dt- 2 222  then we call the segments that have their origin at M and whose 

projections on the axes , ,Mx My Mz" " "  are 0 0 0, ,X Y Z" " "  and 0 0 0, ,L M N" " "  the external force 

and external moment at the point M at the instant t, referred to the unit of volume of the 
position of the medium at the instant t0, respectively. 
 If we then consider the triple integral that is taken over time and the surface S0 then 
we call the segments that issue from the point M whose projections on the axes 

, ,Mx My Mz" " "  are 0 0 0, ,F G H" " "+ + +  and 0 0 0, ,I J K" " "+ + +  the external effort and external 

moment of deformation at the point M of the surface S  that bounds the deformed medium 
at the instant t.  At a definite point M of (S) these last six quantities depend only on the 
direction of the external normal to the surface S.  They remain invariant if the region we 
call (M0) varies, but the direction of the normal does not change, and they change sign if 
this direction is replaced by the opposite direction. 
 Suppose that one traces a surface 1 in the interior of the deformed medium that is 
bounded by the surface S, which, either alone or with a portion of the surface S 
circumscribes a subset (A) of the medium, and let (B) denote the rest of the medium 
outside of (A).  Let 10 be the surface of (M0) that corresponds to the surface S of (M), and 
let (A0) and (B0) be the regions of (M0) that correspond to the regions (A) and (B) of (M).  
Mentally separate the two subsets A and B; one may regard the two segments 
( 000 ,, HGF "+"+"+ ) and ( 000 ,, KJI "+"+"+ ) that are determined for the point M and the 

direction of the normal to 10 that points to the exterior of (A0) as the external effort and 
moment of deformation at the point M of the frontier 1 of the region (A).  Similarly, one 
may regard the two segments ( 000 ,, HGF """ ) and ( 000 ,, KJI """ ) to be the external effort and 

m0ment of deformation at the point M of the frontier 1 of the region (B).  By reason of 
this remark, we say that 000 ,, HGF "+"+"+  and 000 ,, KJI "+"+"+  are the components of the 

effort and moment of deformation that is exerted on the portion (A) of the medium (M) at 
M along the axes ,,, zMyMxM """  and that 000 ,, HGF """  and 000 ,, KJI """  are the components 

of the effort and moment of deformation that are exerted on the portion (B) of the medium 
(M) at M, along the axes .,, zMyMxM """  
 Finally, if we consider the triple integral over the volume of (M) at the instant t, 
whose values are taken at the extreme instants t1 and t2 , then we call the segments that 
have their origins at M and whose components along the axes , ,Mx My Mz" " "are , ,A B C" " "  
and , ,P Q R" " "  the quantity of motion and the moment of the quantity of motion at the 
point M of the deformed medium (M) at the instant t, respectively. 
 
 
 63.  Diverse specifications for the effort and moment of deformation, the 
quantity of motion, and the moment of the quantity of motion. – As in sec. 53, set: 
 

,
i

i

W
A

&*

*
="  ,

i
i

W
B

'*

*
="  ,

i
i

W
C

(*

*
="  



THE DEFORMABLE MEDIUM 179 

,
i

i p

W
P

*

*
="  ,

i
i q

W
Q

*

*
="  ;

i
i r

W
R

*

*
="  

 
in which , ,i i iA B C" " "  and , ,i i iP Q R" " "  represent the projections on ,,, zMyMxM """  respectively, 

of the effort and moment of deformation that are exerted at the point M of a surface that 
has a normal that is parallel the axis Ox, Oy, Oz that we describe by the index i before 
deformation.  Indeed, it suffices to recall that we already agreed to replace the letters x0, 
y0, z0 that correspond to the indices 1, 2, 3 by this convention with !1, !2, !3.  Recall that 
this effort and moment of deformation are referred to the unit of area of the undeformed 
surface at the instant t. 
 The new efforts and moments of deformation that we just defined are related the 
elements that the introduced in the preceding section by the following relations: 
 
  ,3020100 AnAmAlF "+"+"="  ,3020100 PnPmPlI "+"+"="  
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 One may propose to transform the relations we just wrote independently of the values 
of the quantities that figure in them that are calculated by means of W.  Indeed, these 
relations relate to the segments that are attached to the point M to which we gave the 
names.  Instead of defining these segments by their projections on ,,, zMyMxM """  we may 
just as well define them by their projections on other axes; the latter projections will be 
coupled by relations that are transforms of the preceding ones.  Moreover, the 
transformed relations are obtained immediately if one remarks that the original formulas 
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have simple interpretations (1) by the adjunction of axes that are parallel to the moving 
axes at the point O. 
 
 1.  As in statics, we confine ourselves to the consideration of the fixed axes Ox, Oy, 
Oz.  Let X0, Y0, Z0 and L0, M0, N0 denote the projections of the external force and the 
external moment at an arbitrary point M of the deformed medium at an instant t onto 
these axes, and let F0, G0, H0 and I0, J0, K0 be the projections of the effort and the 
moment of deformation on a surface whose exterior normal has the direction cosines l0, 
m0, n0 before deformation at the instant t.  Let Ai, Bi, Ci and Pi, Qi, Ri be the projections of 
the effort ( , , )i i iA B C" " "  and the moment of deformation ),,,( iii RQP """ and let A, B, C and P, Q, 

R be the projections of the quantity of motion (A, B, C) and the moment of the quantity of 
motion (P, Q, R).  The transforms of the preceding relations are obviously: 
 

,3020100 AnAmAlF ++=  ,3020100 PnPmPlI ++=  

,3020100 BnBmBlG ++=  ,3020100 QnQmQlJ ++=  

,3020100 CnCmClH ++=  ,3020100 RnRmRlK ++=  

 

,00
0

3

0

2

0

1 =++
*

*
+

*

*
+

*

*
X

dt

dA

z

A

y

A

x

A
 

,00
0

3

0

2

0

1 =++
*

*
+

*

*
+

*

*
Y

dt

dB

z

B

y

B

x

B
 

,00
0

3

0

2

0

1 =++
*

*
+

*

*
+

*

*
Z

dt

dC

z

C

y

C

x

C
 

 

dt

dP
C

z

y
C

y

y
C

x

y
C

dt

dP

z

P

y

P

x

P
+

*

*
+

*

*
+

*

*
++

*

*
+

*

*
+

*

*

0
3

0
2

0
1

0

3

0

2

0

1  

,00
0

3
0

2
0

1 =++
*

*
+

*

*
+

*

*
+ L

dt

dz
B

z

z
B

y

z
B

x

z
B  

dt

dz
A

z

z
A

y

z
A

x

z
A

dt

dQ

z

Q

y

Q

x

Q
+

*

*
+

*

*
+

*

*
++

*

*
+

*

*
+

*

*

0
3

0
2

0
1

0

3

0

2

0

1  

,00
0

3
0

2
0

1 =++
*

*
+

*

*
+

*

*
+ M

dt

dx
C

z

x
C

y

x
C

x

x
C  

dt

dx
B

z

x
B

y

x
B

x

x
B

dt

dR

z

R

y

R

x

R
+

*

*
+

*

*
+

*

*
++

*

*
+

*

*
+

*

*

0
3

0
2

0
1

0

3

0

2

0

1  

.00
0

3
0

2
0

1 =++
*

*
+

*

*
+

*

*
+ N

dt

dy
A

z

y
A

y

y
A

x

y
A  

 

                                                
1 An interesting interpretation to note is the analogue of the one given by P. SAINT-GUILHEM in the 
context of the dynamics of triads. 
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 2.  Now observe that we may express the nine cosines , , ,$ $ %" ""! by means of the 

three auxiliary functions 21, 22, 23.  Set: 
 

% % "+"+"=+= ,332211 232323%##% ddddd  

% % "+"+"=+= ,332211 242424$%%$ ddddd  

% % "+"+"=+= .332211 202020#$$# ddddd  

 
The functions 3i, 4i, 0i of 21, 22, 23 so defined satisfy relations that we have written 
several times already: 
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in which x0 = !1, y0 = !2, z0 = !3.  If we let 3i, 4i, 0i denote the projections onto the fixed 
axes Ox, Oy, Oz of the segment whose projections onto the axes , ,Mx My Mz" " "  are 

, ,i i i3 4 0" " "  then we will have: 

 

% % ++="""+=""" ,332211 232323$$$$ ddddd  

% % ++=""+="" ,332211 242424$$$$ ddddd  

% % ++="+=" ,332211 202020$$$$ ddddd  
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by virtue of which (1) the new functions 3i, 4i, 0i of 21, 22, 23 satisfy the relations: 
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 Once more, we make the remark, which will serve us later on, that if one lets -21, 
-22, -23 denote the variations of 21, 22, 23 that correspond to the variations 

, , ,-$ -$ -%" ""!  of , , ,$ $ %" ""!  then one will have: 
 

,332211 232323- dddI "+"+"="  

,332211 242424- dddJ "+"+"="  

  ,332211 202020- dddK "+"+"="  

  ,332211 -23-23-23%-#-$-- ++="+"+"= KJII  

  ,332211 -24-24-24-%-#-$- ++="""+""+""= KJIJ  

  ,332211 -20-20-20-%-#-$- ++="""+"""+"""= KJIK  

 
in which -I, -J, -K are the projections onto the fixed axes of the segment whose 
projections onto , ,Mx My Mz" " "  are .,, KJI """ ---   Now set: 
 
  0 1 0 1 0 1 0 1 0 1 0 1 0I J K I J K3 4 0 3 4 0" " " " " "= + + = + +! , 

0 2 0 2 0 2 0 2 0 2 0 2 0I J K I J K3 4 0 3 4 0" " " " " "= + + = + +" , 

0 3 0 3 0 3 0 3 0 3 0 3 0I J K I J K3 4 0 3 4 0" " " " " "= + + = + +# , 

 
  0 1 0 1 0 1 0 1 0 1 0 1 0L M N L M N3 4 0 3 4 0" " " " " "= + + = + +$ , 

  0 2 0 2 0 2 0 2 0 2 0 2 0L M N L M N3 4 0 3 4 0" " " " " "= + + = + +% , 

  0 3 0 3 0 3 0 3 0 3 0 3 0L M N L M N3 4 0 3 4 0" " " " " "= + + = + +& . 

 
 In addition, introduce the following notations: 
 

                                                
1 These formulas may serve to define the functions 3i,  4i, 0i directly and may be substituted for: 
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0%4#3$4 """+""+""=  (i, j, = 1, 2, 3), 
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0%4#3$0 """+"""+"""=  



THE DEFORMABLE MEDIUM 183 

  ,111111 iiiiiii RQPRQP 043043 ++=""+""+""=5  

  ,222222 iiiiiii RQPRQP 043043 ++=""+""+""=6  

  ,333333 iiiiiii RQPRQP 043043 ++=""+""+""=1  

,111111 RQPRQP 043043 ++=""+""+""=5  

,222222 RQPRQP 043043 ++=""+""+""=6  

,333333 RQPRQP 043043 ++=""+""+""=1  

 
and, instead of the latter system, in which either , , , , ,i i iP Q R P Q R" " " " " "  or Pi, Qi, Ri, P, Q, R 

figure, we have the following: 
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that result from defining relations for the functions , ,i i i3 4 0" " "  and the nine identities they 

verify, then one may give the preceding system the new form: 
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with two analogous equations. 
 
 3.  Finally, we shall subject the preceding two equations that we introduced to a 
transformation that is analogous to the one that led us, in sec. 53, to the generalization of 
the equations of the theory of elasticity that relate to effort. 
 To abbreviate the notation, let 0 0 0 0 0 0, , , , ," " " " " "' ( ) $ % & denote + for the moment + the 

left-hand sides of the transformation relation that refers to X0, Y0, Z0, L0, M0, N0, 
respectively, and observe that one may summarize the twelve equations we have 
established by the following: 
 

2

1 0
0 1 0 2 0 3 0 1 0 2 0 3 0 0 0( )

t

t S
dx dy dz dt2 2 2 µ µ µ" " " " " "+ + + + +2 222 ' ( ) $ % &  

2 22 ++++++++
2

1 0
2302010013020100 )(){(

t

t S
BnBmBlGAnAmAlF 22  

1302010033020100 )()( µ2 PnPmPlICnCmClH ++++++++  

,0})()( 03302010023020100 =++++++++ dtdRnRmRlKQnQmQlJ 0µµ  

 
in which 21, 22, 23, µ1, µ2, µ3 are arbitrary functions, and the integrals are taken over, on 
the one hand, the time interval between the instants t1 and t2, and, on the other hand, the 
surface S0, of the medium (M0) and the domain it bounds.  If we apply GREEN’S 
theorem and integrate by parts then the relation that we just wrote becomes the following 
one: 
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 We seek to transform this last relation when one takes the functions x, y, z for other 
new variables, while preserving t.  We apply the elementary formulas for the change of 
variables that we recalled in sec. 53 to the functions 21, 22, 23, µ1, µ2, µ3 .  With S always 
indicating the surface of the medium (M) at the instant t that corresponds to the surface S0 
of (M0).  Moreover, let X, Y, Z, L, M, N be the projections on Ox, Oy, Oz of the external 
force and external moment that are applied to the point M at the instant t, and referred to 
the unit of volume of the deformed medium (M), and let F, G, H, I, J, L denote the 
projections on Ox, Oy, Oz of the effort and moment of deformation that are exerted at the 
point M on S, referred to the unit of area of S.  Finally introduce, as in sec. 53, eighteen 
new auxiliary functions pxx, …, qxx, … by the formulas: 
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and the analogous one that is obtained by replacing: 
 

A1, A2, A3, pxx, pyx, pzx, P1, P2, P3, qxx, qyx, qzx 
by 

B1, B2, B3, pxy, pyy, pzy, Q1, Q2, Q3, qxy, qyy, qzy, 
and then by 

C1, C2, C3, pxz, pyz, pzz, R1, R2, R3, qxz, qyz, qzz , 
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respectively, with the quantity . having the same expression as it did in sec. 53.  We 
obtain the transformed relation: 
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in which the integrals are taken over, on the one hand, the time interval between the 
instants t1 and t2, and, on the other hand, the surface S of the medium (M) at the instant t, 
and the domain it bounds, with d0 designating the area element of S. 
 Once again, we apply the GREEN formula to the terms that refer to the derivatives of 
21, 22, 23, µ1, µ2, µ3 with respect to x, y, z, and an integration by parts (1) of the terms that 
involve the derivatives of 21, 22, 23, µ1, µ2, µ3 with respect t, and let l, m, n denote the 
direction cosines of the exterior normal to the surface S at the instant t with respect to the 
fixed axes.  Since 21, 22, 23, µ1, µ2, µ3 are arbitrary, they become: 
 

F = lpxx + mpyx + npzx,  I = lqxx + mqyx + nqzx, 
G = lpxy + mpyy + npzy,  J = lqxy + mqyy + nqzy, 
H = lpxz + mpyy + npzz,  K = lqxz + mqyz + nqzz, 
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1 Since the field of variation actually varies with t, we perform that integration by parts by the intermediary 
of passing to the variables x0, y0, z0.  We suppose that . is positive and equal to |.|. 
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The significance of the eighteen new auxiliary functions pxx, …, qxx, … result 
immediately from the relations that we just wrote.  Indeed, it is clear that the coefficients, 
pxx, pxy, pxz of l in the expressions of F, G, H represent the projections onto Ox, Oy, Oz of 
the effort that is exerted at the point M on a surface whose exterior normal is parallel to 
Ox, and that the coefficients qxx, qxy, qxz of l in the expressions for I, J, K are the 
projections onto Ox, Oy, Oz of the moment of deformation at M relative to the same 
surface. 
 
 
 64.  Exterior virtual work; theorems analogous to those of Varignon and Saint-

Guilhem.  Remarks on the auxiliary functions that were introduced in the preceding 
paragraphs. –  On a deformed medium (M) between the instants t1 and t2 in an arbitrary 
state of virtual deformation, we give the name of external virtual work to the expression: 
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 We refer to the notations of sec. 60, and, moreover, let -I, -J, -K be denote the 
projections onto the fixed axes of the segment whose projections onto , ,Mx My Mz" " "  are 

, ,I J K- - -" " "  in such a way that one has, for example: 
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in which we are always supposing that the axes in question have the same disposition. 
 This being the case, suppose, as in sec. 63, that one has given the arbitrary functions 
21, 22, 23, µ1, µ2, µ3 the significance that is defined by the formulas: 
 

21 = -x,   22 = -y,  23 = -z, µ1 = -I,  µ2 = -J,  µ3 = -K. 
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We then see that the preceding relations we obtained between the new auxiliary functions 
express only the following condition: 
 If a trajectory of the deformed medium is given any of the virtual displacements of 
sec. 60 then the external virtual work -*e is given by either the relation: 
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in which the integrals are taken over the time interval between the instants t1 and t2 and 
the deformed medium, or by the relation: 
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in which the integrals are taken over the time interval between the instants t1 and t2 and 
the undeformed medium at the instant t, because the formula that we gave above: 
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which serves to define the external virtual work, may also be written: 
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by virtue of the significance of X0, Y0, Z0, L0, M0, N0, F0, G0, H0, I0, J0, K0, A, B, C, P, Q, 
R, and likewise: 
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by virtue of the significance of X, Y, …, N, F, G, …, K. 
 Start with the formula: 
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applied to an arbitrary part of the medium that is bounded by a surface S0 and the time 
interval between the instants t1 and t2.  Since -W must be identically null when the 
variations -x, -y, -z are given by the formulas (60) of sec. 61, namely: 
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    -x = (a1 + /2z – /3y)-t, 
    -y = (a2 + /3x – /1z)-t, 
    -z = (a3 + /1y – /2x)-t, 
 
by virtue of the invariance of W under the group of Euclidean displacements, and -I, -J, 
-K are given by: 

-I = /1-t, -J = /2-t, -K = /3-t, 
 
and that this is true for any values of the constants a1, a2, a3, /1, /2, /3 we conclude from 
the expressions for -*e that just insisted on (1) that one has: 
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and four analogous equations.  In these formulas, one may imagine that the frontier S0 is 
variable. 
 The auxiliary functions that were introduced in the preceding paragraphs are not the 
only ones that one may imagine.  Upon confining ourselves to their consideration, we add 
the same simple remarks as in sec. 54. 
 By definition, we have introduced two systems of efforts and moments of 
deformation relative to a point M of the deformed medium at the instant t.  The first of 
them are the ones that are exerted on surfaces that have their normal parallel to one of the 
fixed axes Ox, Oy, Oz before deformation.  The second are the ones that are exerted on 
surfaces that have their normal parallel to one of the same fixed axes Ox, Oy, Oz after 
deformation.  The formulas that we indicated give the latter elements in terms of the 
former; however, by an immediate solution, which we will not elaborate upon, one 
inversely obtains the former elements in terms of the latter. 
 Now suppose that one introduces the function W.  The first efforts and moments of 
deformation have the expressions we already indicated, and one immediately deduces the 
expressions for the second ones.  However, in these calculations, one may specify the 
functions that one must introduce according to the nature of the problem, and which are, 
for example, x, y, z, and three parameters (2) 21, 22, 23, by means of which one 
expresses .,,, %$$ """!  
 

                                                
1 The passage from the elements that are referred to the unit of volume of the undeformed medium and the 
area of the frontier S0 to the elements that refer to the unit of volume of the deformed medium and the area 
of the frontier S at the instant t is sufficiently immediate that it suffices to confine oneself, as we have done, 
to the first, for example. 
 
2 For such auxiliary functions 21, 22, 23 one may take, for example, the components of the rotation, which 
makes the axes Ox, Oy, Oz parallel to ,,, zMyMxM """ respectively. 
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 If one introduces x, y, z, 21, 22, 23, and if one continues to let W denote the function 
that depends on x0, y0, z0, the first derivatives of x, y, z with respect to x0, y0, z0, t on 
21, 22, 23, and their first derivatives with respect to x0, y0, z0, t that are obtained by 
replacing the various quantities &i, 'i, )i, pi, qi, ri, &, ', ), p, q, r in the function W(x0, y0, 
z0, t, &i, 'i, )i, pi, qi, ri, &, ', ), p, q, r) by the values they are given by formulas (54), (55), 

),45( "  and ),55( " then one will have: 
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 65.  Notion of energy of deformation and motion. – We must remark that our 
present exposition contains the statics of deformable media as a special case.  Indeed, it 
suffices to consider a reversible virtual modification, in the sense of DUHEM, instead of 
envisioning a realizable virtual deformation, as we have done. 
 This observation leads us to consider the notion of the energy of deformation and 
motion.  We propose to determine the work done by external forces and moments, as well 
as external efforts and moments, of deformation that depend on an arbitrary time interval 
for a real modification.  For this, it suffices to calculate the elementary work relative to 
time dt.  The latter is: 
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 If one replaces ,,,,,, 0000 !! GFYX """" by their expression as a function of the action, 

and if one performs an inverse calculation to the one that led us to their definition, then 
one immediately obtains, by virtue of the CODAZZI equations: 
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 In particular, if one considers the case in which W does not contain t explicitly, in 

such a way that 
t

W

*

*
 is null, then the preceding value becomes the differential with 

respect to time of the expression: 
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which may be called the energy of deformation and movement at the instant t. 
 At this point in the discussion, we need to make several important general remarks 
that will find further application in what follows in the theory of Euclidean action. 
 The only notion of Euclidean action of deformation and motion that suffices for us 
furnishes, in a very extended case, a constructive definition of the quantity of motion and 
the moment of the quantity of motion, the effort and moment of deformation, and the 
force and external moment.  One may distinguish a dynamical part and a static part in the 
force and the external moment by grouping, on the one had, the terms that contain only 
the dynamical acceleration, and, on the other hand, the terms that contain only what one 
may call the kinematical acceleration; this distinction obviously expresses an extension 
of d’ALEMBERT’s principle.  Similarly, suppose that external work is null, and that the 
energy of deformation and motion remains invariant in time.  We thus obtain the notion 
of conservation of energy, which simply translates into the hypothesis that the medium is 
isolated from the external world.  In turn, we recover all of the fundamental ideas of 
classical mechanics, and it is manifest that the particular form that they take in the latter 
context must be what one envisions for the state of motion and deformation in an 
infinitesimal neighborhood of the natural state, in which one supposes that W and its 
derivatives are null. 
 
 
 66.  Initial state and natural states.  General indications on the problem that led 
us to the consideration of deformable media. – In the foregoing, we considered the 
trajectory of the deformed state, and, after describing the initial position (M0) of that 
deformed state at a definite instant t0 we referred it to the position (M) at an arbitrary 
instant t.  Considerations that are analogous to the ones we developed in sec. 56, and in 
which the parameter that was thus introduced is now replaced by time t may be repeated 



THE DEFORMABLE MEDIUM 193 

here if we make one of the deformed states play the role that we attributed to the initial 
state (M0). 
 However, one may also imagine that the functions x, y, z that determine the trajectory 
of the deformed state depend on one parameter, and that one distinguishes a particular 
value of this parameter.  One thus defines a sequence of states that one may call natural 
states, and their trajectory may be called the trajectory of natural states.  One may use 
the new parameter as we did in our Note sur la dynamique du point et du corps invariable 
and study, in particular, the trajectory of the deformed states that infinitely close to the 
trajectory of the natural states. 
 Conforming to the previous indications, suppose, to fix ideas, that the external force 
and moment are given by means of simple functions of x0, y0, z0, t, the elements that fix 
the position of the triad .zyxM """  We may consider the equations of sec. 62 that relate to 
the external force and moment as partial differential equations that relate to x, y, z and 
three parameters 21, 22, 23, by means of which one expresses .,,, %$$ """!  This viewpoint 

is the one that presents itself most naturally.  The expressions &i, 'i, )i, pi, qi, ri, &, ', ), p, 

q, r will be functions of 1 1
1, , , , , , , , , , ,

i i i i

dx y z dx dy dz

dt dt dt dt

2 2
2

! ! ! !

** * *
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! ! !  (setting !1 = x0, 

!2 = y0, !3 = z0, as always) that we may calculate by means of formulas (54), (55), 
)45( " and ).55( "  

 Suppose that ,,,,,, 000000 NMLZYX """"""  or, what amounts to the same thing, X0, Y0, Z0, 

L0, M0, N0 are given functions of x0, y0, z0, t, x, y, z, 21, 22, 23.  After substituting the 
values of &i, …, ri, &, …, r that one deduces from formulas (54), (55), )45( " and ),55( " the 
expression W is a definite function of: 
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that we continue to denote by W, and the equations of the problem may be written: 
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in which $0, %0, &0 are functions of x0, y0, z0, t, x, y, z, 21, 22, 23 that result from the 

definitions of sec. 63.  This pertains to the formulas of the preceding paragraphs directly, 

in a way that is more immediate than the definition of the X0, Y0, Z0, $0, %0, &0 may 

be summarized in the relation: 
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 67.  Notions of hidden triad and hidden W.  Case in which W depends only on x0, 
y0, z0, t, &i, 'i, )i, &, ', ), and is independent of pi, qi, ri, p, q, r.  Extension of the 

classical dynamics of deformable bodies.  The gyrostatic medium and kinetic 

anisotropy. – The considerations that we exposed previously in regard to the hidden triad 
and hidden W are also applicable to the deformable medium in motion.  It suffices to 
simply add that a hidden W will correspond to a hidden motion. 
 In particular, we shall examine the case in which W depends only on the quantities x0, 
y0, z0, t, &i, 'i, )i, &, ', ) but not on the pi, qi, ri, p, q, r.  The equations of sec. 66 then 
reduce to the following: 
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in which W depends only x0, y0, z0, t, ,,,,,,,,, 321
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us that if we take the simple case in which X0, Y0, Z0, $0, %0, &0 are given functions (1) 
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!  then the three equations on the right may 

be solved for 21, 22, 23.  One thereby finally obtains three partial differential equations 
that, by our hypotheses, refer only to x0, y0, z0, t, and to x, y, z, and their first and second 
derivatives. 
 Imagine the particular case in which the given functions $0, %0, &0 are null; the 

same will be true for the corresponding values of the functions in any of the systems: 
),,,( 000 NML """ (L0, M0, N0), (L, M, N).  From this, it results that the equations: 

 

,0
1

=
*

*

2

W
 ,0

2

=
*

*

2

W
 ,0

3

=
*

*

2

W
 

amounts to: 
 

,
0

3
0

2
0

1
0

3
0

2
0

1 dt

dy
C

dt

dz
B

z

z
B

y

z
B

x

z
B

z

y
C

y

y
C

x

y
C +=

*

*
+

*

*
+

*

*
+

*

*
+

*

*
+

*

*
 

,
0

3
0

2
0

1
0

3
0

2
0

1 dt

dz
A

dt

dx
C

z

x
C

y

x
C

x

x
C

z

z
A

y

z
A

x

z
A +=

*

*
+

*

*
+

*

*
+

*

*
+

*

*
+

*

*
 

,
0

3
0

2
0

1
0

3
0

2
0

1 dt

dx
B

dt

dy
A

z

y
A

y

y
A

x

y
A

z

x
B

y

x
B

x

x
B +=

*

*
+

*

*
+

*

*
+

*

*
+

*

*
+

*

*
 

 
i.e., to: 

,
1

,
-

.
/
0

1
+

.
=+

dt

dy
C

dt

dz
Bpp zyyz   ,

1
,
-

.
/
0

1
+

.
=+

dt

dz
A

dt

dx
Cpp xzzx  

,
1

,
-

.
/
0

1
+

.
=+

dt

dx
B

dt

dy
App yxxy  

 
which one may interpret as saying that the motion of the deformable body in question, 
which constitutes the classical theory of elasticity as a special case, gives rise to a 
moment whose three components are: 
 

                                                
1 To simplify the exposition and to indicate more easily what we are alluding to, we suppose that X0, Y0, Z0, 
$0, %0, &0 do not refer to the derivatives of 21, 22, 23.  



196 THEORY OF DEFORMABLE MEDIA 

,
1

,
-

.
/
0

1
+

. dt

dy
C

dt

dz
B  ,

1
,
-

.
/
0

1
+

. dt

dz
A

dt

dx
C  ,

1
,
-

.
/
0

1
+

. dt

dx
B

dt

dy
A  

 
and thus has the effect of destroying the equalities: 
 

pyz = pzy, pzx = pxz, pxy = pyz . 
 
 Having said this, we observe that if one starts with a trajectory that is supposed to be 

given and deduces the functions $0, %0, &0, as in sec. 63, then, in the case in which 

these three functions are null one may arrive at the result that accidentally presents itself, 
i.e., for a certain set of particular trajectories; however, one may arrive at this for any 
trajectory (M) as a consequence of the nature of the medium (M), and its motions, i.e., 
from the form of W. 
 Imagine the latter case, which is particularly interesting; W is then a simple function 
(1) of x0, y0, z0, t, and ten expressions ,1, ,2, ,3, %1, %2, %3, 71, 72, 73, v

2 that is defined by 
the following formulas: 
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1 The triad is completely hidden; thus, we may also imagine that we have a simply pointlike medium. 
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The equations deduced in sec. 62 and 63 reduce to either: 
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in which one has: 
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with analogous expressions for A2, B2, C2, A3, B3, C3 and 
 

,
1

0
3

0
2

0
1 dt

dx

v

W

vz

x

y

x

x

x
A

*

*
+

*

*
:+

*

*
:+

*

*
:=  

,
1

0
3

0
2

0
1 dt

dy

v

W

vz

y

y

y

x

y
B

*

*
+

*

*
:+

*

*
:+

*

*
:=  

,
1

0
3

0
2

0
1 dt

dz

v

W

vz

z

y

z

x

z
C

*

*
+

*

*
:+

*

*
:+

*

*
:=  

upon setting: 

,
i

i

W

,*

*
=8  ,

i
i

W

%*

*
=9  ,

i
i

W

7*

*
=:  

or again to: 

,
1

X
dt

dA

z

p

y

p

x

p zxyxxx =
.

+
*

*
+

*

*
+

*

*
 ,zxyxxx npmplpF ++=  

,
1

Y
dt

dB

z

p

y

p

x

p zyyyxy
=

.
+

*

*
+

*

*
+

*

*
 ,zyyyxy npmplpG ++=  

,
1

Z
dt

dC

z

p

y

p

x

p zzyzxz =
.

+
*

*
+

*

*
+

*

*
 ,zzyzxz npmplpH ++=  

 
in which one has: 
 

00
3

00
1

2

0
3

2

0
2

2

0
1 22

1

y

x

x

x

x

x

z

x

z

x

y

x

x

x
pxx

*

*

*

*
9++

*

*

*

*
9+,,

-

.
//
0

1

*

*
8+,,

-

.
//
0

1

*

*
8+

"
#
$

,,
-

.
//
0

1

*

*
8

.
=  

   ,
0

3
0

2
0

1

3
4
5

,,
-

.
//
0

1

*

*
:+

*

*
:+

*

*
:+

dt

dx

z

x

y

x

x

x
 

{
00

3
00

2
00

1

1

z

y

z

x

y

y

y

x

x

y

x

x
pyx

*

*

*

*
8+

*

*

*

*
8+

*

*

*

*
8

.
=  

 ,,
-

.
//
0

1

*

*

*

*
+

*

*

*

*
9+,,

-

.
//
0

1

*

*

*

*
+

*

*

*

*
9+,,

-

.
//
0

1

*

*

*

*
+

*

*

*

*
9+

0000
3

0000
2

0000
1 x

y

y

x

y

y

x

x

z

y

x

x

x

y

z

x

y

y

z

x

z

y

y

x
 

   ,
0

3
0

2
0

1

3
4
5

,,
-

.
//
0

1

*

*
:+

*

*
:+

*

*
:+

dt

dx

z

y

y

y

x

y
 

{
00

3
00

2
00

1

1

z

y

z

z

y

y

y

z

x

y

x

z
pzx

*

*

*

*
8+

*

*

*

*
8+

*

*

*

*
8

.
=  

 ,,
-

.
//
0

1

*

*

*

*
+

*

*

*

*
9+,,

-

.
//
0

1

*

*

*

*
+

*

*

*

*
9+,,

-

.
//
0

1

*

*

*

*
+

*

*

*

*
9+

0000
3

0000
2

0000
1 x

x

y

z

y

x

x

z

z

x

x

z

x

x

z

z

y

x

z

z

z

x

y

z
 

   ,
0

3
0

2
0

1

3
4
5

,,
-

.
//
0

1

*

*
:+

*

*
:+

*

*
:+

dt

dx

z

z

y

z

x

z
 



THE DEFORMABLE MEDIUM 199 

with analogous expressions for pxy, pyy, pzy, pxz, pyz, pzz .  We thus obtain the most general  
equations of motion for the classical deformable body. 
 In order for the effort to satisfy the relations: 
 

pyz = pzy, pzx = pxz, pxy = pyx, 
 
it is sufficient that one has: 

71 = 0,  72 = 0,  73 = 0, 
 
i.e., that W is independent of the arguments 71, 72, 73.  More particularly, if one must 
have: 

pyz = pzy = 0,  pzx = pxz = 0,  pxy = pyx = 0, 
 
then W must be a simple function of . and v, and one finds that: 
 

pxx = pyy = pzz = ;
.*

*W
 

 
one then finds the motion of a perfect fluid in this case. 

 When the functions $0, %0, &0 are not null, W will have the twelve translations 

&i, 'i, )i, &, ', ) for its arguments.  On the one hand, the medium may be regarded as 
gyrostatic, by giving a justifiable extension to this word, which was coined by LORD 
KELVIN, and, on the other hand, the medium is endowed with kinetic anisotropy, in the 
sense envisioned by RANKINE and then by LORD RAYLEIGH.  For example, one 
therefore makes the theory of the double refraction of light, such as was exposed by 
LORD RAYLEIGH and GLAZEBROOK, rest on a purely mechanical basis.



V. – EUCLIDEAN ACTION AT A DISTANCE, 
ACTION OF CONSTRAINT, AND DISSIPATIVE ACTION 

 
 68. – Euclidean action of deformation and motion in a discontinuous medium. – 
Consider a discrete system of n triads in which each triad is distinguished by an index i 
that consequently takes the values 1, 2, …, n.  Let iiii zyxM """  be the triad whose index is i, 

with an origin Mi that has the coordinates xi, yi, zi, and axes ,ii xM " ,ii yM "
i iM x"  that have 

the direction cosines , , ; , , ; , ,i i i i i i i i i$ $ $ # # # % % %" "" " "" " ""with respect to three fixed rectangular 

axes Ox, Oy, Oz.  We suppose that the quantities xi, yi, zi, , , ,i i i$ $ %" ""!  are functions of 

time t, and we introduce the six arguments &i, 'i, )i, pi, qi, ri that are defined by formulas 
)45( " and (55 )"  of sec. 60 with the index i. 

 Envision a function W of two infinitely close positions of the system of 
triads ,iiii zyxM """  i.e., a function of t, of xi, yi, zi, ,,,, iii %$$ """ !  and their first derivatives 

with respect to t (i takes the values 1, 2, …, n).  We propose to determine what sort of 
form W must take in order for that function to remain invariant under any infinitesimal 
transformation of the group of Euclidean displacements such as (60).  Observe that the 
relations )45( " and (55 )"  of sec. 60, with the index i, permit us to express the first 

derivatives of the nine direction cosines , , ,i i i$ $ %" ""!  with respect to t by means of well-

known formulas that involve these cosines and pi, qi, ri, and, on the other hand, to express 
these nine cosines , , ,i i i$ $ %" ""!  by means of &i, 'i, )i, and the first derivatives of xi, yi, zi 

with respect to t.  We may therefore finally express the function W that we seek as a 
function of t, of xi, yi, zi, and their first derivatives, and finally, of &i, 'i, )i, pi, qi, ri, which 
we indicate by writing: 
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 Since the variations -&i, -'i, -)i, -pi, -qi, -ri are null in the present case, as a result of 
the well-known theory of moving frames, we must write the new form for W that one 
obtains by virtue of formulas (60), when taken with the index i, and for any a1, a2, a3, 
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 Replace -xi, -yi, -zi with their values in (60) and , ,i i idx dy dz

dt dt dt
- - -  with the values 

one obtains by differentiating them.  Equate the coefficients of a1, a2, a3, /1, /2, /3; we 
obtain the following six conditions: 
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with analogous relations. 
 If we suppose that the points (xi, yi, zi) describe all possible trajectories then we 
arrive at identities that verified by the function W of the 6n arguments of xi, yi, zi, 

,,,
dt

dz

dt

dy

dt

dx iii  and the last arguments &i, 'i, )i, pi, qi, ri, which we leave aside for the 

moment.  We seek to discover the resulting form for W. 
 We commence by treating the case of the system of three equations: 
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that determine a function W of the 3n arguments xi, yi, zi.  We have already encountered 
this system in the context of the statics of the line, surface, and continuous three-
dimensional medium, in the case where p = 1, p = 2, p = 3.  We leave aside the case p = 
1, in which the three equations reduce to two.  For p = 2 and p = 3, we have three 
equations that form a complete system.  For p = 2, we have three equations, six variables, 
and three independent solutions: 
 

222
iii zyx ++   (i = 1, 2), x1x2 + y1y2 + z1z2; 

 
for p = 3, we have three equations, nine variables, and six independent solutions: 
 

222
iii zyx ++   (i = 1, 2, 3), xixi + yiyi + zizi  (i = 1, 2, 3). 

 
For p > 3, the system is still complete.  To prove this it suffices to show that they admit 
3p – 3 independent solutions, in which the number of equations is 3 and the number of 
variables is 3p.  We effectively have first, the p solutions: 
 

222
iii zyx ++   (i = 1, 2, …, p), 

then the solution: 
x1x2 + y1y2 + z1z2, 
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and finally, the 2(p – 2) solutions: 
 

x1xi + y1yi + z1zi,  x2xi + y2yi + z2zi (i = 3, 4, 5, .., p), 
 

which are independent.  W is thus a function of the 3(p + 1) independent arguments that 
we just enumerated. 
 Now return to the proposed system that is formed from conditions (63) and (64).  The 
conditions (63) prove that W depends on x1, …, xn, y1, …, yn, z1, …, zn only by the 
intermediary of the expressions: 
 

X2 = x2 + x1,  X3 = x3 + x1,  …,  Xn = xn + x1, 
Y2 = y2 + y1,  Y3 = y3 + y1,  …,  Yn = yn + y1, 
Z2 = z2 + z1,  Z3 = z3 + z1,  …,  Zn = zn + z1. 
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and demand that equations (64) be verified by the function W of the arguments X2, X3,…, 
X2n; Y2, Y3,…, Y2n; Z2, Z3,…, Z2n .  For example, consider the first of equations (64); they 
become: 
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y1 and z1 disappear, and what remains are the first of the equations: 
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 We thus come down to the system (65), in which xi, yi, zi are replaced by Xi+1, Yi+1, 
Zi+1, and p by 2n – 1. 
 If we first suppose that n = 2, then we see that W is abstractly given in terms of the 
arguments &i, 'i, )i, pi, qi, ri as a function of the independent expressions: 
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 Therefore, we finally have that W is a function of &i, 'i, )i, pi, qi, ri, and the four 
arguments: 
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 If we suppose that n > 2 then we see that W is abstractly given in terms of the 
arguments &i, 'i, )i, pi, qi, ri as a function of 6(n – 1) independent arguments: 
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 We remark that one has: 
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in which r is the distance between two points of the system.  From symmetry reasons, one 
may have to involve arguments in W that are not independent, in which case, one may 
take, independently of the &i, 'i, )i, pi, qi, ri, the following arguments: 
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the latter subsume the arguments with three indices 2iji and arguments with four indices 
2ijk.  They figure only when there are more than two points, and one sees that the action 
on two points is influenced by all of the other points in this case.  It is easy to establish 
the relations that exist between these dependent arguments in a form that is sufficiently 
complex; they are analogous to the relations between the distances rij when the number of 
points is < 5. 
 If we know the expression for the Euclidean action W in a the system of triads in 
question, then, by a calculation that repeats the ones we made before, one may easily find 
the expression for the external force and moment on an arbitrary triad.  Since the action 

W is a function of xi, yi, zi, ,,,
dt

dz

dt

dy

dt

dx iii  by the intermediary of rij, ;ij, 2ijk, it is easy to 

regard W as primarily a function of xi, yi, zi, ,,,
dt

dz

dt

dy

dt

dx iii  and of &i, 'i, )i, pi, qi, ri.  We 

have: 

2
2

1

t

t
Wdt-  

2

1

)(
t

ti
iiiiiiiiiiii KRJQIPzCyBxA &
'

(
)
*

+
+++++= % ------  

2 % ++++++
2

1

,)(
t

t
i

iiiiiiiiiiii dtKNJMILzZyYxX ------  

 
in which we have set: 
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in which (Ai, Bi, Ci) and (Pi, Qi, Ri) are the quantity of motion and the moment of the 
quantity of motion, respectively, for the triad of index i, and: 
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in which (Xi, Yi, Zi) and (Li, Mi, Ni) are the external force and external moment of the triad 
of index i; what remains in these calculations is to exhibit the arguments rij, ;ij, 2ijk, but 
this is easy. 
 We remark that the expression for the external force may be decomposed into two 
parts. The first, which depends on the segments (Ai, Bi, Ci), (Pi, Qi, Ri) and their 
derivatives, is the properly dynamical part.  The second, which results from the presence 
of the arguments rij, ;ij, 2ijk in W corresponds to the force that the triad of index i is 
subject to on the part of the other triads of the system.  Consider the expression: 
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which represent the sum of the elementary works of the forces applied to the different 
triads.  If we calculate them upon replacing Xi, Yi, Zi, Li, Mi, Ni, with the preceding values 
then we find the following expression for the elementary work relative to the dynamical 
part of the external force and the external moment: 
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and, for the elementary work due to the forces that are exerted between the triads of the 
system, we have: 
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If we add these two expressions, and set: 
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then we see that the sum of the elementary works is: 
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dE dt

t

*
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in which we suppose that W is independent of t, and when we give E the name of energy 
of motion and position for the system of triads in question, we obtain a proposition that is 
entirely analogous to that of sec. 65. 
 From the foregoing, it is easy to deduce a system dynamic that is established on the 
same basis as the classical theory, but without limiting ourselves to central forces, as in 
the latter case.  Moreover, the actual exposition presents the advantage of associating the 
diverse laws of force at a distance that were studied by GAUSS, RIEMANN, WEBER, 
and CLAUSIUS (1), who uniquely introduced the arguments rij, ;ij, %ijk to their true 
origin. 
 
 
 69.  The Euclidian action of constraint and the dissipative Euclidian action. – 
The considerations that we must develop in regard to the Euclidian action at a distance 
lead to the notion of constraint in a natural manner, a notion that was due to GAUSS and, 
as one knows, was applied by HERTZ to the study of the foundations of mechanics by 

                                                
1 See R. REIFF and A. SOMMERFELD, Encyclopädie der Math. Wissenschaften, 52, pp. 3-62. 
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following a path already explored by BELTRAMI, R. LIPSCHITZ, and G. DARBOUX 
(1). 
 To simplify, let there be a point that describes a definite trajectory by the three 
functions x0, y0, z0, and time t when its movement is free.  On the other hand, denote the 
functions of time t that describe its trajectory when it is subject to constraints by x, y, z.  
We may envision the two points (X, Y, Z), (X0, Y0, Z0), whose coordinates are obtained, 
for example, by the formulas: 
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which provide the TAYLOR development up to the first three terms.  If we assume that 
the constraints are frictionless then we may demand that at the instant t in question one 
has: 

x = x0,      y = y0,   z = z0,   ,0

dt
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 Having said this, the introduction of the notion of constraint due to GAUSS amounts 
to replacing r by its value, where r denotes the distance, after having considered the 
Euclidean action at a distance U1(r) in such a way that one is led to the function U of the 
argument % that is defined by the formula: 
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 If we then apply the method of variable action, we have: 
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in which we have set: 
                                                
1 BELTRAMI, Sulla teoria generale dei parametric differenziali, Mem. Della R. Accad. Di Bologna, Feb. 
25, 1869. 
 
R. LIPSCHITZ, Untersuchungen eines Problemes der Variationsrechnung, in welchem das Problem der 
Mechanik enthalten ist, Journ. fhr die reine und angewandte Mathmematik, 74, pp. 116-149, 1872; 
Bemerkung zu dem Princip des kleinsten Zwanges, ibid., 82, pp. 311-342, 1877. 
 
G. DARBOUX, Leçons sur la théorie générale des surfaces, 2nd Part, Book V, Chap. VI, VII, VIII, Paris, 
1889. 
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 If, with GAUSS, we call the argument % the constraint then the force ', (, ) may be 

called the force of constraint that is applied to the point (x, y, z), and may be regarded as 

having the effect of impeding the free motion of the point; on the contrary, the force + ', 

+ (, + ) has the effect of changing the free motion into the constrained motion. 

 The essential difference between the present conception of force and the one that 
results from NEWTON’s laws of motion is the following: in the latter form, one 
considers the action relative to two infinitely close positions + one present, one future + 
on the same trajectory; in the conception of GAUSS and HERTZ, the action is referred to 
two future positions: one on the trajectory we called free, the other on the trajectory we 
called constrained.  In the two cases, one obviously has a theory that permits us to predict 
the future motion, which is the object of point dynamics.  However, in addition, and this 
is the point that we would particularly like to clarify, the action is Euclidean. 
 On the subject, it is interesting to remark that GAUSS has explicitly established an 
agreement between the action of constraint and the law of errors, which has the same 
form in effect.  One therefore sees that the fundamental character of the law of errors is 
the Euclidean invariance of that law, and that the new branch of mechanics, which was 
created by MAXWELL, BOLTZMANN, and W. GIBBS in the name of statistical 
mechanics, may likewise receive the deductive form that we propose to give ordinary 
mechanics here. 
 We may further observe that the forces of constraint translate into an indeterminacy 
that is the product of the definition of the force, and which leads to the introduction of 
LAGRANGE multipliers, just as in the mechanics that one derives from NEWTON’s 
ideas as in what one deduced from the notion of GAUSS constraint. 
 GAUSS’s idea may also be applied to friction by envisioning a Euclidean action on 
the two points: 
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in which the point x0, y0, z0 refers to a free trajectory, and the point x, y, z refers to a 
trajectory that is traversed with friction.  As we are dealing with sliding friction here, we 

must set :x = x0, y = y0, z = z0, ,0

dt
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factor 1 – µ, which corresponds precisely to the notion of the dissipation of the free 
action at a point x0, y0, z0. 
 The arguments rij, ;ij, 2ijk that we considered in sec. 68, translate, by definition, into 
an analogous idea with regard to a triad we take to be isolated in the system of n triads in 
question.  One may, if one prefers, distinguish between these arguments, and say that rij 
is a potential argument, and that ;ij, 2ijk are dissipative arguments.  The central force 
hypothesis thus amounts to considering only the dynamics of systems without friction at 
a distance in mechanics.  From the arguments rij, ;ij, 2ijk, one may, on the other hand, 

derive the particular argument of WEBER ,
dt

drij and if one passes from the discontinuous 

medium to the continuous medium, in which the concept rests on the consideration of ds2 
for the space, then one finds oneself led to introduce the viscosity arguments 

,1

dt

d,
,2

dt

d,
,3

dt

d,
,1

dt

d%
,2

dt

d% 3d

dt

%
in the action W.  Beside such arguments, which were 

envisioned for the first time by NAVIER and POISSON, one must obviously also place 
arguments such as the argument &1&2 + '1'2 + )1)2, which was considered in sec. 47, and 
arguments such as 71, 72, 73 from sec. 67.  We confine ourselves to these summary 
indications on viscosity, which has not been given further study in a sufficiently 
systematic manner up till now. 



VI. – THE EUCLIDEAN ACTION 

FROM THE EULERIAN VIEWPOINT 

 
 70.  The independent variables of Lagrange and Euler.  The auxiliary functions 

considered from the hydrodynamical viewpoint. – In the statics and dynamics of 
deformable media, we took x0, y0, z0, and x0, y0, z0, t, respectively, to be the independent 
variables.  In the former case (statics), one lets x0, y0, z0 denote the coordinates of the 
point M0 of the natural state (M0) by imaging that this natural state is deformed in an 
infinitely slow fashion so that its points do not acquire any velocity, and passes from the 
position (M0) to the position (M) in a continuous fashion (1).  In the second case 
(dynamic), one lets x0, y0, z0 denote the coordinates of the position M0 at a definite instant 
t0 of the point that is at M at the instant t.  The position (M0) of the medium plays a 
particular role. 
 The deformable medium (M) has been considered to be generated by a triad ,zyxM """  
whose origin M has the coordinates x, y, z, and whose vectors have the direction 
cosines , , ; , , ; , ,$ $ $ # # # % % %" "" " "" " ""  with respect to the fixed axes Ox, Oy, Oz.  In the static 
case x, y, z, , , ,$ $ %" ""! are considered to be functions of the independent variables x0, y0, 
z0, and, in the dynamics case, as functions of the four independent variables x0, y0, z0, t.  
In either case, we say that the independent variables imagined are the LAGRANGE 
variables, and if we would like to make this concept specific we demand that: 
 
(66)  x = x(x0, y0, z0),  y = y(x0, y0, z0), z = z(x0, y0, z0), 
or: 

)66( "   x = x(x0, y0, z0, t),  y = y(x0, y0, z0, t), z = z(x0, y0, z0, t), 
 
and, similarly, we have either: 
 
(67)  ),,,( 000 zyx$$ =  ),,,( 000 zyx$$ "="  ),,,( 000 zyx$$ ""=""  

or 
)76( "   ),,,,( 000 tzyx$$ =  ),,,,( 000 tzyx$$ "="  ),,,,( 000 tzyx$$ ""=""  

 
with analogous formulas for .,,,,, %%%### """"""  
 However, we may now imagine that one performs a change of variables on the 
independent variables.  In particular, by analogy with what one does in hydrodynamics, 
we may imagine that one takes x, y, z, or x, y, z, t to be the independent variables.  We 
then say that we are imagining the EULER variables. 
 What is the fundamental question we must ask?  In the theory that we just developed, 
where one considered that question to be either the question of defining the elements of 
force, etc., or, conversely, that of determining the position (M), we encountered the 

                                                
1 In this conception of the infinitely slow deformation of a medium, which is analogous to the reversible 
transformations of thermodynamics, we have defined the external force and moment, the effort and 
moment of deformation that one may qualify as static, and then the work done in passing from (M0) to (M), 
and, consequently, we obtain the notion of the energy of deformation, which is placed beside that of action, 
which we started with. 
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functions x, y, z, , , ,$ $ %" ""!  of x0, y0, z0, or of x0, y0, z0, t that are defined by (66), (67), or 
by ).76(),66( ""   Imagine that one solves equations (66) or )66( "  with respect to x0, y0, z0; 
one has: 
(68)  x0 = x0(x, y, z),  y0 = y0(x, y, z),  z0 = z0(x, y, z), 
or 

)86( "   x0 = x0(x, y, z, t),  y0 = y0(x, y, z, t), z0 = z0(x, y, z, t), 
 
and, substituting these in (67) or )76( " , we have: 
 
(69)  ),,,( zyx$$ =   ),,,( zyx$$ "="  ),,,( zyx$$ ""=""  
or 

)96( "   ),,,,( tzyx$$ =  ),,,,( tzyx$$ "="  ).,,,( tzyx$$ ""=""  
 
 We presently know the functions x0, y0, z0, , , ,$ $ %" ""! of x, y, z, or of x, y, z, t, and, 
conversely, by solving (68), (69) or ),86( " (69 )" one will then pass to (66), (67) or to 

).76(),66( ""  
 However, one must complete the statement that must be made by observing that in 
either case it may be convenient to introduce the auxiliary functions. 
 If we imagine the case of LAGRANGE variables, it may happen that the functions x, 
y, z do not figure in the question explicitly (1); it may therefore be convenient to introduce 
the first derivatives of x, y, z with respect to x0, y0, z0, or with respect to x0, y0, z0, t as 
auxiliary variables (2).  In this case, by imagining x, y, z, ,,,, %$$ """! one may also 

introduce the translations and rotations &i, …, ri, &, …, r as auxiliary functions if only x0, 
y0, z0 or x0, y0, z0, t figure in the givens. 
 If we imagine the case of the EULER variables then we may indicate analogous 
circumstances in which the use of the auxiliary variables may offer advantages.  First, 
suppose that the hypotheses that we must consider for the LAGRANGE variables are 
realized.  We may preserve the indicated auxiliary functions.  The only essential 
difference from the preceding case resides in the ultimate determination of formulas (66), 
(67) or the analogous ones, if one performs them.  If we suppose, furthermore, that x0, y0, 
z0 do not figure in the question then we may introduce the derivatives of x0, y0, z0 with 
respect to x, y, z or with respect to x, y, z, t as the auxiliary variables. 
 Following these indications, one sees that there may be some use for the equations 
that served as the point of departure since they were presented in a convenient form from 
the standpoint of the auxiliary functions.  One observes that this goal is already attained 
by the equations that we previously obtained, in which the auxiliary functions &i, …, ri, &, 
…, r already figure. 
                                                
1 This is what normally happens if one starts with results like the ones given in our exposition and if one 
does not modify the expressions of force, etc., by virtue of the formulas (66), (67) or );76(),66( ""  indeed, 

the letters x, y, z do not figure explicitly in W. 
 
2 These auxiliary functions are actually coupled by relations that are easy to form; the same remark applies 
in general.  They are not introduced in hydrodynamics, where the auxiliary functions are derivatives with 
respect to just the variable t (and where the use of these auxiliary functions is often limited to the case of 
introducing the EULER variables). 
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 71.  Expressions for &i, …, ri (or for &i, …, ri, &, …, r) by means of the functions 

x0, y0, z0, , , ,$ $ %" ""! of x, y, z (or of x, y, z, t) and their derivatives; introduction of the 

Eulerian arguments. – From the explanations that must be given, it results that it may be 
useful to have expressions for &i, …, ri or for &i, …, ri, &, …, r, which are evaluated, no 
longer in accord with formulas (66), (67) or ),76(),66( "" which suppose that x0, y0, z0 or 
x0, y0, z0, t are independent variables, but in accord with formulas (68), (69) or 

),96(),86( "" which introduce the functions x0, y0, z0, , , ,$ $ %" ""! of x, y, z or of x, y, z, t. 
 We think about the case in which t figures in a general manner.  The formulas 
obtained give, in particular, the case in which x, y, z, , , ,$ $ %" ""! are independent of t.  By 

virtue of ),76(),66( ""  the quantities &i, … are calculated by the formulas (1): 
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(in which !1 = x0, !2 = y0, !3 = z0), and these are calculated by means of x0, y0, z0, 

, , ,$ $ %" ""! and their derivatives with respect to x, y, z using formulas ).96(),86( ""  

 To that effect, we shall show that the quantities &i, …, ri, &, …, r, which will 
henceforth be called Lagrangian arguments, are simply expressed by means of the 
following auxiliary functions, which we call Eulerian arguments: 
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1 We use the habitual notations for the derivatives with respect to t.  (See e.g., APPELL, Traité de 
Mécanique, T. III, 1st ed., pp. 277). 
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in which we have set: 
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with analogous formulas for [p2], [q2], [r2], and for [p3], [q3], [r3] that are obtained by first 
changing %, # into $, %, and then into #, $, and we employ the well-known notations (1) 
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 We differentiate relations )86( " successively with respect to the LAGRANGE 
variables; they become four systems of three equations that, by virtue of notations (70) 
and (72), one may write: 
 
(75) &i(&i) + 'i('i) + )i()i) = 1,  &j(&k) + 'j('k) + )j()k) = 0, (j % k), 
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 By virtue of the preceding relations (75) (as well as things that result from formulas 
(78) given before), the last three relations (76) may be written: 
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 Once we solve equations (75) and (76), we observe that we may replace these 
systems with equivalent systems that are obtained by differentiating relations )66( "  with 
respect to the EULER variables x, y, z, t successively, and which, by virtue of notations 
(72), may be written (upon multiplying by , ,$ $ $" ""  and adding, etc.). 

                                                
1 See APPELL, Traité de Mécanique, T. III, 1st  ed., pp. 277. 
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to which we adjoin ).67( "   By multiplying system )57( "" by , ,$ $ $" ""and adding, etc., it may 
also be written: 
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 Once again, observe that the following form, which implies (75), is intermediate 
between )57( "" and (75), and ultimately results from formulas (70) combined with (75) and 
formulas (74): 
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One sees that the Lagrangian arguments are functions of only the Eulerian arguments and 
conversely (at least as far as translations are concerned). 
 First determine the Lagrangian arguments by means of the Eulerian arguments.  Let . 
denote the determinant: 
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 Let 1 1 1 2 2 2 3 3 3, , , , , , , ,& ' ( & ' ( & ' (" " " " " " " " "  be the coefficients of the elements of the determinant 

., i.e., the minors given a convenient sign, which therefore amounts to setting: 
 

,23321 ('('& +="  ,23321 &(&(' +="  ,23321 '&'&( +="  … 

 
 Upon solving equations (75) with respect to (&i), ('i), ()i), (&), ('), ()), and then 
substituting in (76), one obtains: 
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 Conversely, determine &i, 'i, )i, &, ', ) as a function (&i), ('i), ()i), (&), ('), ()).  We 
observe that the determinant whose elements are .(&i), .('i), .()i) is the adjoint 

determinant (1) of ., in such a way that we must let 
.

1
designate the determinant: 
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 Solve formulas (75) and (76) with respect to &i, 'i, )i, &, ', ).  Upon designating the 
coefficients of the elements of the determinant (78) by ),(),(),( iii ('& """ they become (2): 
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We now propose to determine the rotations. 
 Differentiate relations )76( " with respect to x, y, z, t.  While always employing the 
well-known notation for derivatives with respect to time, we have (3): 
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1 This adjoint determinant is the square of .. 
 
2 The first nine formulas of (79) (I = 1, 2, 3) are true if one considers the known consequences of the theory 
of adjoint determinants.  It is clear that all of the present calculations may be attached to the theory of forms 
and to that of linear substitutions. 
 

3 We distinguish 
dt

d$
from ,

t*

*$
…, consistent with the notation employed by APPELL, Traité de 

Mécanique, T. III., pp. 277.  As for x0, y0, z0, we do not need to introduce ,,, 000

dt

dz

dt

dy

dt

dx
since they are 

zero.  One observes that the present x0, y0, z0, t are functions of x, y, z, t, which, when equated to the old x0, 
y0, z0, define functions x, y, z that are thus implicit functions.  We shall return to this point later. 
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with analogous formulas for the cosines .,,, %%# ""!  
 The formulas (74) then give: 
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and, using formulas (72), formulas (73) give: 
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which give us the latter Eulerian arguments (pi), (qi), (ri), (p), (q), (r) by means of the 
Lagrangian arguments (it suffices to replace (&1), … with their values). 
 Conversely, to obtain the latter Lagrangian arguments p1, …, we may solve the 
system (80), but one may also directly differentiate the relations with respect to x0, y0, z0, 
t successively; we have: 
 

   ,
0000 x

z

zx

y

yx

x

xx *

*

*

*
+

*

*

*

*
+

*

*

*

*
=

*

* $$$$
 

   ,
0000 z

z

zy

y

yy

x

xy *

*

*

*
+

*

*

*

*
+

*

*

*

*
=

*

* $$$$
 

   ,
0000 z

z

zz

y

yz

x

xz *

*

*

*
+

*

*

*

*
+

*

*

*

*
=

*

* $$$$
 

   .
tt

z

zt

y

yt

x

xdt

d

*

*
+

*

*

*

*
+

*

*

*

*
+

*

*

*

*
=

$$$$$
 

 
After taking (70) into account, relations (71) then give us: 
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which one may write in the intermediate form: 
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with analogous formulas for p2, q2, r2; p3, q3, r3 that one obtains upon changing &1, '1, )1,  
into &2, '2, )2, and then into &3, '3, )3, or upon changing x0 into y0, and then into z0; one 
has, moreover: 
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 72.  Static equations of a deformable medium relative to the Euler variables as 
deduced from the equations obtained from the Lagrange variables.  We have already 
performed the passage from the LAGRANGE variables to the EULER variables in the 
context of the statics of deformable media.  It will suffice for us to complete the results so 
obtained (1). 
 We found formulas such as the following in sec. 53: 
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in which one has: 
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1 We then seek to obtain the definitive results directly. 
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 Suppose that W is expressed by means of the arguments (&i), ('i), ()i), (pi), (qi), (ri), 
and set: 

W = .8. 
 
By virtue of the formulas (77) of the preceding paragraph, one will have: 
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and, as a result, since . does not depend on pi, qi, ri: 
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 Upon differentiating relations (75) with respect to &i, one gets: 
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from which, one deduces: 
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and then, by the relations (80): 
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with analogous formula for the derivatives with respect to 'i, )i.  If one sets: 
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 By virtue of the formulas (72), (73), (74), ),57( "" and upon letting [Ai], [Bi], [Ci]; [Pi], 
[Qi], [Ri] denote the components relative to the axes Ox, Oy, Oz of the two vectors whose 
components with respect to the axes , ,Mx My Mz" " "  are );(),(),( iii CBA """ ),(),(),( iii RQP """ one 

deduces the following three formulas: 
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with analogous formulas for Bi, Ci, and pxy, pyy, pzy, pxz, pxz, pxz .  One then has: 
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and, again taking ),57( ""  into account, we obtain the following three formulas: 
 
   qxx = $[P1] + #[P2] + %[P3], 
   qyx = $[Q1] + #[Q2] + %[Q3], 
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   qzx = $[R1] + #[R2] + %[R3], 
 
with analogous formulas for Qi, Ri, and qxy, qyy, qzy, qxz, qxz, qxz. 
 

 

 73.  Dynamical equations of the deformable medium relative to the Euler 

variables as deduced from the equations obtained for the Lagrange variables. – We 
have also performed the passage from the LAGRANGE variables to the EULER 
variables in the context of the dynamics of the deformable medium.  We shall first 
complete the results so obtained. 
 Ai is augmented with: 
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however, from (76) and (80): 
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with analogous formulas, in such a way that if we set: 
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then we must add 
A(&), A('), A()), 

 
respectively, to the given values of Ai , i = 1, 2, 3, that were given in the last paragraph, 
where we have set: 
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The expressions that we add to the values of pxx, pxy, pxz, of the preceding paragraph are 
therefore: 
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however, from the values (76) of (&),('),()), one has: 
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i.e., by virtue of formulas (75 )"" : 
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in such a way that the expressions that we must add to the pxx, pxy, pxz of the preceding 
paragraph are: 
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 One will have analogous expressions for pyx, …, pzx,… by the obvious change of A 
into two analogous expressions B and C that are deduced by reducing the [&i], [pi] by the 
corresponding quantities ['i], [qi] and [)i], [ri]. 
 We now introduce the notations A, B, C; we show that they are identical to the 
notations introduced in the Lagrangian theory: 
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However, from formulas (76) and (80), one has: 
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and analogous relations for ', ).  By virtue of relations (72), we obtain: 
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 Similarly, for the P, Q, R of the Lagrangian theory, namely: 
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one has, by virtue of the relations (80): 
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 Finally, consider the modification that must be made to the formulas of the preceding 
paragraph in order to have the qxx, … relate to the actual case of dynamics. 
 The quantities that we have called Pi are augmented for i = 1, 2, 3, either by: 
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by virtue of formulas (80).  One sees that these increases are: 
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 The expressions that must be added to the values of qxx, qxy, qxz of the preceding 
section are thus: 
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One will have analogous expressions for qyz, …; qzx, … by changing P into Q, and then 
into R. 
 

 

 74.  Variations of the Eulerian arguments deduced from those of the Lagrangian 
arguments. – With the aim of directly formulating the Eulerian equations that relate to 
the deformable medium, we shall calculate the variations of the Eulerian arguments.  We 
commence by deducing the variations from the Lagrangian arguments in order to verify 
them, and then we calculate them directly. 
 If we apply - to equations (75) then they become three systems like the following 
one: 

&1-(&1) + '1-('1) + )1-()1) = + (&1)-&1 + ('1)-'1 + ()1)-)1, 
&2-(&1) + '2-('1) + )2-()1) = + (&1)-&2 + ('1)-'2 + ()1)-)2, 
&3-(&1) + '3-('1) + )3-()1) = + (&1)-&3 + ('1)-'3 + ()1)-)3 . 

 
Hence, keeping relations (77) in mind: 
 

+ -(&1) = (&1){(&1)-&1 + ('1)-'1 + ()1)-)1} + (&2){(&1)-&1 +…} + (&3){(&1)-&1 +…} 
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or, upon replacing -&i, -'i, -)i with their values, and taking relations )57( "  and (80) into 
account: 
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however, by virtue of equations )57( "" one has: 
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for example.  We therefore obtain the following relation: 
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in order to find -('1), -()1), it suffices to make a circular permutation of (&1), ('1), ()1) to 
replace , ,$ $ $" ""  with ,,, ### """  and then with ,,, %%% """  and to replace the pi with qi and 

then with ri.  One has analogous systems of formulas for -(&2), -('2), -()2); -(&3), -('3), 
-()3). 
 By means of (76) and the values for -&, -', -), one has, in turn: 
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however, by virtue of (76), relations (80) give: 
 

(p1)& + (q1)' + (r1)) = + {p1(&) + p2(') +p3())}, 
(p2)& + (q2)' + (r2)) = + {q1(&) + q2(') +q3())}, 
(p3)& + (q3)' + (r3)) = + {r1(&) + r2(') +r3())}, 

 
from which, we finally have: 
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 One will get analogous values for -('), -()) upon changing (&1), ('1), ()1) into (&2), 
('2), ()2), and then into (&3), ('3), ()3). 
 From (80), we now have: 
 

-(p1) = (&1)-p1 + (&2)-p2 + (&3)-p3 + p1-(&1) + p2-(&2) + p3-(&3), 
 
i.e., by virtue of formulas (75 )"" : 
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with analogous formulas for -(q1), -(r1), and for -(p2), -(q2), -(r2); -(p3), -(q3), -(r3). 
 We have have: 
 

-(p) = -p + (&)-p1 + (')-p2 + ())-p3 + p1-(&) + p2-(') + p3-()), 
 

i.e., by virtue of formulas ),57( "" (76), and (80): 
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with analogous formulas for -(q), -(r). 
 Now, we seek to find the formulas that must be established when one introduces the 
auxiliary functions -x, -y, -z, -I, -J, -K, which are defined as before.  For example, one 
has: 
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and analogous expressions for ,,
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and analogous systems for the derivatives with respect to y and z.  One has similar 
formulas that relate to , ,I J K- - -" " "  and -I, -J, -K.  By virtue of formulas (72), and upon 
supposing that the determinant | |$ # %" " "" = 1, one then has: 
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with analogous formulas. 
 The value of -(&) that was written on page (?) may be put into the form: 
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however, by virtue of formulas (73) that define (p), (q), (r), one has formulas like the 
following ones: 
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and, as result, by virtue of formulas (72), one has: 
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a formula in which one may revert to the derivatives ,
dt

d
 as we shall see in detail later 

on. 
 By virtue of the formulas that define -x, -y, -z, -I, -J, -K, one has: 
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which, by virtue of formulas (73), may be written: 
 

(84)  Iqr
z

I

y

I

x

I
p -$$

-
$

-
$

-
$$- ])[][()( 111 ""+"+,,

-

.
//
0

1

*

*
""+

*

*
"+

*

*
=  



228 THEORY OF DEFORMABLE MEDIA 

  Jrp
z

J

y

J

x

J
-$$

-
$

-
$

-
$$ ])[][( 11 +""+,,

-

.
//
0

1

*

*
""+

*

*
"+

*

*
"+  

  Kpq
z

K

y

K

x

K
-$$

-
$

-
$

-
$$ ])[][( 11 "++,,

-

.
//
0

1

*

*
""+

*

*
"+

*

*
""+  

  ,,
-

.
//
0

1

*

*
""+

*

*
"+

*

*
+

z

x

y

x

x

x
p

-
$

-
$

-
$][ 1  

  ,,
-

.
//
0

1

*

*
""+

*

*
"+

*

*
+

z

y

y

y

x

y
q

-
$

-
$

-
$][ 1  

  ,][ 1 ,,
-

.
//
0

1

*

*
""+

*

*
"+

*

*
+

z

z

y

z

x

z
r

-
$

-
$

-
$  

 

and one has analogous results for -(q1), … 
 Finally, observe that one may write: 
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a formula in which one may also revert to the derivatives .
dt

d
  One has two analogous 

formulas for -(q), -(r). 
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 75.  Direct determination of the variations of the Eulerian arguments. – We 
suppose that one subjects the functions x, y, z of x0, y0, z0, t to the variations -x, -y, -z.  
Consider the relations that one obtains by differentiating relations )86( " successively with 
respect to the LAGRANGE variables; from this, we deduce: 
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if one substitutes the values of these derivatives into the preceding expression then one 
has: 
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the parentheses in this latter equality are thus null, and one has: 
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upon replacing -[&1], -['1], -[)1] with the values that we must obtain they become: 
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with analogous formulas for -('), -()).  To retrieve the formula that we obtained in sec. 
74, it suffices to remark that one has: 
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but we will not use the formula on page (?) and its analogues in what follows.  Indeed, it 
is convenient to observe only the domain of integration of the integrals over x, y, z, which 
we consider to depend on t, in the case in which x, t, z, t are the independent variables, 
and not revert to the integrations over x, y, z, and t, as is the habitual custom (as with x0, 
y0, z0).  If one must integrate by parts with respect to t then one must introduce the 
auxiliary variables x0, y0, z0, and use only derivatives with respect to t that take the 

form ,
dt

d
which will necessitate the use of formulas such as the one that wrote above for 

-(&).  
 The calculations that must be done in order to obtain -(pi), -(qi), -(ri), -(p), -(q), -(r), 
like the ones that lead to expressions for -(&i), -('i), -()i), -(&), -('), -()), presently rest 
upon formulas that we just obtained for -[&i], -['i], -[)i].  The transformation that the 
expressions -(p), -(q), -(r), which were given in sec. 74, must be subjected to in order to 

put the derivatives with respect to t into the form ,
dt

d
is the same as the one that we 

indicated for -(&), -('), -()). 
 
 

 76.  The action of deformation and motion in terms of Euler variables.  

Invariance of the Eulerian arguments.  Application to the method of variable action. 
– The action of deformation and motion becomes: 
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t S
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in which W is a function of x0, y0, z0, t; &i, 'i, )i, pi, qi, ri; &, ', ), p, q, r. 
 From formulas (79) and (81), ),18( "  one may also say that W is a function of x0, y0, z0, 

t; (&i), ('i), ()i), (pi), (qi), (ri); (&), ('), ()), (p),( q), (r), and, if one sets (1): 
 

W
8 =

.
 

then the preceding action may be written: 
 

2 222 8
2

1

.
t

t S
dxdydzdt  

 
The integration over x, y, z is taken over the medium S, i.e., over a domain that varies 
with time. 
 One may also see how one can arrived at this latter action independently of the 
former.  Indeed, the Lagrangian arguments are, as we saw before, Euclidian invariants; 
however, since the Eulerian arguments are uniquely functions of the Lagrangian 
arguments, from formulas (77) and (80), it results from this that they are also Euclidian 
invariants; furthermore, one may establish this in a direct manner by means of formulas 
(82), (83) and (84), (85), by setting: 
 

-x = (a1 + /2z – /3y)dt, 
-y = (b1 + /3x – /1z)dt, 
-z = (c1 + /1y – /2x)dt, 

-I = /1-t, -J = /2-t, -K = /3-t. 
 
From this, it results that one is directly led to give the following form to the action of 
deformation and movement in terms of the EULER variables taken over the interior of 
the surface S, and during the time interval between instants t1 and t2: 
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in which the function 8 has the following remarkable: 
 

8(x0, y0, z0, t; (&i), ('i), ()i), (pi), (qi), (ri); (&), ('), ()), (p),( q), (r)). 
 
 Consider an arbitrary variation of the action of deformation and motion in the interior 
of a surface (S) in the medium (M), and the time interval between the instants t1 and t2, 
and, to that effect, give the x, … the variations -x, … 
 

                                                
1 We suppose that . is positive and therefore equal to |.|. 
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For the moment, write the integral in the form: 
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its variation is: 
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and, as a result, the variation of the integral is: 
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The variation -8 of 8 is: 
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in which -(&i), -('i), …, -(r) are determined by the formulas of sec. 74 and 75, in such a 

way that only the derivatives with respect to t in the form
d

dt
are involved.  We may apply 

GREEN’S formula to the terms that explicitly refer to a derivative with respect to one of 
the variables x, y, z.  As far as the terms that explicitly refer to a derivative with respect to 
time are concerned, here is how we deal with them (the domain of integration over x, y, z 
varies with time):  let: 
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be a typical term; if we pass to the intermediary of the variables x0, y0, z0 then it becomes: 
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or, on integrating by parts: 
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when we revert to the variables x, y, z (1). 
 If we let l, m, n denote the direction cosines of the exterior normal to the surface S 
that bounds the medium after deformation at the instant t with respect to the fixed axes 
Ox, Oy, Oz, and let d0 be the area element of that surface: 
 

2222 8dxdydzdt
t

t

2

1

-  

znpmplpynpmplpxnpmplp zzyzxzzyyyxyS zxyxxx

t

t
--- )()(){(

2

1

++++++++= 222  

dtdKnqmqlqJnqmqlqInqmqlq zzyzxzzyyyxyzxyxxx 0--- })()()( ++++++++++  

2

1

t

t
S

dxdydzK
R

J
Q

I
P

z
C

y
B

x
A

3
4
5

"
#
$

,
-

.
/
0

1

.
+

.
+

.
+

.
+

.
+

.
+ 222 ------  

x
dt

dA

z

p

y

p

x

p
S

zxyxxx
t

t
-2222 !"

!
#
$

,,
-

.
//
0

1

.
+

*

*
+

*

*
+

*

*
+

12

1

 

 y
dt

dB

z

p

y

p

x

p zyyyxy
-,,
-

.
//
0

1

.
+

*

*
+

*

*
+

*

*
+

1
 

 z
dt

dC

z

p

y

p

x

p zzyzxz -,,
-

.
//
0

1

.
+

*

*
+

*

*
+

*

*
+

1
 

                                                

1 Here one may replace 
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in which we have set, following the notations of sec. 73: 
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and, in addition: 
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with analogous formulas for qxy, qyy, qzy, qxz, qyz, qzz . 
 

 

 77.  Remarks on the variations introduced in the preceding sections.  Application 
of the method of variable action as in the usual calculus of variations. – We used the 
calculus of variations in the preceding section; it is useful to elaborate on the significance 
of those formulas according to the approach of JORDAN (1). 
 For the sake of completeness, recall the exposition of JORDAN.  JORDAN sought 
the variation of 

S> dxdydz 
 
when one supposes, on the one hand, that x, y, z are subject to variations, and, on the 
other hand, that the functions that figure in > are also subject to variation.  From this fact, 
> is subject to two variations whose effects are added together.  JORDAN successively 
considered the variation due to the variation of the functions that figure in >, and then the 
variation due to the variation of x, y, z that is juxtaposed with the preceding. 
 One may just as well search for the complete effect of juxtaposing the two variations 
on the letters u, …, u$#%, … that figure in >.  If we call these complete variations -u, … 
then one will have: 

!+
*

*
= u

u
-

7
-7  

for the complete variation -7 of 7. 
 Having said this, one remarks that the previously calculated variations are what we 
must call the complete variations and that the calculations in the preceding section were 
carried out from this latter viewpoint. 
 If one prefers to present things in a form that is identical to that of JORDAN then 
here is what one must do.  In what follows, we introduce the functions x0, y0, 
z0, ,,,, %$$ """! of x, y, z, which figure explicitly and by their derivatives, at least in part.  
The functions x0, y0, z0 of x, y, z, t are the ones that must be used in the left-hand side of 

)86( " in order to derive x, y, z as functions of x0, y0, z0, t.  From this, and the fact that x, y, 

z are subjected to variations -x, -y, -z, it results that these functions x0, y0, z0 of x, y, z, t 

                                                
1 JORDAN, Cours d’ Analyse de l’Ecole polytechnique, 1st ed., T. III, no. 339, pp. 533-535; 2nd ed., T. III, 
no. 396, pp. 528-530. 
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are also subjected to variations, which we designate (1) by (-x0), …, and one has the 
formulas: 
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which express that the complete variations of these function are null.  The variations 
(-x0), (-y0), (-z0) that figure in the last three formulas are copied from the variations that 
figure in the exposition of JORDAN, as we shall see.  This remark seems to seems to 
have been discussed in the considerations that were developed by C. NEUMANN in his 
research (2) on the MAXWELL and HERTZ equations; it conforms, on the one hand, to 
the rules of calculus that were adopted by H. POINCARÉ, in his memoir on the dynamics 
of the electron (3), which we shall discuss later on. 
 As far as , , ,$ $ %" ""! are concerned, we have the variations (-$), …, in the sense of 
JORDAN; however, the variations that were introduced in the preceding sections, and 
which we continue to denote by -$, …, will be the complete variations, in such a way 
that one will have: 
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 This amounts to saying that when we introduce the variations (-$), …, in the sense of 
JORDAN, we introduce, in addition, the auxiliary functions ,,, KJI """ --- which we define 

in terms of (-$), -x, … by way of: 
 

                                                
1 In general, in order to avoid confusion we denote the variations that areobtained by leaving x, y, z fixed by 
(-). 
 
2 C. NEUMANN. – Die elektrischen Kräfte, T. II, Leipzig, 1898; Über die Maxwell-Hertz’sche Theorie 
(Abhandl. der k. Sächs Gesells. der Wiss. zu Leipzig; Math.-phys. Klasses, T. XXVII, nos. 2 and 8, 1901-
1902). 
 
3 H. POINCARÉ, Rend. di Palermo, Tome XXI, pp. 129 et seq. (1905), 1906.  H. POINCARÉ uses 
different notations from ours, in particular, as far as derivatives with respect to t are concerned; our 
notation, d, ,* which is that of APPELL (Traité de Mecanique, Tome II, 1st ed., pp. 277), is the opposite of 

POINCARÉ.  He distinguishes the ordinary variation (-7) of a function 7 in the sense of JORDAN, which 

he denotes by ,,
,

7
d

d

d
from its variation -7 (which we call complete), which he denotes by 

7
-,

,

*

*
 [in 

particular, see the formula (11 bis), page 140]. 
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The fundamental convention is expressed by the relations (86), as one sees.  It will be 
found, in an eventual work on the theory of temperature, for the functions that figure by 
way of their differential parameters + for example, in the case that amounts to a pointlike 
medium + if one abstracts from the formulas in which the complete variations of these 
functions are presented. 
 One will observe that presently the simplest way to perform these calculations is not 
the one that was followed in the aforementioned exposition of JORDAN, but consists of 
determining, as we did before, the complete variation of the function under the 
integration sign.  Nevertheless, in view of the comparisons that are to be performed when 
one develops the two viewpoints that are suggested by the notion of temperature later on, 
it will be useful to likewise follow the path of JORDAN. 
 We have: 
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in which the (-) sign corresponds to the variation that is obtained by leaving x, y, z fixed, 
in such a way that one has, in a general fashion: 
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 We substitute the auxiliary functions -x, -y, -z, , ,I J K- - -" " " that are defined by the 

formulas (86), (87) for the variations (-x0), …  In regard to the integration over t, we 
must also recall that the domain of integration over x, y, z varies with t, and that one may 
not switch the order of integrating over t and the system of integrations over x, y, z in the 
habitual fashion that is employed for the variables x0, y0, z0.  
 If we replace (-x0), (-y0), (-z0), (-(&i)), … by their values from (89), which subsumes 
(86), we obtain: 
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If we consider first 
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just as, in the preceding section, we divided the sum into: 
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and (92), one sees that the calculation is identical to the one that we did earlier. 
 
 
 78. – The Lagrangian and Eulerian conceptions of action.  The method of 

variable action applied to the Eulerian conception of action as expressed by the 

Euler variables. – In his work sur la dynamique de l’électron, which was presented at 
the July 23, 1905 session of the Cercle de Palerme, H. POINCARÉ presented a 
conception of the action for an infinite domain that was different from the one that we 
envisioned up till now.  If one clarifies the idea of H. POINCARÉ when considering a 
finite domain then one is led to distinguish the following two conceptions of action, the 
one being Lagrangian, and the other, Eulerian. 
 We may integrate the general function W or 8 over the independent variables (1) x0, 
y0, z0, or the independent variables (2) x, y, z in a fixed domain, and then integrate over t. 
 
 1.  Start with the space (M0), and imagine that an observer attached to the reference 
axes directs his attention to a portion (S0) of that space and to the different positions that 
it ultimately takes, namely:  (S) at an arbitrary instant t, (S1) and (S2) at the times t1 and t2.  
 We imagine the integral: 

                                                
1 In this case, we denote the function by W. 
 
2 In this case, we denote the function by 8. 



Euclidian action from the Eulerian viewpoint 239 

2222 8
S

t

t
dxdydzdt,

2

1

 

 
in which the domain of integration (S) with respect to x, y, z varies with t, and which 
takes the form: 
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upon effecting the change of variables that is defined by )66( " or )86( " , in which W 

denotes the expression that is obtained by replacing the letters x, y, z in 8. by their 
expressions in )66( " , and the domain of integration over x0, y0, z0, (S0) is independent of t.  
We then have the Lagrangian conception of the action. 
 
 2.  While always envisioning an observer that is fixed with respect to the reference 
axes, imagine that he constantly directs his attention to fixed and definite portion of space 
(M); let x0, y0, z0 denote the coordinates that are calculated by means of formulas )86( " at 
the point M0 of (M0), and becomes the point M of (M), with coordinates, x, y, z at the 
instant t, and let (S0) be the region contained in M0 that becomes (S) at the instant, t; we 
may then let (S01), (S02) denote the regions that (S0), which varies with t, becomes for the 
values t1 and t2 of t. 
 If 8 refers to both x, y, z, and the functions expressed by the formulas )66( "  then we 
envision: 
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in which the domain of integration over x, y, z + namely, (S) + is independent of t this 
time, and which takes the form: 
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upon effecting the change of variables that is defined by )66( " or )86( " , in which the 

domain of integration over x, y, z + namely, (S) + varies with t.  We then have the 
eulerian conception of action. 
 We have considered the first case in the earlier paragraphs; we shall now occupy 
ourselves with the second one.  Formula (88) is then replaced with the following (1): 
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1 Upon referring to the exposition of JORDAN, one will observe that the terms 

( ) ( ) ( )
d d d

x y z
dx dy dz

- - -8 + 8 + 8  come from the fact that the domain is moving, and correspond to the 

variation of the letters x, y, z, as well as the independent variables. 
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and, by virtue of (89), formula (90) is replaced by the following one: 
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 This sequence of calculations resembles the ones in sec. 77.  At the same time, a 
difference was introduced as far as the derivatives with respect to time are concerned.  At 
the moment, one may exchange the integration over t and the integration over the domain 
of the variables x, y, z, and, that exchange having been performed, the integration over 
time must be done by imagining that x, y, z are constant.  The integration by parts over 

time must be done by making them depend on the derivatives ,
t*

*
 and not on ,

dt

d
 as we 

did in sec. 76 and 77, and conforming to the remark made in sec. 75 and 76. 
 
 The integration by parts now gives: 
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in which we have set, with the notations of sec. 72 and 73: 
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with analogous relations. 
 The force and exterior moment thus have the same definition as in sec. 62, 63. 
However, the same is not the case for the effort and the moment of deformation; from 
sec. 72, 76, we have: 
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with analogous expressions for ?xy, ?yy, ?zy; ?xz, ?yz, ?zz that are obtained by cyclic 
permutation of A, B, C, and x, y, z; in addition: 
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with analogous expressions for 4xy, 4yy, 4zy; 4xz, 4yz, 4zz that are obtained by cyclic 
permutation of A, B, C, and x, y, z. 
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 79.  The method of variable action applied to the Eulerian conception of action 
as expressed by the Lagrange variables. – We shall once more develop the Eulerian 
concept of action with the Lagrange variables.  We begin with the integral: 
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in which the domain of integration over x0, y0, z0 now varies with time t, and corresponds 
to the fixed integration domain that is described by the point (x, y, z). 
 Following the exposition of JORDAN, we have: 
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in which (-x0), (-y0), (-z0) are defined by formulas (86) by means of the auxiliary 
variables -x, -y, -z. 
 The sequence of calculations resembles those that we encountered in the dynamics of 
deformable media; at the same time, a difference was introduced, insofar as 
differentiation with respect to time is concerned.  This time, one may not change the 
order of integrating over time and integration over the domain of variables x0, y0, z0.  One 
will therefore apply reasoning analogous to that of sec. 76.  One first introduces only the 

derivatives with respect to time in the form 
t

*
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 denote the derivatives with respect to t of the functions x0, y0, z0, 

of x, y, z, t that one infers from formulas ).66( "   Upon using the notations we introduced 
before, the preceding formulas may be written: 
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then one writes: 
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i.e., reverting to the variables x0, y0, z0: 
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Having said this, from the previous formulas for the dynamics of deformable media and 
from (94), we obtain, upon integrating by parts: 
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upon setting: 
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We may observe that by virtue of (94) ,0X " for example, may be written: 
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however, one has: 
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and, as a result, 0X "  has the same value: 
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as in sec. 62; the same remarks apply to .,,,, 00000 NMLZY """""   However, the same is not 

true for the effort and moment of deformation; by simple transformations, one once more 
recovers relations (93) and )39( "  of sec. 78. 
 
 
 80.  The notion of radiation of the energy of deformation and motion. – We have 
seen that the density of energy of deformation and motion, when expressed as a function 
of the Lagrangian arguments and referred to the space of (x0, y0, z0), is: 
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this same density, when referred to the space of (x, y, z) and expressed by means of the 
function 8 of the Eulerian arguments (&i), ('i), ()i), (pi), (qi), (ri); (&), ('), ()), (p), (q), (r) 
is: 
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 This result is obtained either by transforming expression (95) by means of the 
relations that we indicated before that exist between the Lagrangian arguments and the 
Eulerian arguments, or by directly repeating the reasoning of sec. 65 on the elementary 
work: 

{222 "+"+"+"+"+"
0

000000000 )(
S
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that the forces and external moments and the efforts and external moments of 
deformation exert on the portion (M) of the medium that the portion (M0) of the natural 
state occupies at the instant t.  By this latter path, we recover the expression: 
 

0
0 0 0S

dE
dt dx dy dz
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222  

 
for the elementary work, in which 8 is assumed to be independent of t. 
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If we observe that we has the following identity: 
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which was employed by POINCARÉ in the memoir that was cited in sec. 77, and which 
we apply to an arbitrary function, then we arrive at the following new expression: 
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for the elementary work. 
 The second integral in (97) expresses the flux of energy of deformation and motion 
across a fixed surface S in the deformed body. 
 Now consider the Eulerian conception of action.  In the preceding sections we 
confirmed that the values of the forces and external moments remain the same, but that 
the following terms disappear from the expressions for the efforts pxx, pxy, pxz: 
 

,
dt
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xx
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and the following terms disappear from the expressions for the moments of deformation 
qxx, qxy, qxz: 

,
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dxP
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with analogous expressions for the quantities ?yz, ?yy, ?yz, ?zx, ?zy, ?zz, and 
4yz, 4yy, 4yz, 4zx, 4zy, 4zz .  From this, it results that the elementary work that is obtained in 
the preceding must be added to a new surface integral that has the expression: 
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One may call this new integral the flux of radiant energy crossing the boundary S of the 
deformed body. 
 The reasoning made in sec. 64, which was based on the Euclidean invariance of the 
action density, no longer leads to the same conclusions for the forces and external 
moments as it does for the new efforts and external moments of deformation.  This may 
be interpreted by saying that the new efforts and moments of deformation no longer 
satisfy what POINCARÉ called the principle of reaction.  This latter conclusion is 
likewise recovered, as one knows, in the electric theory of LORENTZ.  However, the 
existence of radiation that we just showed permits us to approach the efforts and 
moments of deformation ?xx, ?yx, …, 4xx, 4yx, … as being what MAXWELL, from 
considerations deduced from the electromagnetic theory of light, and BARTOLI, from 
those of thermodynamics, called the pressure of radiant energy, and one may therefore 
retrieve the principle of reaction. 
 

_______ 
 



IV. – STATICS AND DYNAMICS OF DEFORMABLE MEDIA. 

 
 

 48.  Deformable medium.  Natural state and deformed state. – The theories of the 
deformable line and the deformable surface that we discussed lead, in a very natural 
manner, to envisioning a more general deformable medium than the one that is habitually 
considered in the theory of elasticity, and seems, to us, to achieve the goal that was 
pursued by LORD KELVIN and HELMHOLTZ in the theories of light and magnetism. 
 Consider a space (M0) that is described by a point M0, whose coordinates x0, y0, z0 
with respect to three fixed rectangular axes Ox, Oy, Oz.  We may regard these coordinates 
as functions of the three parameters !1, !2, !3, which are chosen in an arbitrary manner; 
however, to simplify, we suppose that these coordinates are taken to be independent 
variables.  Affix a tri-rectangular triad to each point M0 of the space (M0), whose axes 

0 0 0 0 0 0, ,M x M y M z" " "  have direction cosines ;,,;,, 000000 ###$$$ """"""
0 0 0, ,% % %" ""  with respect to 

the axes Ox, Oy, Oz, and which are functions of the independent variables x0, y0, z0 . 
 The continuous three-dimensional set of all such triads 0 0 0 0M x y z" " "  will be what we call 

a deformable medium. 
 Give a displacement M0M to a point M0; let x, y, z be the coordinates of the point M 
with respect to the fixed triad Oxyz.  In addition, endow the triad 0 0 0 0M x y z" " "  with a 

rotation that will ultimately bring its axes into agreement with those of a triad Mx y z" " "  
that we affix to the point M.  We define that rotation by giving the direction cosines 

;,,;,, ###$$$ """""" , ,% % %" ""  of the axes , ,Mx My Mz" " "  with respect to the fixed axes. 
 The continuous three-dimensional set of all such triads Mx y z" " "  will be what we call 
the deformed state of the deformable medium under consideration, which will be called 
the natural state in its original state. 
 
 
 49.  Kinematical elements that relate to the states of the deformable medium. – 
For ease of notation, we sometimes introduce the letters !1, !2, !3, instead of x0, y0, z0 in 
the sequel, as expressed by the formulas: 
 

x0 = !1,  y0 = !2,  z0 = !2, 
 
so it will suffice to keep them in mind. 
 Denote the components of the velocity of the origin M0 of the axes 0 0 0 0 0 0, ,M x M y M z" " "  

with respect to these axes by (0) (0) (0), ,i i i& ' (  when !i alone varies and plays the role of 

time.  Likewise, let (0) (0) (0), ,i i ip q r  be the projections on these axes of the instantaneous 

rotation of the triad 0 0 0 0M x y z" " "  relative to the parameter !i .  We denote the analogous 

quantities for the triad Mx y z" " "  by &i, 'i, )i, and pi, qi, ri when they, like the triad 

,0000 zyxM """  are referred to the fixed triad Oxyz. 

 The elements that we introduced before are calculated in the usual fashion; in 
particular, one has: 
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The linear element of the deformed medium (M), when referred to the independent 
variables x0, y0, z0, is defined by the formula: 
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in which ,1, ,2, ,3, %1, %2, %3 are calculated by the following double formulas: 
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 Denote the projections of the segment OM onto the axes , ,Mx My Mz" " "  by ,,, zyx """  in 
such a way that the coordinates of the fixed point O with respect to these axes become 

.,, zyx "+"+"+   We have the following well-known formulas: 
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which gives new expressions for &i, 'i, )i . 
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 50.  Expressions for the variations of the velocities of translation and rotation of 
the triad relative to the deformed state. – Suppose that one endows each of the triads 
of the deformed state with an infinitely small displacement that may vary in a continuous 
fashion with these triads.  Denote the variations of x, y, z; ;,, zyx """ , , ,$ $ %" ""! by -x, -y, 

-z; ;,, zyx """ --- ,,,, %-$--$ """!  respectively.  The variations , , ,-$ -$ -%" ""!  are 
expressed by formulas such as the following: 
  
(47)     ,JK "+"= %-#--$  
 
by means of the three auxiliary functions ,,, KJI """ ---  which are the components of well-
known instantaneous rotation that is attached to the infinitely small displacement in 
question with respect to .,, zMyMxM """   The variations -x, -y, -z are the projections of the 
infinitely small displacement  felt by the point M onto Ox, Oy, Oz.  The 
projections , ,x y z- - -" " " of this displacement onto , ,Mx My Mz" " "  are deduced immediately 
and have the values: 
 
(48) ,KyJzxx ""+""+"=" ----   ,IzKxyy ""+""+"=" ----   .JxIyzz ""+""+"=" ----  
 
 We propose to determine the variations -&i, -'i, -)i, -pi, -qi, -ri felt by 
&i, 'i, )i, pi, qi, ri, respectively.  From the formulas (44), we have: 
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 Replace -$ by its value ,JK "+" %-#-  and , ,-$ -%" ""!  with their analogous values; we 
obtain: 
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 Similarly, formulas (46) give us three formulas, the first of which is: 
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 Replace -pi, -qi, -ri with their values as given by formulas (49);  we obtain: 
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in which we have introduced the three symbols , ,x y z- - -" " "  defined by formulas (48). 
 
 
 51.  Euclidian action of deformation on a deformable medium. – We preserve the 
notations of sec. 49 and introduce the known quantity, ., which is defined by the 
formula: 
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and whose square, which is formed by the rule for multiplication of determinants, is 
expressed as a function of ,1, ,2, ,3, %1, %2, %3 by the formula: 
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 Consider a function W of two infinitely close positions of the triad ,zyxM """  i.e., a 

function from x0, y0, z0 to x, y, z, $, #, %, ,,,,,, %#$%#$ """""""""  and their first derivatives 
with respect to x0, y0, z0.  We propose to determine the form that W must take in order for 
the integral: 

222 ,000 dzdyWdx  

 
when taken over an arbitrary portion of the space (M0) to have null variation when one 
subjects the set of all triads of the deformable medium, taken in its deformed state, to the 
same arbitrary infinitesimal transformation of the group of Euclidian displacements. 
 By definition, this amounts to determining W in such a way that one has: 
 

-W = 0, 
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when, on the one hand, the origin M of the triad Mx y z" " "  is subjected to an infinitely small 

displacement whose projections -x, -y, -z on the axes Ox, Oy, Oz are: 
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where a1, a2, a3, /1, /2, /3 are six arbitrary constants and -t is an infinitely small quantity 
that is independent of x0, y0, z0, and when, on the other hand, the triad Mx y z" " "  is 
subjected to an infinitely small rotation whose components along the axes Ox, Oy, Oz are: 
 

/1-t,  /2-t, /3-t. 
 
 Observe that in the present case the variations -&i, -'i, -)i; -pi, -qi, -ri of the eighteen 
expressions &i, 'i, )i; pi, qi, ri are null, since this results from the well-known theory of 
moving frames, and as we may, moreover, verify immediately by means of formulas (49) 
and (50) by replacing , , ; , ,x y z I J K- - - - - -" " " " " "  by their actual values.  It results from 
this that we obtain a solution to the question by taking W to be an arbitrary function of x0, 
y0, z0, and the eighteen expressions &i, 'i, )i; pi, qi, ri.  We shall now show that we thus 
obtain the general solution (1) of a problem that we now pose. 
 To that effect, we remark that the relations (44) permit us to express the first 
derivatives of the nine cosines , , ,$ $ %" ""!  with respect to x0, y0, z0 by means of these 

cosines and pi, qi, ri using well-known formulas.  On the other hand, formulas (43) permit 
us to think of expressing the nine cosines , , ,$ $ %" ""!  by means of &1, '1, )1, and the first 

derivatives of x, y, z with respect to x0, or by means of &2, '2, )2, and the first derivatives 
of x, y, z with respect to y0, or, finally, by means of &3, '3, )3, and the first derivatives of 
x, y, z with respect to z0.  Furthermore, it is useless in this case for us to make any 
hypothesis on the mode of solution because it is clear that we will not obtain a more 
general form than the one that we started with by supposing that the function W that we 
seek is an arbitrary function of x0, y0, z0 and x, y, z, and their first derivatives with respect 
to x0, y0, z0, and of &i, 'i, )i; pi, qi, ri, which we indicate by using the notations !1 = x0, !2 
= y0, !3 = z0, by writing: 
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Since the variations -&i, -'i, -)i; -pi, -qi, -ri are non-null in the actual case one remarks 
that there is an instant, which we shall ultimately describe, for which we have, by virtue 
of formulas (51), the new form for W for any a1, a2, a3, /1, /2, /3 : 

                                                
1 In all of what follows we suppose that the medium is susceptible to all possible deformations, so that, as a 
result the deformed state may be taken absolutely arbitrarily.  
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 We replace -x, -y, -z  with their values (51) and , ,
i i i

x y z
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 with the values 

that one deduces by differentiation.  We set the coefficients of a1, a2, a3, /1, /2, /3; we 
obtain the following six conditions: 
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which are identities, if we assume that the expressions that figure in W have been reduced 
to the smallest number. 
 The first three show us, as one may easily foresee, that W is independent of x, y, z.  
The last three express that W depends on the first derivatives of x, y, z with respect to x0, 
y0, z0 only by the intermediary of the quantities ,1, ,2, ,3, %1, %2, %3 that were defined by 
the formulas (45).  Finally, we see that the desired function W has the remarkable form: 
 

W(x0, y0, z0, &i, 'i, )i; pi, qi, ri), 
 
which is analogous to the one that we encountered before for the deformable line and the 
deformable surface. 
 If we multiply W by the volume element dx0dy0dz0 of the space (M0) then the product 
Wdx0dy0dz0 so obtained is an invariant in the group of Euclidian displacements that is 
analogous to the volume element of the medium (M). 
 Just as the common value of the integrals: 
 

222 .
0

,|| 000S
dzdydx   222S dxdydz,  

 
taken over the interior of a surface S0 of the medium (M0) and the interior of the 
corresponding surface S of the medium (M), respectively, determines the volume of the 
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domain bounded by the surface S.  Likewise, if we associate, in the same spirit, the notion 
of the action for the passage from the natural state (M0) to the deformed state (M) then we 
add the function W to the elements in the definition of a deformable medium, and we say 
that the integral: 

222
0

,000S
dzdyWdx  

 
is the action of deformation for the interior of the surface S in the deformed medium. 
 On the other hand, we say that W is the density of the action of deformation at a point 
of the deformed medium when referred to the unit of volume of the undeformed medium, 

and that 
|| .

W
is the density of that action at a point when referred to the unit of volume of 

the deformed medium. 
 
 
 52.  The external force and moment.  The external moment and effort.  The 
effort and moment of deformation at a point of the deformed medium. – Consider an 
arbitrary variation of the action of deformation of the interior of a surface S in the 
medium (M), namely: 
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 By virtue of formulas (49) and (50) of sec. 50, we may write: 
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 We apply the GREEN formula to the terms that explicitly refer to the derivative with 
respect to one of the variables !1, !2, !3.  If we let l0, m0, n0 denote the direction cosines 
with respect to Ox, Oy, Oz of the exterior normal to the surface S0 that bounds the 
medium before deformation and the area element of that surface by d00 then this gives: 
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we have: 
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 If we first direct our attention to the triple integral that figures in the expression 

for
0

0 0 0S
Wdx dy dz- 222 then we call the segments that have their origin at M and whose 

projections onto the axes , ,Mx My Mz" " "  are 0 0 0, ,X Y Z" " "  and ,,, 000 NML """  respectively, the 

external force and external moment at the point M referred to the unit of volume of the 
undeformed medium. 
 Next, directing our attention to the surface integral that figures in: 
 

,
0

000222S dzdyWdx-  

 
we call the segments that issue from the point M and have projections 0 0 0, ,F G H" " "+ + +  

and 0 0 0, ,I J K" " "+ + + on the axes ,,, zMyMxM """ respectively, the external effort and external 

moment of deformation at the point M of the surface S0 that bounds the medium referred 
to the unit of area of the surface S0.  At a definite point M of (S) these last six quantities 
depend only on the direction of the exterior normal to the surface (S).  They remain 
invariant if the region in question is varied and the direction of the exterior normal does 
not change, but they change sign if this direction is replaced by the opposite direction.   
 Suppose that one traces a surface (1) in the interior of the deformed medium that is 
bounded by the surface (S) in such a way that (1), together with a portion of surface (S), 
uniquely circumscribes a subset (A) of the medium, and let (B) denote the rest of the 
medium outside of the subset (A).  Let (10) be the surface of (M0) that corresponds to the 
surface (S) of (M), and let (A0) and (B0) be the regions of (M0) that correspond to the 
regions (A) and (B) of (M).  Mentally separate the two subsets (A) and (B).  One may 
regard the two segments ),,( 000 HGF "+"+"+ and 0 0 0( , , )I J K" " "+ + +  that are determined by the 

point M and the direction of the normal to (10) that points towards the exterior of (A0) as 
the external effort and moment of deformation at the point M of the frontier (1) of the 



THE DEFORMABLE MEDIUM 147 

region (A).  Similarly, one may regard the two segments ),,( 000 HGF """ and 0 0 0( , , )I J K" " "  as 

the external effort and moment of deformation at the point M of the frontier (1) of the 
region (B).  By reason of that remark, we say that 0 0 0, ,F G H" " "+ + +  and 0 0 0, ,I J K" " "+ + +  are 

the components with respect to the axes , ,Mx My Mz" " "  of the effort and moment of 
deformation that are exerted at M on the portion (A) of the medium (M), and that 

0 0 0, ,F G H" " "  and 0 0 0, ,I J K" " "  are the components with respect to the axes , ,Mx My Mz" " "of the 

effort and moment of deformation that are exerted at M on the portion (B) of the medium 
(M). 
 The observation made at the end of secs. 9 and 34 on the subject of replacing the triad 
Mx y z" " "  by a triad that is invariantly related to it may be repeated here without 
modification. 
 
 
 53.  Various ways of specifying the effort and moment of deformation. – Set: 
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, ,i i iA B C" " "  and , ,i i iP Q R" " "  represent the projections onto , ,Mx My Mz" " "  of the effort and 

moment of deformation, respectively, that are exerted at the point M on a surface that has 
an interior normal at the point M0 that is parallel to the coordinate axis Ox, Oy, Oz that 
corresponds to the index i before deformation.  Indeed, it suffices to recall that one has 
already agreed to replace the letters x0, y0, z0, which correspond, by this notation, to the 
indices 1, 2, 3, respectively, with !1, !2, !3.  If you recall, that effort and moment of 
deformation are referred to the unit of area of the undeformed surface. 
 The new efforts and moments of deformation that we define are related to the 
elements introduced in the preceding section by the following relations: 
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 We propose to transform these relations into ones that are independent of the values 
of the quantities that we calculated by means of W that figure in them.  Indeed, these 
relations pertain to the segments that are attached to the point M to which we gave the 
names.  Instead of defining these segments by their projections on ,,, zMyMxM """ we may 
define them by their projections on the other axes; the latter projections will be coupled 
by relations that are transforms of the preceding ones. 
 Moreover, the transformed relations are obtained immediately if one remarks that the 
original formulas have simple and immediate interpretations (1) by the adjunction to these 
moving axes of axes that are parallel to them at the point O. 
 
 1.  We confine ourselves to the consideration of fixed axes Ox, Oy, Oz.  Denote the 
projections of the external force and external moment at an arbitrary point M of the 
deformed medium onto these axes by X0, Y0, Z0, and L0, M0, N0, respectively, and the 
projections of effort and moment of deformation on a surface whose interior normal has 
the direction cosines l0, m0, n0 before deformation by F0, G0, H0 and I0, J0, K0, 
respectively.  The projections of the effort ( , , )i i iA B C" " "  and the moment of deformation 

( , , )i i iP Q R" " "  are denoted by Ai, Bi, Ci and Pi, Qi, Ri, respectively.  The transforms of the 

preceding relations are obviously: 
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1 An interesting interpretation to note is the analogy with the one given by P. SAINT-GUILHEM in the 
context of the dynamics of triads. 
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relations that are the three-dimensional generalizations of the two-dimensional equations 
of LORD KELVIN and TAIT. 
 
 2.  Now observe that we may express the nine cosines , , ,$ $ %" ""!  by means of three 

auxiliary functions; let 21, 22, 23 be three such auxiliary functions.  Set: 
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% % "+"+"=+= .332211 202020#$$# ddddd  

 
The functions , ,i i i3 4 0" " "  of 21, 22, 23 so defined satisfy the relations: 
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 Let 3i, 4i, 0i denote the projections onto the fixed axes Ox, Oy, Oz of the segment 
whose projections onto the axes , ,Mx My Mz" " "  are ;,, iii 043 """  we have: 

 

% % ++="""+=""" ,332211 232323$$$$ ddddd  

% % ++=""+="" ,332211 242424$$$$ ddddd  

% % ++="+=" ,332211 202020$$$$ ddddd  
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by virtue of which (1), the new functions 3i, 4i, 0i of 21, 22, 23 satisfy the relations: 
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 Again, we make the remark, which will be of use later on, that if one lets 
-21, -22, -23 denote the variations of 21, 22, 23 that correspond to the variations 

, , ,-$ -$ -%" ""!  of , , ,$ $ %" ""!  then one will have: 
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in which -I, -J, -K are the projections onto the fixed axes of the segment whose 
projections onto , ,Mx My Mz" " "are .,, KJI """ ---  
 Now set: 
  0 1 0 1 0 1 0 1 0 1 0 1 0I J K I J K3 4 0 3 4 0" " " " " "= + + = + +! , 
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  0 1 0 1 0 1 0 1 0 1 0 1 0L M N L M N3 4 0 3 4 0" " " " " "= + + = + +% , 

  0 1 0 1 0 1 0 1 0 1 0 1 0L M N L M N3 4 0 3 4 0" " " " " "= + + = + +& . 

 
In addition, we introduce the following notations: 
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1 These formulas may serve to define the functions 3i, 4i, 0i, directly, and the substitution is defined by: 
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then, instead of the latter system in which either , ,i i iP Q R" " "or Pi, Qi, Ri figure, we have the 
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that result from the defining relations of the functions ,,, iii 043 """  and the nine identities 

that they verify, then one may give the preceding system the new form: 
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with two analogous equations. 
 
 3.  The preceding equations that we introduced also constitute the generalization of 
the ones we developed in an earlier work (1).  We may transform them in such a way as to 
obtain the generalization of the well-known equations of the theory of elasticity that 
relate to effort.  To that effect, it will suffice to reproduce the method we already 
employed in the work that we mentioned. 
 To abbreviate the writing, let 0 0 0, ," " "' ( )  and 0 0 0, ," " "$ % &  denote + for the moment – 

the left-hand sides of the transformation relations, which refer to X0, Y0, Z0, L0, M0, N0, 
respectively, and observe that one may summarize the twelve relations that we 
established by the following: 

                                                
1 E. and F. COSSERAT. – Premier mémoire sur la théorie de l’élasticité; Annales de la Faculté des 
sciences de Toulouse (1), 10, pp. I1 – I116, 1896. 
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in which 21, 22, 23, µ1, µ2, µ3 are arbitrary functions and the integrals are taken over the 
surface S0 of the medium (M0) and the domain bounded by it.  If we apply GREEN’S 
formula then the relation that we wrote becomes the following one: 
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 We seek the transform of this latter relation when one takes the functions x, y, z of x0, 
y0, z0 for the new variables.  If one lets 7 denote an arbitrary function of x0, y0, z0 that 
becomes a function of x, y, z then the elementary formulas for the change of variables are: 
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 Apply these formulas to the functions 21, 22, 23, µ1, µ2, µ3.  With S always denoting 
the surface of the medium (M) that corresponds to the surface S0 of (M0), we further 
denote the projections onto Ox, Oy, Oz of the external force and external moment applied 
to the point M by X, Y, Z, L, M, N, which are referred to the unit of volume of the 
deformed medium (M), and the projection onto Ox, Oy, Oz of the effort and the moment 
of deformation that are exerted at the point M of S by F, G, H, I, J, K referred to the unit 
of area on S.  Finally, introduce the eighteen new auxiliary functions pxx, pyx, pzx, pxy, pyy, 
pzy, pxz, pyz, pzz, qxx, qyx, qzx, qxy, qyy, qzy, qxz, qyz, qzz by the formulas: 
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and the analogous ones that are obtained by replacing: 
 
   A1, A2, A3, pxx, pyx, pzx, P1, P2, P3, qxx, qyx, qzx 
with: 
   B1, B2, B3, pxy, pyy, pzz, Q1, Q2, Q3, qxy, qyy, qzy, 
and then by: 
   C1, C2, C3, pxz, pyz, pzz, R1, R2, R3, qxz, qyz, qzz, 
respectively. 
 We obtain the transformed relation: 
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in which the integrals are taken over the surface S of the medium (M), and the domain 
bounded by it, with d0 designating the area element of S. 
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 Once more, apply GREEN’S formula to the terms that refer to the derivatives of 
21, 22, 23, µ1, µ2, µ3 with respect to x, y, z, and let l, m, n denote the direction cosines of 
the exterior normal to the surface S with respect to the fixed axes.  Since 21, 22, 23, 
µ1, µ2, µ3 are arbitrary, they become: 
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 The significance of the eighteen new auxiliary functions pxx, …, qxx, … results 
immediately from the relations that we just found.  Indeed, it is clear that the coefficients 
pxx, pxy, pxz of l in the expressions for F, G, H represent the projections onto Ox, Oy, Oz of 
the effort that is exerted at the point M on the surface whose exterior normal is parallel to 
Ox, and that the coefficients qxx, qxy, qxz of l in the expressions for I, J, K are the 
projections onto Ox, Oy, Oz of the moment of deformation at M relative to the same 
surface.  The coefficients of m and of n give rise to an analogous interpretation in regard 
to surfaces whose interior normals are parallel to Oy and Oz. 
 The auxiliary functions that we just introduced and the equations that relate them do 
not appear to have been envisioned in a form that was that general up till now;  to our 
knowledge, they have been considered only in the particular case in which the nine 
quantities qxx, …, qzz are null, and the first work to treat that question seems to be that of 
VOIGT (1).  

                                                
1 WALDEMAR VOIGT. – Theoretische Studien über die Elasticitätsverhältnisse der Krystalle, I, II, 
Abhandlungen der königlichen Gesellschaft der Wissenschaften zu Göttingen, Bd. 34, 1887.  The first 
section, entitled: Ableitung der Grundgleichungen aus der Annahme mit Polarität  begabter Moleküle, has 
49 pages (3-52), the second one, entitled: Untersuchung des elastische Verhaltens eines Cylinders aus 
krystallinscher Substanz, auf dessen Mantelfläche keine Kräfte wirken, wenn in seinem Innern wirkenden 
Spannungen längs der Cylinderaxe constant sind, is 48 pages (53-100).  One may likewise consult the 
work of VOIGT: L’État actuel de nos connaissances sur l’élasticité des cristaux (Report presented at the 
International Congress of Physics convened in Paris in 1900, T. I, pp. 277-347), in which he alludes to 
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 In conclusion, we observe that if one performs a change of variables in the six 
equations that involve X, Y, Z, F, G, H in such a fashion as to introduce the original 
variables x0, y0, z0 then one immediately finds equations whose first three constitute the 
generalization of the equations that were established by BOUSSINESQ. 
 
 
 54.  External virtual work.  Theorem analogous to those of Varignon and Saint-

Guilhem.  Remarks on the auxiliary functions that were introduced in the preceding 

section. –We give the name of external virtual work on the deformed medium (M) for an 
arbitrary virtual deformation, to the expression: 
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 We refer to the notations of sec. 50, and let -I, -J, -K denote the projections onto the 
fixed axes of the segment whose projections onto , ,Mx My Mz" " "  are ,,, KJI """ ---  in such 
a way that one has, for example: 
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upon always supposing that the axes in question have the same orientation. 
 This being the case, suppose as in sec. 53 that one gives the arbitrary functions 21, 
22, 23, µ1, µ2, µ3 the significance defined from the formulas: 
 

21 = -x,  22 = -y,  23 = -z, µ1 = -I,  µ2 = -J,  µ3 = -K. 
 
We then see that the previously-obtained relations between the auxiliary functions that 
we introduced serves only to express the following condition: 
 When any of the virtual displacements in sec. 50 are given to the deformed medium 
the external virtual work -*e is given, either by the relation: 
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POISSON, Mém. de l’Acad., T. XVIII, pp. 3, 1842 (see pp. 289).  Also consult LARMOR, On the 
propagation of a disturbance in a gyrostatically loaded medium (Proc. Lond. Math. Soc., Nov., 1891); 
LOVE, Treatise on the Mathematical Theory of Elasticity (Camb. University Press, 1st ed., 1892, 2nd ed., 
1906); COMBEBIAC, Sur les équations générales de l’élasticité, Bull. De la Soc. Math. De France, T. 
XXX, pp. 108-110, and pp. 242-247, 1902. 
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where the integrals are taken over the deformed medium, or by the relation: 
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in which the integrals are taken over the undeformed medium, because the formula we 
gave above: 
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to serve as the definition of external virtual work may also be written: 
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by virtue of the significance of X0, Y0, …, N0, F0, G0, …, K0, and likewise: 
 

0( )e S
F x G y H z I I J J K K d- - - - - - - 0= + + + + + +22*  
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 ,)( 000 dzdydxKNJMILZyYxX
S

------ +++"+++ 222  

 
by virtue of the significance of X, Y, …, N, F, G, …, K. 
 Start with the formula: 

0
0 0 0 0eS

Wdx dy dz- -+ =222 * , 

 
which is applied to an arbitrary portion of a medium that is bounded by a surface S0. 
 Since -W must be identically null, by virtue of the invariance of W under the group of 
Euclidean displacements with the variations given by formulas (51), namely: 
 

-x = (a1 + /2z – /3y)dt, 
-y = (a2 + /3z – /1y)dt, 
-z = (a3 + /1z – /2y)dt, 

and -I, -J, -K by: 
-I = /1-t,  -J = /2-t, -K= /3-t, 

 
and from this, and the expressions for -*e on which we must insist (1), we conclude that 

one has: 

22 222 =+
0 0

,0000000S S
dzdydxXdF 0  

22 222 =+++++
0 0

,0)()( 0000000000S S
dzdydxzYyZLdzGyHI 0  

 
and four analogous equations.  These six formulas are easily deduced from the ones that 
one ordinarily writes by means of the principle of solidification. 
 One may imagine that the frontier S is variable in these formulas. 
 The auxiliary functions that were introduced in the preceding paragraphs are not the 
only ones that may be envisioned; if we confine ourselves to their consideration then we 
simply add a few obvious remarks. 
 By definition, we have introduced two systems of efforts and moments of 
deformation relative to a point M of the deformed medium.  The first are the ones that are 
exerted on surfaces that have their normal parallel to one of the fixed axes Ox, Oy, Oz 
before deformation.  The second are the ones that are exerted on surfaces that have their 
normal parallel to one of the same fixed axes Ox, Oy, Oz. 
 The formulas that we have indicated give the latter elements by means of the former; 
however, by an immediate solution, which we shall not stop to perform, one obtains, 
conversely, the former elements in terms of the latter. 
 Now suppose that we have introduced the function W.  The former efforts and 
moments of deformation have the expressions we already gave, and one immediately 
deduces their expressions in terms of the latter from this.  Nevertheless, in these 
calculations one may specify the functions that one must introduce according to the 

                                                
1 The passage from elements referred to the unit of volume of the undeformed medium and area of the 
frontier S0 to the elements referred to unit of volume for the deformed medium and the area of the frontier S 
sufficiently immediate that it suffices to confine ourselves to the former as we have done, for example. 
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nature of the problem, and which will be, for example, x, y, z or ,,, zyx """  and three 

parameters (1) 21, 22, 23 by means of which one expresses .,,, %$$ """!   

 If one introduces x, y, z, 21, 22, 23, and if one continues to let W denote the function 
that depends on x0, y0, z0, the first derivatives of x, y, z with respect to x0, y0, z0 on 
21, 22, 23, and their first derivatives with respect to x0, y0, z0, and is obtained by replacing 
the different quantities &i, 'i, )i, pi, qi, ri in the function W(x0, y0, z0, &i, 'i, )i, pi, qi, ri,) 
with their values as given by formulas (43) and (44), then one will have: 
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 55.  Notion of energy of deformation.  Theorem that leads to that of Clapeyron 

as a particular case. +  Envision the two states, (M0) and (M) of the deformable medium 
bounded by the surfaces (S0) and (S), and consider an arbitrary sequence of states that 
start with (M0) and end with (M).  To that end, it suffices to consider functions x, y, z, 

, , ,$ $ %" ""!  of x0, y0, z0, and one variable h that reduce to x0, y0, z0, ,,,, 000 %$$ """ !  

respectively, when h is zero, and reduce to the values x, y, z, ,,,, %$$ """! respectively, for 
non-zero h relative to (M). 
 If we make the parameter h vary in a continuous fashion from 0 to h then we obtain a 
continuous deformation that permits us to pass from the state (M0) to the state (M).  For 
this continuous deformation, consider the total work performed by the forces and external 
moments that are applied to the different volume elements of the medium and by the 
efforts and moments of deformation that are applied to the surface elements of the 
frontier.  To obtain this total work, it suffices to integrate the differential so obtained 
from 0 to h, starting with one of the expressions for -*e in the preceding section and 

substituting the partial differentials that correspond to the increase dh in h for the 
variations of x, y, z, ;,,, %$$ """!  the formula: 
 

                                                
1 For such auxiliary functions 21, 22, 23, one may take, for example, the components of the rotation that 
makes the axes Ox, Oy, Oz parallel to ,,, zMyMxM """ respectively. 
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0
0 0 0e S

Wdx dy dz- -= +222*  

 

gives the expression 
0

0 0 0S

W
dx dy dz

h

*
+

*222  for the value of -*e, and we obtain: 

 

0 0
0 0 0 0 0 0 00

( )
h

hS S

W
dx dy dz dh W W dx dy dz

h

*1 .
+ = + +/ ,

*0 -
2 222 222  

 
for the total work.  The work in question is independent of the intermediary states and 
depends only on the extreme states (M0) and (M). 
 This leads us to introduce the notion of energy of deformation, which must be 
distinguished from that of the action of deformation that we previously envisioned.  We 
say that – W is the density of the energy of deformation, referred to the unit of volume of 
the undeformed medium. 
 The proposition that we must encounter, which determines the total work that is 
performed by the external forces and moments, as well as the efforts and moments of 
deformation that are applied to the frontier, gives CLAPEYRON’S theorem (1) when we 
consider an infinitely small deformation and specify the medium.  Indeed, first introduce 
simply the hypothesis + and we refer to sec. 58 for the more general form + that W is a 
simple function of ,1, ,2, ,3, 21, 22, 23.  We may then envision the formulas: 
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as defining a change of variables that replaces the letters ,1, ,2, ,3, 21, 22, 23 with the 
letters 81, 82, 83, 91, 92, 93.  By virtue of this change of variables, W becomes a 
function W " of 81, 82, 83, 91, 92, 93. 
 Having said this, we pass to infinitely small deformations and put ourselves into the 
situation envisioned in sec. 31, pp. 74-76, of our Premier mémoire sur la théorie de 

l’élasticité; W and W "  become quadratic forms W2 of e1, e2, e3, g1, g2, g3, and ,2W "  of &1, 

&2, &3, *1, *2, *3; the latter is, up to a factor of !, what one calls the adjoint form to W2.  

When this is of issue, and in the case of infinitely small deformations, one obtains the 
following expression for the total work: 
 

222 .0002 dzdydxW  

 

                                                
1 LAMÉ seems to have been credited with making CLAPEYRON’S theorem known in his Note to the 
Comptes Rendus, T. XXXV, pp. 459-464, 1852, then in his Leçons sur la théorie mathématique de 
l’élasticité des corps solides, (1st ed., 1852, 2nd ed., 1866); indeed, it was only in the 1st of February, 1858, 
that the following note appeared: CLAPEYRON, Mémoire sur le travail des forces élastiques, dans un 
corps solide déformé par l’action de forces exterieures, Comtes rendus, T. XLVI, pp. 208, 1858.  Also 
consult TODHUNTER and PEARSON, A History of the Theory of Elasticity, etc., secs., 1041 and 1067-

1070. 
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To be more specific, if we suppose that we have (1): 
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 One sees that one has recovered the result of LAMÉ precisely, if one remarks that the 
total work of the external forces and efforts on the frontier obviously reduces to the 
indicated expression in the case of infinitely small deformations. 
 
 
 56.  Natural state of the deformable medium. – In the preceding we started with a 
natural state of a deformable medium and then we were given a state we called 
“deformed.”  We indicated the formulas that permit us to calculate external force and the 
analogous elements that are adjoined to the function W for the deformable medium and 
represent the action of deformation at a point. 
 As before, let us stop for a moment on this notion of natural state. 
 Up till now, the latter is a state that has not been subjected to any deformation.  
Imagine that the functions x, y, z, , , ,$ $ %" ""!  that define the deformed state depend on 
one parameter, and that one recovers the natural state for a particular value of this 
parameter.  The latter then seems to us to be a special case of a deformed state, and we 
are led to attempt to apply the notions relating to the latter to it.  
 Without changing the values of the elements that are defined by the formulas of sec. 
52, one may replace the function W with this function augmented by an arbitrary definite 
function of x0, y0, z0, and, if one is inspired by the idea of action that we associate to the 
passage from the natural state (M0) to the deformed state (M) then one may, if one 
prefers, suppose that the function of x0, y0, z0 that is defined by the expression: 
 

(0) (0) (0) (0) (0) (0)
0 0 0( , , , , , , , , )i i i i i iW x y z p q r& ' (  

 
is identically null; however, the values obtained for the external force and the analogous 
elements with regard to the natural state will not necessarily be null.  We say that they 
define the external force and the analogous elements relative to the natural state (1). 

                                                
1 E. and F. COSSERAT. – Premier mémoire sur la théorie de l’élasticité, pp. 77. 
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 In our way of speaking, the natural state presents itself as the initial state of a 
sequence of deformed states, a state that we start with in order to study the deformation.  
As a result, one is led to demand that it is not possible to make one of the deformed states 
play the role that we have the natural state play, and that this must be true in such a way 
that the elements that we defined in sec. 52 (external force and moment, external effort 
and moment of deformation), which were calculated for the other deformed states, have 
the same values if one refers the first of these elements to the unit of volume of the 
deformed medium and the second of these to the unit of area of the deformed surface.  
This question may receive a response only if one introduces and specifies the notion of 
the action that corresponds to the passage from one deformed state to another state. 
 The simplest hypothesis consists of assuming that this latter action is obtained by 
subtracting the action that corresponds to the passage from the natural state (M0) to the 
first deformed state( )M " from the action that corresponds to the passage from the natural 
state to the second deformed state (M).  With regard to ),(M " if we denote the quantities 

that are analogous (2) to &i, 'i, )i, pi, qi, ri relative to (M) by ,,, iii ('& """  ,,, iii rqp """  then we 

are led to adopt the following expression for the action of the deformation relating to the 
passage from the state( )M "  to the state (M): 
 

(52)  222 """"""+
0

,)},,,,,,,,(),,,,,,,,({ 000000000S iiiiiiiiiiii dzdydxrqpzyxWrqpzyxW ('&('&  

 
which one may write, if ." is the value of . for :)(M "  
 

(53) 222 .""
0

,||),,,,,,,,( 0000000S iiiiii dzdydxrqpzyxW ('&  

 
in which we have let S "denote the surface of )(M " that corresponds to S0 for (M0), and  

),,,,,,,,( 0000 iiiiii rqpzyxW ('&"  denotes the expression: 

.
||

1
)},,,,,,,,(),,,,,,,,({ 000000

."
""""""+ iiiiiiiiiiii rqpzyxWrqpzyxW ('&('&  

 
 Furthermore, from the remark made at the beginning of this paragraph, one may, if 
one prefers, substitute the following expressions for (33): 
 

)35( "  222 .""
0

,||),,,,,,,,( 000000S iiiiii dzdydxrqpzyxW ('&  

                                                                                                                                            
1 We may then speak of the force, effort, etc., since we regard the natural state as the limit of a sequence of 
states for which we know the force, effort, etc.  Up till now, the force, effort, etc. were defined for us only 
when there was a deformation capable of manifesting and measuring them. 
 
2 One must remark that ,,,,,,

iiiiii
rqp """""" ('& are not analogous to ,,,,,, )0()0()0()0()0()0(

iiiiii rqp('& because they 

are not formed by means of the coordinates , ,x y z" " " of )(M " in the same way that ,,, )0()0()0(

iii ('&  
(0) (0) (0), ,i i ip q r are formed by means of x0, y0, z0. 
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in which ),,,,,,,,( 000 iiiiii rqpzyxW ('&"  denotes the expression: 

 

.
||

1
),,,,,,,,( 000
."

iiiiii rqpzyxW ('&  

 
 If one remarks that one has, for example: 
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then it is clear that applying formulas that are analogous to those of sec. 52 to expressions 
(53) or )35( "  and starting with )(M "  as the natural state, but while supposing that )(M " is 
referred to the system of coordinates x0, y0, z0, and assuming that the formulas of sec. 52 
are modified as a consequence, will give the same values for the exterior force and 
moment relative to the state (M) referred to the unit of volume of (M), as well as the same 
values for the effort and the moment of deformation referred to the unit of area for (S). 
 Therefore we may consider (M) to be a deformed state for which )(M " is a natural 

state, provided that the function W associated with the state (M) is actually (1) 0W "  or .W "  

 Conforming to these indications, suppose, to fix ideas, that the external force and 
moment are given by means of simple functions of x0, y0, z0 and elements that fix the 
position of the triad .zyxM """   Suppose, moreover, that the natural state is given.  We may 
consider the equations of sec. 52 relating to the external force and moment to be partial 
differential equations in the unknowns x, y, z and the three parameters 21, 22, 23 by means 
of which one may express .,,, %$$ """!   The expressions &i, 'i, )i, pi, qi, ri are then 

functions of 31 2
1 2 3, , , , , , , ,

i i i i i i

x y z 22 2
2 2 2

! ! ! ! ! !

** ** * *

* * * * * *
 (always setting !1 = x0, !2 = y0, !3 = 

z0) that one calculates by means of formulas (43) and (44). 
 Suppose that ,,,,,, 000000 NMLZYX """""" or, what amounts to the same thing, X0, Y0, Z0, 

L0, M0, N0 are given functions of x0, y0, z0, x, y, z, 21, 22, 23 .  The expression W is, after 
substituting for the values of &i, 'i, )i, pi, qi, ri by means of formulas (43) and (44), a 

definite function of x0, y0, z0, ,,,,,,,,,
0
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* 22
222 !! which we continue to 

denote by W, and the equations of the problem may be written: 
 
 

                                                
1 As we said at the beginning of this section, this permits us to generalize the notion of natural state that we 
first introduced.  Instead of making this word correspond to the idea of a particular state, we may, in a more 
general fashion, make it correspond to the idea of an arbitrary state, starting from which we may study the 
deformation.  The fact that we introduced x0, y0, z0 at the beginning of the theory seems to make (M0) play a 
particular role; however, one must not consider x0, y0, z0 as anything but the coordinates that serve to define 
the different media, and not only (M0).  One has chosen these coordinates in a particular fashion, and in 
relation to a particular medium, in order that one must, as a result, pay attention to (M0) in the context of 
infinitely small deformations. 
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in which $0, %0, &0 are functions of x0, y0, z0, x, y, z, 21, 22, 23 that result from the 

definitions of sec. 53. 
 It results directly from the formulas of the preceding paragraphs that a more 

immediate way of defining X0, Y0, Z0, $0, %0, &0 may be summarized in the relation: 

 

0 0 0 0eWdx dy dz- -+ =222 * , 

i.e., in: 

0 0 0 0 0 0 0 1 0 2 0 3( )Wdx dy dz F x G y H z d- - - - -2 -2 -2 0= + + + + +222 22 ! " #  

0 0 0 0 1 0 2 0 3 0 0 0( )X x Y y Z z dx dy dz- - - -2 -2 -2+ + + + + +222 $ % &  

 
 
 57.  Notions of hidden triad and hidden W. – In the study of deformable media, as 
in the study of deformable lines and surfaces, it is natural to pay particular attention to the 
pointlike media that are described by the deformable media.  This amounts to envisioning 
x, y, z separately and considering , , ,$ $ %" ""! as simply auxiliary functions. This is what 
we likewise express by imagining that one ignores the existence of the triads that 
determine the deformable medium, and that one knows only the vertices of those triads.  
If we adopt that viewpoint in order to envision the partial differential equations that one 
is led to in this case then we may introduce the notion of hidden triad, and we are led to a 
resulting classification of the diverse circumstances that may be produced by the 
elimination the .,,, %$$ """!  
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 Therefore, a primary study that presents itself is that of the reductions that relate to 
the elimination of the .,,, %$$ """!  Likewise, in the corresponding particular cases in 
which the attention is directed almost exclusively to the pointlike media that are 
described by the deformed medium (M) one may sometimes abstract from (M0), and, as a 
result, from the deformation that permits us to pass from (M0) to (M). 
 As we already said for the deformable line and surface, the triad may be employed in 
another fashion.  We may make particular hypotheses on it and the medium (M); all of 
this amounts to envisioning particular deformations of the free deformable line.  If the 
relations that we impose are simple relations between &i, 'i, )i, pi, qi, ri, as will be the 
case in the applications that we shall study, we may account for these relations in the 
calculation of W and deduce more particular functions from W.  The interesting question 
that this poses is that of introducing these particular forms simply, and to consider the 
general W that serves as the point of departure as being hidden, in some sense.  We thus 
have a theory that will be specific to the particular deformations brought to light by the 
given relations between &i, 'i, )i, pi, qi, ri. 
 We confirm that by means of the theory of free deformable media one may therefore 
combine the particular cases and provide a common origin to the equations that are the 
result of special theories that one encounters in physics (1). 
 In the particular cases, one sometimes finds oneself in the proper circumstances to 
avoid the consideration of these deformations; in reality, they must sometimes be 
completed.  This is what one may do in practical applications when one envisions 
infinitely small deformations. 
 Take the case in which the external force and moment refer only to the first 
derivatives of the unknowns x, y, z and 21, 22, 23; the second derivatives of these 
unknowns will be introduced into these partial differential equations only for W; 
however, the derivatives of x, y, z figure only in &i, 'i, )i, and those of 21, 22, 23 show up 
only in pi, qi, ri.  One therefore sees that if W depends only on &i, 'i, )i, or only on pi, qi, 
ri, then there will be a reduction in the order of the derivatives that enter into the partial 
differential equations.  Here, we examine the first of these two cases, which corresponds 
to the ordinary theory of elasticity for material media and to the theory of the various 
ethereal media that are envisioned in the doctrine of luminous waves. 
 
 
 58.  Case in which W depends only on x0, y0, z0, &i, 'i, )i, and is independent of pi, 
qi, ri.  How one recovers the equations that relate to the deformable body of the 

classical theory and to the media of hydrostatics. – Suppose that W depends only on 
the quantities x0, y0, z0, &i, 'i, )i, and not on pi, qi, ri.  The equations of sec. 56, which 
reduce to the following: 

                                                
1 All of our considerations heretofore may be applied just the same to material media as to various ethereal 
media.  We have declared the word matter to be invalid, and what we expose is, as we said to begin with, a 
theory of action for extension and movement.  To have a more complete idea of the notion of matter, we 
shall explain later on how one must approach the latter from the concept of entropy according to the 
profound viewpoint that LIPPMANN introduced into electricity.  
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in which W depends only on x0, y0, z0, ,,,
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z

x

x

*

*

*

*
! 21, 22, 23, we show that if one takes 

the simple case in which X0, Y0, Z0, $0, %0, &0 are given functions (1) of x0, y0, z0, x, y, z, 
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! 21, 22, 23 then the three equations may be solved for 21, 22, 23, and one 

finally obtains three partial differential equations that, from our hypotheses, refer to only 
the x0, y0, z0, and to x, y, z, and their first and second derivatives. 
 First, envision the particular case in which the given functions $0, %0, &0 are null; 

the same will be true for the corresponding values of the functions of one of the systems 
),,,( 000 NML """ (L0, M0, N0),(L, M, N).  It results from this that the equations: 
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i.e., 
pyz = pzy , pzx = pxz , pxy = pyx , 

 
whose interpretation is immediate. 
 Haing said this, observe that if one of the two positions (M0) and (M) is assumed to be 
given, and that if one deduces the functions $0, %0, &0 from this, as in sec. 53, then in 

the case in which these three functions are null one may arrive at this result accidentally, 

                                                
1 In order to simplify the exposition, and to indicate more easily what we are alluding to, we suppose that 
X0, Y0, Z0, L0, M0, N0 do not refer to the derivatives of 21, 22, 23. 
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i.e., for a certain set of particular deformations; however, one may arrive at this result for 
any deformation (M) since it is a consequence of the nature of the medium (M), i.e., of 
the form of W. 
 Consider this latter case, which is particularly interesting; W is then a simple function 
(1) of !1, !2, !3, and the six expressions ,1, ,2, ,3, 21, 22, 23, which are defined by the 
formulas (45). 
 The equations deduced from sec. 52 and 53 reduce to either: 
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or to (2): 
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1 The triad is completely hidden; we may also conceive that we have a simple pointlike medium. 
 
2 Compare E. and F. COSSERAT. – Premier Mémoire sur la théorie de l’élasticité, pp. 45, 46, 65. 
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in which one has: 
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and analogous formulas for pyz, …  . has the significance that we gave it in sec. 51, 
which we shall recall in a moment. 
 As one sees, we recover the continuous deformable medium as it is treated in the 
ordinary theory of elasticity. 
 A particularly interesting case is obtained by looking for a form for W that gives the 
identities: 

pyz = 0,  pyx = 0,  pxy = 0, 
 

for any !,
0x

x

*

*
  One finds that W must be a simple function of x0, y0, z0, and the 

expression ., which is defined by the formulas (1): 

                                                
1 Compare E. and F. COSSERAT. – Premier Mémoire sur la théorie de l’élasticité, pp. 40, 44, 65. 
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from which one may see, upon remarking that if one refers to the previous formulas (2) 
that gave us pyz, pyx, pzx,… as a function of A1, … then one has: 
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and two analogous systems; since W is assumed to be a simple function of x0, y0, z0, and 
., one has, as a result: 
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 If we consider the particular case in which W depends only on ., and if we assume 
that we are given X, Y, Z expressed as functions of x, y, z then the equations in question, 
which are: 
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upon setting ,
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W
p become those which serve as the basis for hydrostatics (3).  The 

initial medium (M0) appears only by way of ., and one may replace the unknown . with 

the unknown p that is related to it by the relation .
.*

*
=

W
p   If the function W, which is 

not given, is hidden then one has the preceding equations, in which p is an auxiliary 
function whose significance is well known. 
 It will suffice for us to indicate that the case in which the functions $0, %0, &0 are 

non-null comprises the theory of all the ethereal media that have been considered for the 
study of luminous waves from MACCULLAGH to LORD KELVIN, but here the theory 
of these media is completely mechanical.  We likewise mention that the most general 

                                                                                                                                            
1 Compare E. and F. COSSERAT. – Premier Mémoire sur la théorie de l’élasticité, pp. 23, 24. 
 
2 These formulas are actually the ones on page 47 of our Premier Mémoire sur la théorie de l’élasticité. 
 
3 Compare DUHEM. – Hydrodynamique, Elasticité, Acoustique. 
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case, in which the trace of the derivatives of the action W with respect to the rotations pi, 
qi, ri remains in the expression for the external moment leads in the most natural manner 
to the notion of magnetic induction that was introduced by MAXWELL. 
 
 
 59.  The rigid body. – We have considered the particular case in which W does not 
depend on pi, qi, ri, and different special cases of this case.  One may arrive at the other 
media that were considered, at least in part, by the authors, either by the study of 
particular deformations, or by the study of new media that are defined by a theory of 
constraints that profits from the results that we already acquired. 
 For example, start with the simple case, in which the triad is hidden, i.e., by 
definition, it is a pointlike medium in which W is a function of x0, y0, z0, 
,1, ,2, ,3, %1, %2, %3. 
 
 1.  We may imagine that one pays attention only to the deformations of the medium 
for which one has: 

,1 = ,2 = ,3 = %1 = %2 = %3 = 0. 
 

 In the definitions of forces, etc., it suffices to introduce these hypotheses, and, if the 
forces are given, to introduce these six conditions.  In the latter case, the habitual 
problems, which correspond to the given of the function W, and to the general case in 
which the ,i, %i are non-null, may be posed only for particular givens. 
 If we suppose only that the function W0 that is obtained by taking ,1 = ,2 = ,3 = %1 = %2 
= %3 = 0 in W(!1, !2, ,1, …) is given, that one does not know the values of the derivatives 
of W with respect to ,1, ,2, ...,%3 for ,1 = ,2 = ...= %3 = 0, so that W is hidden, then we see 
that pxx, …, pzz , for example, become six auxiliary functions that one must adjoin to x, y, 
z, in such a way that, for the case in which the forces that act on the volume elements are 
given,  we have nine partial differential equations in nine unknowns in the case, to which 
one must adjoin accessory conditions. 
 Now we remark that one knows how to integrate the system: 
 

,1 = ,2 = ,3 = %1 = %2 = %3 = 0. 
 
 Since the deformation is supposed continuous, the integral corresponds to a 
displacement of the set of the medium; it thus remains for us to determine the six 
constants of integration and the auxiliary functions pxx, …   
 If the forces and efforts that act on the medium are given, and we suppose that X, … 
are known as functions of x, y, z then the six equations of sec. 54, with the simplifications 
implied for the form of W, when applied to the entire body, determine the six integration 
constants.  To complete the process, what remains is for us to ultimately determine pxx, …   
 If we leave aside the problem of this ultimate determination, then one sees that we 
recover the habitual problems of the mechanics of rigid bodies, in which one might 
ordinarily suppose that the hidden function W depends only on .. 
 
 2.  We may imagine that we seek to define a medium whose definition already takes 
the conditions: 
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,1 = ,2 = ,3 = %1 = %2 = %3 = 0 
into account, sui generis. 
 In order to define the new medium, while thinking along the same lines as before, we 
further define 0 0, ,F N" "! by the identity: 

 

222 22 ""++""=
0 0

000000 )(
S S

dKKxFdzdyWdx 0--- !  

222 ""++""+
0

.)( 00000S
dzdydxKNxX -- !  

 
 However, this identity must no longer hold, by virtue of the fact that ,1 =  … = %3 = 0. 
In other words, we envision a medium in which the theory must result from the a 
posteriori addition of the conditions ,1 =  … = %3 = 0 to the knowledge of a function 
W(x0, y0, z0, ,1, ,2,…, %3) and six auxiliary functions µ1,…, µ6 of x0, y0, z0, by means of the 
identity: 
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which amounts to setting ,1 =  … = %3 = 0 in the general theory that preceded, in which 
one has replaced W with W1 = W + µ1,1 + … + µ6,3 . 
 As one sees, we come down to the theory of elastic media that correspond to the 
function W of x0, y0, z0, ,1, ,2,…, %3 when one restricts oneself to the study of deformations 
that correspond to ,1 =  … = %3 = 0.  Therefore, if we consider the case of a hidden W 
then if we suppose that we known simply the value W(x0, y0, z0) that W and W1 take 
simultaneously when ,1 =  … = %3 = 0 then we recover the habitual theory of the rigid 
body. 
 Observe that if we account for the conditions ,1 =  … = %3 = 0 in W a priori by a 
change of auxiliary functions then we are led to replace W with µ1,1 + … + µ6,3 in the 
calculations that relate to the general medium, and we likewise find formulas that come 
down to the study of an elastic medium in which we are confined to studying 
deformations that correspond to ,1 =  … = %3 = 0.  Upon supposing that µ1,…, µ6 are 
unknown, we once more come down to theory that comprises the habitual theory of the 
rigid body.  From this latter viewpoint, we return to the exposition that one may make 
about the ideas of LAGRANGE.  In particular, we may observe that in the case in which 
X0, Y0, Z0 are given as the partial derivatives with respect to x, y, z of a function 7 of x0, 
y0, z0, x, y, z the equations in which X0, Y0, Z0 figure are none other than the equations that 
one is led to when one seeks to determine the extremum of the integral: 
 

222 ,000 dzdydx7  

given the conditions: 
,1 = ,2 = ,3 = %1 = %2 = %3 = 0. 
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 3.  We discuss a third procedure (1) for constituting a medium for which the theory 
always leads to the same equations, and which will be a limiting case of the original 
theory.  This procedure agrees with the first one, and it may also be applied to the cases 
of the deformable line and surface. 
 Imagine that the W that serves to define the original medium is variable, and, to fix 
ideas, suppose that the values of ,1, … , %3 are developable in a MACLAURIN series in a 
neighborhood of zero by the formula: 
 

W = W1 + W2 + …+ Wi +…, 
 
in which Wi represents the set of terms of the ith degree.  Assume that the coefficients of 
W2 (which may depend on x0, y0, z0) increase indefinitely in their variation.  If we want W 
to conserve a finite value then we must suppose that ,1, … , %3 tend towards zero.  In 
other words, we may then consider only deformations that satisfy ,1 =  … = %3 = 0.  In 
other words, the body that we approach in the limit may take only displacements of the 

set.  We may suppose that one makes the derivatives !,
1,*

*W
, which approach limits 

when W varies in a manner we shall describe, likewise vary as a consequence of a studied 
deformation for this medium. 
 To explain this in a more precise fashion, imagine that the coefficients of W1, W2, … 
depend on one parameter h, in such a way that when h tends towards zero the coefficients 
of W2 increase indefinitely.  To fix ideas, suppose that the latter coefficients are linear 

with respect to .
1

h
  Likewise, imagine that x, y, z, which define the deformation in 

question, vary with h in such a way that ,1, … tend to zero.  In addition, we suppose that 
,1, … are infinitely small of first order with respect to h; for example, ,1, …might be 
developed in powers of h, and the first terms of that development are the ones in h.  With 

these conditions, W tends to zero, and 
1 3

, ,
W W

, %

* *

* *
! tend to certain limits (which may be 

functions of x0, y0, z0).  Therefore if we consider the equations of sec. 52 that serve to 
define external force and moment then we are finally led to formulas that permit us to 
define them, and which are none other than equations of our point of departure, in which 
the notion of the function W has disappeared, and in which six auxiliary functions 

0 0 0 0 0 0, , , , ,F G H I J K" " " " " "  figure. 

 
 
 60.  Deformable media in motion. – The theory of motion for the deformable line 
and that of the motion of the deformable surface present themselves very naturally as 
special cases of the theory of the deformable surface and that of the deformable medium.  
To see this, it suffices to give one of the parameters !i of the surface or medium the 
significance of time. As we will not envision the statics of media of dimension greater 
than three here, we must expose the theory of motion of a deformable medium directly in 

                                                
1 Compare THOMSON and TAIT. – Treatise, vol. I., Part. I, pp. 271, starting with the 11th line down. 
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what follows; however, we nevertheless give it a form that is entirely analogous to the 
one that we indicated for the dynamics of deformable line and the deformable surface. 
 Consider a space (M0) that is described by a point M0 whose coordinates are x0, y0, z0 
with respect to the three fixed rectangular axes Ox, Oy, Oz, and adjoin a trirectangular 
triad to each point M0 of the space (M0) whose axes 0 0 0 0 0 0, ,M x M y M z" " "  have the direction 

cosines 0 0 0 0 0 0 0 0 0, , ; , , ; , ,$ $ $ # # # % % %" "" " "" " ""with respect to the axes Ox, Oy, Oz, respectively, 

and which are functions of the independent variables x0, y0, z0. 
 The continuous three-dimensional set of such triads 0 0 0 0M x y z" " "  may be considered as 

the position at a definite instant t of a deformable medium that is defined in the following 
fashion: 
 Give the point M0 a displacement M0M, which is a function of time t and the position 
of the point M0, and is null for t = t0.  Let x, y, z be the coordinates of the point M, which 
we consider to be functions of x0, y0, z0, t.  In addition, endow the triad 0 0 0 0M x y z" " "with a 

rotation that makes its axes finally agree with those of a triad Mx y z" " "  that we adjoin to the 
point M.  We define that rotation by giving the direction cosines ;,, $$$ """  

;,, ### """ , ,% % %" ""  of the axes , ,Mx My Mz" " "with respect to the fixed axes Ox, Oy, Oz.  
Like x, y, z, these cosines will be functions of x0, y0, z0, t.   
 The continuous three-dimensional set of triads ,zyxM """  for a given value of time t, 
will be what we call the deformed state of the deformable medium considered at the 
instant t.  The continuous four-dimensional set of triadsMx y z" " "  that is obtained by 
making t vary will be the trajectory of the deformed state of the deformable medium. 
 For ease of writing and notation in the sequel, we sometimes introduce, as we already 
did, the letters !1, !2, !3, instead of x0, y0, z0.  We continue to denote the components of 
the velocity of the origin M0 of the axes 0 0 0 0 0 0, ,M x M y M z" " " along these axes by 

,,, )0()0()0(
iii ('&  when !i alone varies, and the projections of the instantaneous rotation, 

relative to the parameter !i, of the triad 0 0 0 0M x y z" " "  on these same axes by .,, )0()0()0(
iii rqp  

We denote the analogous expressions for the triadMx y z" " "  by &i, 'i, )i, and pi, qi, ri, when 

one refers them, like the triad ,0000 zyxM """ to the fixed axes Oxyz. 

 When time t varies, and the motion of the triad Mx y z" " "  is referred to the fixed triad 
Oxyz then the origin M has a velocity whose components along the axes , ,Mx My Mz" " "  

will be designated by &, ', ), and the instantaneous rotation of the triadMx y z" " "will be 
defined by the components p, q, r. 
 The elements that must introduce are calculated as in sec. 49; first, one has the 
formulas: 
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to which we adjoin the following: 
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if one now introduces the distinction between the notations for the derivatives with 
respect to time depending on whether one takes x0, y0, z0, t or x, y, z, t for the independent 
variables. 
 Suppose that one endows each of the triads of the trajectory of the deformed state 
with an infinitely small displacement that varies in a continuous fashion with these triads.  
With the same notations as in sec. 50, we have: 
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 61.  Euclidean action of deformation and motion for a deformable medium in 

motion. – Consider a function W of two infinitely close positions of the triad ,zyxM """  i.e., 
a function of x0, y0, z0, t, and of x, y, z, ,,,, %$$ """! and their first derivatives with respect 
to x0, y0, z0, t.  We propose to determine the form that W must take in order for the 
quadruple integral: 

2222 ,000 dtdzdyWdx  
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when taken over an arbitrary portion of space (M0), and the time interval between two 
instants t1 and t2 to have a null variation when one subjects the set of all triads along what 
we are calling the trajectory of the deformable medium + taken its deformed state – to the 
same arbitrary infinitesimal transformation of the group of euclidean displacements. 
 By definition, this amounts to determining W in such a fashion that one has: 
 

-W = 0 
 

when, on the one hand, the origin M of the triad Mx y z" " "  is subjected to an infinitely small 

displacement whose projections -x, -y, -z on the axes Ox, Oy, Oz are: 
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in which a1, a2, a3, /1, /2, /3 are six arbitrary constants, and -t is an infinitely small 
quantity that is independent of x0, y0, z0, t, and when, on the other hand, this triad Mx y z" " "  
is subjected to an infinitely small rotation whose components along the Ox, Oy, Oz axes 
are: 

/1 -t,   /2 -t,   /3 -t. 
 

 It suffices for us to repeat the reasoning that we made before, with several reprises, in 
order to see that the desired function W has the remarkable form: 
 

W(x0, y0, z0, t, &i, 'i, )i, pi, qi, ri, &, ', ), p, q, r), 
 

which is analogous to the one we encountered for the deformable line, surface, and 
medium at rest. 
 We say that the integral: 

2 222
2

1 0

,000

t

t S
dtdzdyWdx  

 
is the action of deformation and motion in the interior of the surface S of the deformed 
medium in motion and in the interval of time between the instants t1 and t2.  On the other 
hand, we say that W is the density of the action of deformation and motion at a point of 
the deformed medium when taken at a given instant, and referred to the unit of volume of 
the undeformed medium and the unit of time.  If we give . the same significance as in 

sec. 51 then 
|| .

W
 is the density of that action at a point and a given instant, when referred 

to the unit of volume of the deformed medium and the unit of time. 
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 62.  The external force and moments; the external effort and moment of 

deformation; the effort, moment of deformation, quantity of motion, and the 

moment of the quantity of motion of a deformable medium in motion at a given 
point and instant. – Consider an arbitrary variation of the action of deformation and 
movement in the interior of a surface (S) of the medium (M), and the time interval 
between the instants t1 and t2, namely: 
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 By virtue of formulas (58), ),85( " (59), ),95( " we may write: 
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 We apply GREEN’s formula to the terms that explicitly involve a derivative with 
respect to any of the variables, !1, !2, !3, and perform an integration by parts over the 
terms that explicitly involve a derivative with respect to time, t.  If we let l0, m0, n0, 
designate the direction cosines with respect to the fixed axes, Ox, Oy, Oz, of the exterior 
normal to the surface, S0, that bounds the medium before deformation at the instant, t, 
and designate the area element of that surface by d00, then we obtain: 
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As in sec. 52, set: 
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 If we first consider the quadruple integral that figures in the expression for 
2

1 0
0 0 0

t

t S
Wdx dy dz dt- 2 222  then we call the segments that have their origin at M and whose 

projections on the axes , ,Mx My Mz" " "  are 0 0 0, ,X Y Z" " "  and 0 0 0, ,L M N" " "  the external force 

and external moment at the point M at the instant t, referred to the unit of volume of the 
position of the medium at the instant t0, respectively. 
 If we then consider the triple integral that is taken over time and the surface S0 then 
we call the segments that issue from the point M whose projections on the axes 

, ,Mx My Mz" " "  are 0 0 0, ,F G H" " "+ + +  and 0 0 0, ,I J K" " "+ + +  the external effort and external 

moment of deformation at the point M of the surface S  that bounds the deformed medium 
at the instant t.  At a definite point M of (S) these last six quantities depend only on the 
direction of the external normal to the surface S.  They remain invariant if the region we 
call (M0) varies, but the direction of the normal does not change, and they change sign if 
this direction is replaced by the opposite direction. 
 Suppose that one traces a surface 1 in the interior of the deformed medium that is 
bounded by the surface S, which, either alone or with a portion of the surface S 
circumscribes a subset (A) of the medium, and let (B) denote the rest of the medium 
outside of (A).  Let 10 be the surface of (M0) that corresponds to the surface S of (M), and 
let (A0) and (B0) be the regions of (M0) that correspond to the regions (A) and (B) of (M).  
Mentally separate the two subsets A and B; one may regard the two segments 
( 000 ,, HGF "+"+"+ ) and ( 000 ,, KJI "+"+"+ ) that are determined for the point M and the 

direction of the normal to 10 that points to the exterior of (A0) as the external effort and 
moment of deformation at the point M of the frontier 1 of the region (A).  Similarly, one 
may regard the two segments ( 000 ,, HGF """ ) and ( 000 ,, KJI """ ) to be the external effort and 

m0ment of deformation at the point M of the frontier 1 of the region (B).  By reason of 
this remark, we say that 000 ,, HGF "+"+"+  and 000 ,, KJI "+"+"+  are the components of the 

effort and moment of deformation that is exerted on the portion (A) of the medium (M) at 
M along the axes ,,, zMyMxM """  and that 000 ,, HGF """  and 000 ,, KJI """  are the components 

of the effort and moment of deformation that are exerted on the portion (B) of the medium 
(M) at M, along the axes .,, zMyMxM """  
 Finally, if we consider the triple integral over the volume of (M) at the instant t, 
whose values are taken at the extreme instants t1 and t2 , then we call the segments that 
have their origins at M and whose components along the axes , ,Mx My Mz" " "are , ,A B C" " "  
and , ,P Q R" " "  the quantity of motion and the moment of the quantity of motion at the 
point M of the deformed medium (M) at the instant t, respectively. 
 
 
 63.  Diverse specifications for the effort and moment of deformation, the 
quantity of motion, and the moment of the quantity of motion. – As in sec. 53, set: 
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in which , ,i i iA B C" " "  and , ,i i iP Q R" " "  represent the projections on ,,, zMyMxM """  respectively, 

of the effort and moment of deformation that are exerted at the point M of a surface that 
has a normal that is parallel the axis Ox, Oy, Oz that we describe by the index i before 
deformation.  Indeed, it suffices to recall that we already agreed to replace the letters x0, 
y0, z0 that correspond to the indices 1, 2, 3 by this convention with !1, !2, !3.  Recall that 
this effort and moment of deformation are referred to the unit of area of the undeformed 
surface at the instant t. 
 The new efforts and moments of deformation that we just defined are related the 
elements that the introduced in the preceding section by the following relations: 
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 One may propose to transform the relations we just wrote independently of the values 
of the quantities that figure in them that are calculated by means of W.  Indeed, these 
relations relate to the segments that are attached to the point M to which we gave the 
names.  Instead of defining these segments by their projections on ,,, zMyMxM """  we may 
just as well define them by their projections on other axes; the latter projections will be 
coupled by relations that are transforms of the preceding ones.  Moreover, the 
transformed relations are obtained immediately if one remarks that the original formulas 



180 THEORY OF DEFORMABLE MEDIA 

have simple interpretations (1) by the adjunction of axes that are parallel to the moving 
axes at the point O. 
 
 1.  As in statics, we confine ourselves to the consideration of the fixed axes Ox, Oy, 
Oz.  Let X0, Y0, Z0 and L0, M0, N0 denote the projections of the external force and the 
external moment at an arbitrary point M of the deformed medium at an instant t onto 
these axes, and let F0, G0, H0 and I0, J0, K0 be the projections of the effort and the 
moment of deformation on a surface whose exterior normal has the direction cosines l0, 
m0, n0 before deformation at the instant t.  Let Ai, Bi, Ci and Pi, Qi, Ri be the projections of 
the effort ( , , )i i iA B C" " "  and the moment of deformation ),,,( iii RQP """ and let A, B, C and P, Q, 

R be the projections of the quantity of motion (A, B, C) and the moment of the quantity of 
motion (P, Q, R).  The transforms of the preceding relations are obviously: 
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1 An interesting interpretation to note is the analogue of the one given by P. SAINT-GUILHEM in the 
context of the dynamics of triads. 
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 2.  Now observe that we may express the nine cosines , , ,$ $ %" ""! by means of the 

three auxiliary functions 21, 22, 23.  Set: 
 

% % "+"+"=+= ,332211 232323%##% ddddd  

% % "+"+"=+= ,332211 242424$%%$ ddddd  

% % "+"+"=+= .332211 202020#$$# ddddd  

 
The functions 3i, 4i, 0i of 21, 22, 23 so defined satisfy relations that we have written 
several times already: 
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in which x0 = !1, y0 = !2, z0 = !3.  If we let 3i, 4i, 0i denote the projections onto the fixed 
axes Ox, Oy, Oz of the segment whose projections onto the axes , ,Mx My Mz" " "  are 

, ,i i i3 4 0" " "  then we will have: 

 

% % ++="""+=""" ,332211 232323$$$$ ddddd  

% % ++=""+="" ,332211 242424$$$$ ddddd  

% % ++="+=" ,332211 202020$$$$ ddddd  
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by virtue of which (1) the new functions 3i, 4i, 0i of 21, 22, 23 satisfy the relations: 
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 Once more, we make the remark, which will serve us later on, that if one lets -21, 
-22, -23 denote the variations of 21, 22, 23 that correspond to the variations 

, , ,-$ -$ -%" ""!  of , , ,$ $ %" ""!  then one will have: 
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in which -I, -J, -K are the projections onto the fixed axes of the segment whose 
projections onto , ,Mx My Mz" " "  are .,, KJI """ ---   Now set: 
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 In addition, introduce the following notations: 
 

                                                
1 These formulas may serve to define the functions 3i,  4i, 0i directly and may be substituted for: 
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  ,111111 iiiiiii RQPRQP 043043 ++=""+""+""=5  
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and, instead of the latter system, in which either , , , , ,i i iP Q R P Q R" " " " " "  or Pi, Qi, Ri, P, Q, R 

figure, we have the following: 
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that result from defining relations for the functions , ,i i i3 4 0" " "  and the nine identities they 

verify, then one may give the preceding system the new form: 
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with two analogous equations. 
 
 3.  Finally, we shall subject the preceding two equations that we introduced to a 
transformation that is analogous to the one that led us, in sec. 53, to the generalization of 
the equations of the theory of elasticity that relate to effort. 
 To abbreviate the notation, let 0 0 0 0 0 0, , , , ," " " " " "' ( ) $ % & denote + for the moment + the 

left-hand sides of the transformation relation that refers to X0, Y0, Z0, L0, M0, N0, 
respectively, and observe that one may summarize the twelve equations we have 
established by the following: 
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in which 21, 22, 23, µ1, µ2, µ3 are arbitrary functions, and the integrals are taken over, on 
the one hand, the time interval between the instants t1 and t2, and, on the other hand, the 
surface S0, of the medium (M0) and the domain it bounds.  If we apply GREEN’S 
theorem and integrate by parts then the relation that we just wrote becomes the following 
one: 
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 We seek to transform this last relation when one takes the functions x, y, z for other 
new variables, while preserving t.  We apply the elementary formulas for the change of 
variables that we recalled in sec. 53 to the functions 21, 22, 23, µ1, µ2, µ3 .  With S always 
indicating the surface of the medium (M) at the instant t that corresponds to the surface S0 
of (M0).  Moreover, let X, Y, Z, L, M, N be the projections on Ox, Oy, Oz of the external 
force and external moment that are applied to the point M at the instant t, and referred to 
the unit of volume of the deformed medium (M), and let F, G, H, I, J, L denote the 
projections on Ox, Oy, Oz of the effort and moment of deformation that are exerted at the 
point M on S, referred to the unit of area of S.  Finally introduce, as in sec. 53, eighteen 
new auxiliary functions pxx, …, qxx, … by the formulas: 
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and the analogous one that is obtained by replacing: 
 

A1, A2, A3, pxx, pyx, pzx, P1, P2, P3, qxx, qyx, qzx 
by 

B1, B2, B3, pxy, pyy, pzy, Q1, Q2, Q3, qxy, qyy, qzy, 
and then by 

C1, C2, C3, pxz, pyz, pzz, R1, R2, R3, qxz, qyz, qzz , 
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respectively, with the quantity . having the same expression as it did in sec. 53.  We 
obtain the transformed relation: 
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in which the integrals are taken over, on the one hand, the time interval between the 
instants t1 and t2, and, on the other hand, the surface S of the medium (M) at the instant t, 
and the domain it bounds, with d0 designating the area element of S. 
 Once again, we apply the GREEN formula to the terms that refer to the derivatives of 
21, 22, 23, µ1, µ2, µ3 with respect to x, y, z, and an integration by parts (1) of the terms that 
involve the derivatives of 21, 22, 23, µ1, µ2, µ3 with respect t, and let l, m, n denote the 
direction cosines of the exterior normal to the surface S at the instant t with respect to the 
fixed axes.  Since 21, 22, 23, µ1, µ2, µ3 are arbitrary, they become: 
 

F = lpxx + mpyx + npzx,  I = lqxx + mqyx + nqzx, 
G = lpxy + mpyy + npzy,  J = lqxy + mqyy + nqzy, 
H = lpxz + mpyy + npzz,  K = lqxz + mqyz + nqzz, 
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1 Since the field of variation actually varies with t, we perform that integration by parts by the intermediary 
of passing to the variables x0, y0, z0.  We suppose that . is positive and equal to |.|. 



THE DEFORMABLE MEDIUM 187 

,0
1

=+
.

+
*

*
+

*

*
+

*

*
Z

dt

dC

z

p

y

p

x

p zzyzxz  

,0
1

=+
.

+
.

+
.

+++
*

*
+

*

*
+

*

*
L

dt

dzB

dt

dyC

dt

dP
pp

z

q

y

q

x

q
zyyz

zxyxxx  

,0
1

=+
.

+
.

+
.

+++
*

*
+

*

*
+

*

*
M

dt

dxC

dt

dzA

dt

dQ
pp

z

q

y

q

x

q
zxyx

zyyyxy  

.0
1

=+
.

+
.

+
.

+++
*

*
+

*

*
+

*

*
N

dt

dyA

dt

dxB

dt

dR
pp

z

q

y

q

x

q
yxxy

zzyzxz  

 
The significance of the eighteen new auxiliary functions pxx, …, qxx, … result 
immediately from the relations that we just wrote.  Indeed, it is clear that the coefficients, 
pxx, pxy, pxz of l in the expressions of F, G, H represent the projections onto Ox, Oy, Oz of 
the effort that is exerted at the point M on a surface whose exterior normal is parallel to 
Ox, and that the coefficients qxx, qxy, qxz of l in the expressions for I, J, K are the 
projections onto Ox, Oy, Oz of the moment of deformation at M relative to the same 
surface. 
 
 
 64.  Exterior virtual work; theorems analogous to those of Varignon and Saint-

Guilhem.  Remarks on the auxiliary functions that were introduced in the preceding 
paragraphs. –  On a deformed medium (M) between the instants t1 and t2 in an arbitrary 
state of virtual deformation, we give the name of external virtual work to the expression: 
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 We refer to the notations of sec. 60, and, moreover, let -I, -J, -K be denote the 
projections onto the fixed axes of the segment whose projections onto , ,Mx My Mz" " "  are 

, ,I J K- - -" " "  in such a way that one has, for example: 
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in which we are always supposing that the axes in question have the same disposition. 
 This being the case, suppose, as in sec. 63, that one has given the arbitrary functions 
21, 22, 23, µ1, µ2, µ3 the significance that is defined by the formulas: 
 

21 = -x,   22 = -y,  23 = -z, µ1 = -I,  µ2 = -J,  µ3 = -K. 
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We then see that the preceding relations we obtained between the new auxiliary functions 
express only the following condition: 
 If a trajectory of the deformed medium is given any of the virtual displacements of 
sec. 60 then the external virtual work -*e is given by either the relation: 
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in which the integrals are taken over the time interval between the instants t1 and t2 and 
the deformed medium, or by the relation: 
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in which the integrals are taken over the time interval between the instants t1 and t2 and 
the undeformed medium at the instant t, because the formula that we gave above: 
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which serves to define the external virtual work, may also be written: 
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by virtue of the significance of X0, Y0, Z0, L0, M0, N0, F0, G0, H0, I0, J0, K0, A, B, C, P, Q, 
R, and likewise: 
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by virtue of the significance of X, Y, …, N, F, G, …, K. 
 Start with the formula: 
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applied to an arbitrary part of the medium that is bounded by a surface S0 and the time 
interval between the instants t1 and t2.  Since -W must be identically null when the 
variations -x, -y, -z are given by the formulas (60) of sec. 61, namely: 
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    -x = (a1 + /2z – /3y)-t, 
    -y = (a2 + /3x – /1z)-t, 
    -z = (a3 + /1y – /2x)-t, 
 
by virtue of the invariance of W under the group of Euclidean displacements, and -I, -J, 
-K are given by: 

-I = /1-t, -J = /2-t, -K = /3-t, 
 
and that this is true for any values of the constants a1, a2, a3, /1, /2, /3 we conclude from 
the expressions for -*e that just insisted on (1) that one has: 
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and four analogous equations.  In these formulas, one may imagine that the frontier S0 is 
variable. 
 The auxiliary functions that were introduced in the preceding paragraphs are not the 
only ones that one may imagine.  Upon confining ourselves to their consideration, we add 
the same simple remarks as in sec. 54. 
 By definition, we have introduced two systems of efforts and moments of 
deformation relative to a point M of the deformed medium at the instant t.  The first of 
them are the ones that are exerted on surfaces that have their normal parallel to one of the 
fixed axes Ox, Oy, Oz before deformation.  The second are the ones that are exerted on 
surfaces that have their normal parallel to one of the same fixed axes Ox, Oy, Oz after 
deformation.  The formulas that we indicated give the latter elements in terms of the 
former; however, by an immediate solution, which we will not elaborate upon, one 
inversely obtains the former elements in terms of the latter. 
 Now suppose that one introduces the function W.  The first efforts and moments of 
deformation have the expressions we already indicated, and one immediately deduces the 
expressions for the second ones.  However, in these calculations, one may specify the 
functions that one must introduce according to the nature of the problem, and which are, 
for example, x, y, z, and three parameters (2) 21, 22, 23, by means of which one 
expresses .,,, %$$ """!  
 

                                                
1 The passage from the elements that are referred to the unit of volume of the undeformed medium and the 
area of the frontier S0 to the elements that refer to the unit of volume of the deformed medium and the area 
of the frontier S at the instant t is sufficiently immediate that it suffices to confine oneself, as we have done, 
to the first, for example. 
 
2 For such auxiliary functions 21, 22, 23 one may take, for example, the components of the rotation, which 
makes the axes Ox, Oy, Oz parallel to ,,, zMyMxM """ respectively. 
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 If one introduces x, y, z, 21, 22, 23, and if one continues to let W denote the function 
that depends on x0, y0, z0, the first derivatives of x, y, z with respect to x0, y0, z0, t on 
21, 22, 23, and their first derivatives with respect to x0, y0, z0, t that are obtained by 
replacing the various quantities &i, 'i, )i, pi, qi, ri, &, ', ), p, q, r in the function W(x0, y0, 
z0, t, &i, 'i, )i, pi, qi, ri, &, ', ), p, q, r) by the values they are given by formulas (54), (55), 

),45( "  and ),55( " then one will have: 
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 65.  Notion of energy of deformation and motion. – We must remark that our 
present exposition contains the statics of deformable media as a special case.  Indeed, it 
suffices to consider a reversible virtual modification, in the sense of DUHEM, instead of 
envisioning a realizable virtual deformation, as we have done. 
 This observation leads us to consider the notion of the energy of deformation and 
motion.  We propose to determine the work done by external forces and moments, as well 
as external efforts and moments, of deformation that depend on an arbitrary time interval 
for a real modification.  For this, it suffices to calculate the elementary work relative to 
time dt.  The latter is: 
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 If one replaces ,,,,,, 0000 !! GFYX """" by their expression as a function of the action, 

and if one performs an inverse calculation to the one that led us to their definition, then 
one immediately obtains, by virtue of the CODAZZI equations: 
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 In particular, if one considers the case in which W does not contain t explicitly, in 

such a way that 
t

W

*

*
 is null, then the preceding value becomes the differential with 

respect to time of the expression: 
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which may be called the energy of deformation and movement at the instant t. 
 At this point in the discussion, we need to make several important general remarks 
that will find further application in what follows in the theory of Euclidean action. 
 The only notion of Euclidean action of deformation and motion that suffices for us 
furnishes, in a very extended case, a constructive definition of the quantity of motion and 
the moment of the quantity of motion, the effort and moment of deformation, and the 
force and external moment.  One may distinguish a dynamical part and a static part in the 
force and the external moment by grouping, on the one had, the terms that contain only 
the dynamical acceleration, and, on the other hand, the terms that contain only what one 
may call the kinematical acceleration; this distinction obviously expresses an extension 
of d’ALEMBERT’s principle.  Similarly, suppose that external work is null, and that the 
energy of deformation and motion remains invariant in time.  We thus obtain the notion 
of conservation of energy, which simply translates into the hypothesis that the medium is 
isolated from the external world.  In turn, we recover all of the fundamental ideas of 
classical mechanics, and it is manifest that the particular form that they take in the latter 
context must be what one envisions for the state of motion and deformation in an 
infinitesimal neighborhood of the natural state, in which one supposes that W and its 
derivatives are null. 
 
 
 66.  Initial state and natural states.  General indications on the problem that led 
us to the consideration of deformable media. – In the foregoing, we considered the 
trajectory of the deformed state, and, after describing the initial position (M0) of that 
deformed state at a definite instant t0 we referred it to the position (M) at an arbitrary 
instant t.  Considerations that are analogous to the ones we developed in sec. 56, and in 
which the parameter that was thus introduced is now replaced by time t may be repeated 
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here if we make one of the deformed states play the role that we attributed to the initial 
state (M0). 
 However, one may also imagine that the functions x, y, z that determine the trajectory 
of the deformed state depend on one parameter, and that one distinguishes a particular 
value of this parameter.  One thus defines a sequence of states that one may call natural 
states, and their trajectory may be called the trajectory of natural states.  One may use 
the new parameter as we did in our Note sur la dynamique du point et du corps invariable 
and study, in particular, the trajectory of the deformed states that infinitely close to the 
trajectory of the natural states. 
 Conforming to the previous indications, suppose, to fix ideas, that the external force 
and moment are given by means of simple functions of x0, y0, z0, t, the elements that fix 
the position of the triad .zyxM """  We may consider the equations of sec. 62 that relate to 
the external force and moment as partial differential equations that relate to x, y, z and 
three parameters 21, 22, 23, by means of which one expresses .,,, %$$ """!  This viewpoint 

is the one that presents itself most naturally.  The expressions &i, 'i, )i, pi, qi, ri, &, ', ), p, 

q, r will be functions of 1 1
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values of &i, …, ri, &, …, r that one deduces from formulas (54), (55), )45( " and ),55( " the 
expression W is a definite function of: 
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that we continue to denote by W, and the equations of the problem may be written: 
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in which $0, %0, &0 are functions of x0, y0, z0, t, x, y, z, 21, 22, 23 that result from the 

definitions of sec. 63.  This pertains to the formulas of the preceding paragraphs directly, 

in a way that is more immediate than the definition of the X0, Y0, Z0, $0, %0, &0 may 

be summarized in the relation: 
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 67.  Notions of hidden triad and hidden W.  Case in which W depends only on x0, 
y0, z0, t, &i, 'i, )i, &, ', ), and is independent of pi, qi, ri, p, q, r.  Extension of the 

classical dynamics of deformable bodies.  The gyrostatic medium and kinetic 

anisotropy. – The considerations that we exposed previously in regard to the hidden triad 
and hidden W are also applicable to the deformable medium in motion.  It suffices to 
simply add that a hidden W will correspond to a hidden motion. 
 In particular, we shall examine the case in which W depends only on the quantities x0, 
y0, z0, t, &i, 'i, )i, &, ', ) but not on the pi, qi, ri, p, q, r.  The equations of sec. 66 then 
reduce to the following: 
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which one may interpret as saying that the motion of the deformable body in question, 
which constitutes the classical theory of elasticity as a special case, gives rise to a 
moment whose three components are: 
 

                                                
1 To simplify the exposition and to indicate more easily what we are alluding to, we suppose that X0, Y0, Z0, 
$0, %0, &0 do not refer to the derivatives of 21, 22, 23.  



196 THEORY OF DEFORMABLE MEDIA 

,
1

,
-

.
/
0

1
+

. dt

dy
C

dt

dz
B  ,

1
,
-

.
/
0

1
+

. dt

dz
A

dt

dx
C  ,

1
,
-

.
/
0

1
+

. dt

dx
B

dt

dy
A  

 
and thus has the effect of destroying the equalities: 
 

pyz = pzy, pzx = pxz, pxy = pyz . 
 
 Having said this, we observe that if one starts with a trajectory that is supposed to be 

given and deduces the functions $0, %0, &0, as in sec. 63, then, in the case in which 

these three functions are null one may arrive at the result that accidentally presents itself, 
i.e., for a certain set of particular trajectories; however, one may arrive at this for any 
trajectory (M) as a consequence of the nature of the medium (M), and its motions, i.e., 
from the form of W. 
 Imagine the latter case, which is particularly interesting; W is then a simple function 
(1) of x0, y0, z0, t, and ten expressions ,1, ,2, ,3, %1, %2, %3, 71, 72, 73, v
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1 The triad is completely hidden; thus, we may also imagine that we have a simply pointlike medium. 
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The equations deduced in sec. 62 and 63 reduce to either: 
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with analogous expressions for A2, B2, C2, A3, B3, C3 and 
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with analogous expressions for pxy, pyy, pzy, pxz, pyz, pzz .  We thus obtain the most general  
equations of motion for the classical deformable body. 
 In order for the effort to satisfy the relations: 
 

pyz = pzy, pzx = pxz, pxy = pyx, 
 
it is sufficient that one has: 

71 = 0,  72 = 0,  73 = 0, 
 
i.e., that W is independent of the arguments 71, 72, 73.  More particularly, if one must 
have: 

pyz = pzy = 0,  pzx = pxz = 0,  pxy = pyx = 0, 
 
then W must be a simple function of . and v, and one finds that: 
 

pxx = pyy = pzz = ;
.*

*W
 

 
one then finds the motion of a perfect fluid in this case. 

 When the functions $0, %0, &0 are not null, W will have the twelve translations 

&i, 'i, )i, &, ', ) for its arguments.  On the one hand, the medium may be regarded as 
gyrostatic, by giving a justifiable extension to this word, which was coined by LORD 
KELVIN, and, on the other hand, the medium is endowed with kinetic anisotropy, in the 
sense envisioned by RANKINE and then by LORD RAYLEIGH.  For example, one 
therefore makes the theory of the double refraction of light, such as was exposed by 
LORD RAYLEIGH and GLAZEBROOK, rest on a purely mechanical basis.



V. – EUCLIDEAN ACTION AT A DISTANCE, 
ACTION OF CONSTRAINT, AND DISSIPATIVE ACTION 

 
 68. – Euclidean action of deformation and motion in a discontinuous medium. – 
Consider a discrete system of n triads in which each triad is distinguished by an index i 
that consequently takes the values 1, 2, …, n.  Let iiii zyxM """  be the triad whose index is i, 

with an origin Mi that has the coordinates xi, yi, zi, and axes ,ii xM " ,ii yM "
i iM x"  that have 

the direction cosines , , ; , , ; , ,i i i i i i i i i$ $ $ # # # % % %" "" " "" " ""with respect to three fixed rectangular 

axes Ox, Oy, Oz.  We suppose that the quantities xi, yi, zi, , , ,i i i$ $ %" ""!  are functions of 

time t, and we introduce the six arguments &i, 'i, )i, pi, qi, ri that are defined by formulas 
)45( " and (55 )"  of sec. 60 with the index i. 

 Envision a function W of two infinitely close positions of the system of 
triads ,iiii zyxM """  i.e., a function of t, of xi, yi, zi, ,,,, iii %$$ """ !  and their first derivatives 

with respect to t (i takes the values 1, 2, …, n).  We propose to determine what sort of 
form W must take in order for that function to remain invariant under any infinitesimal 
transformation of the group of Euclidean displacements such as (60).  Observe that the 
relations )45( " and (55 )"  of sec. 60, with the index i, permit us to express the first 

derivatives of the nine direction cosines , , ,i i i$ $ %" ""!  with respect to t by means of well-

known formulas that involve these cosines and pi, qi, ri, and, on the other hand, to express 
these nine cosines , , ,i i i$ $ %" ""!  by means of &i, 'i, )i, and the first derivatives of xi, yi, zi 

with respect to t.  We may therefore finally express the function W that we seek as a 
function of t, of xi, yi, zi, and their first derivatives, and finally, of &i, 'i, )i, pi, qi, ri, which 
we indicate by writing: 
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 Since the variations -&i, -'i, -)i, -pi, -qi, -ri are null in the present case, as a result of 
the well-known theory of moving frames, we must write the new form for W that one 
obtains by virtue of formulas (60), when taken with the index i, and for any a1, a2, a3, 
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 Replace -xi, -yi, -zi with their values in (60) and , ,i i idx dy dz

dt dt dt
- - -  with the values 

one obtains by differentiating them.  Equate the coefficients of a1, a2, a3, /1, /2, /3; we 
obtain the following six conditions: 
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with analogous relations. 
 If we suppose that the points (xi, yi, zi) describe all possible trajectories then we 
arrive at identities that verified by the function W of the 6n arguments of xi, yi, zi, 
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dt
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dx iii  and the last arguments &i, 'i, )i, pi, qi, ri, which we leave aside for the 

moment.  We seek to discover the resulting form for W. 
 We commence by treating the case of the system of three equations: 
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that determine a function W of the 3n arguments xi, yi, zi.  We have already encountered 
this system in the context of the statics of the line, surface, and continuous three-
dimensional medium, in the case where p = 1, p = 2, p = 3.  We leave aside the case p = 
1, in which the three equations reduce to two.  For p = 2 and p = 3, we have three 
equations that form a complete system.  For p = 2, we have three equations, six variables, 
and three independent solutions: 
 

222
iii zyx ++   (i = 1, 2), x1x2 + y1y2 + z1z2; 

 
for p = 3, we have three equations, nine variables, and six independent solutions: 
 

222
iii zyx ++   (i = 1, 2, 3), xixi + yiyi + zizi  (i = 1, 2, 3). 

 
For p > 3, the system is still complete.  To prove this it suffices to show that they admit 
3p – 3 independent solutions, in which the number of equations is 3 and the number of 
variables is 3p.  We effectively have first, the p solutions: 
 

222
iii zyx ++   (i = 1, 2, …, p), 

then the solution: 
x1x2 + y1y2 + z1z2, 
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and finally, the 2(p – 2) solutions: 
 

x1xi + y1yi + z1zi,  x2xi + y2yi + z2zi (i = 3, 4, 5, .., p), 
 

which are independent.  W is thus a function of the 3(p + 1) independent arguments that 
we just enumerated. 
 Now return to the proposed system that is formed from conditions (63) and (64).  The 
conditions (63) prove that W depends on x1, …, xn, y1, …, yn, z1, …, zn only by the 
intermediary of the expressions: 
 

X2 = x2 + x1,  X3 = x3 + x1,  …,  Xn = xn + x1, 
Y2 = y2 + y1,  Y3 = y3 + y1,  …,  Yn = yn + y1, 
Z2 = z2 + z1,  Z3 = z3 + z1,  …,  Zn = zn + z1. 

 
On the other hand, set: 
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and demand that equations (64) be verified by the function W of the arguments X2, X3,…, 
X2n; Y2, Y3,…, Y2n; Z2, Z3,…, Z2n .  For example, consider the first of equations (64); they 
become: 
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y1 and z1 disappear, and what remains are the first of the equations: 
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 We thus come down to the system (65), in which xi, yi, zi are replaced by Xi+1, Yi+1, 
Zi+1, and p by 2n – 1. 
 If we first suppose that n = 2, then we see that W is abstractly given in terms of the 
arguments &i, 'i, )i, pi, qi, ri as a function of the independent expressions: 
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 Therefore, we finally have that W is a function of &i, 'i, )i, pi, qi, ri, and the four 
arguments: 
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 If we suppose that n > 2 then we see that W is abstractly given in terms of the 
arguments &i, 'i, )i, pi, qi, ri as a function of 6(n – 1) independent arguments: 
 

!
"

!
#

$

++=,
-

.
/
0

1
+,

-

.
/
0

1
+,

-

.
/
0

1

=+++++

=++
,

),,,2,1()()()(

222

222

2
1

2
1

2
1

222

kkk
kkk

iii

iii

dt

dz

dt

dy

dt

dx

nizzyyxx

ZYX
('&

!

 

X2X3 + Y2Y3 + Z2Z3 = (x2 - x1)(x3 - x1) + (y2 - y1)(y3 - y1) + (z2 - z1)(z3 - z1), 

!"

!
#
$

+++++

++++++++

=++
,)()()(

),)(())(())((

121212

131213121312

222

dt

dz
zz

dt

dy
yy

dt

dx
xx

zzzzyyyyxxxx
ZZYYXX kkkiii  

!"

!
#
$

+++++

++++++++

=++
.)()()(

),)(())(())((

131313

113113113

333

dt

dz
zz

dt

dy
yy

dt

dx
xx

zzzzyyyyxxxx
ZZYYXX kkk

iii

iii  

 
 We remark that one has: 
 

),())(())(())(( 222
2
1

kjikijjijijijijiji rrrzzzzyyyyxxxx ++=++++++++  

 



204 THEORY OF DEFORMABLE MEDIA 

in which r is the distance between two points of the system.  From symmetry reasons, one 
may have to involve arguments in W that are not independent, in which case, one may 
take, independently of the &i, 'i, )i, pi, qi, ri, the following arguments: 
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the latter subsume the arguments with three indices 2iji and arguments with four indices 
2ijk.  They figure only when there are more than two points, and one sees that the action 
on two points is influenced by all of the other points in this case.  It is easy to establish 
the relations that exist between these dependent arguments in a form that is sufficiently 
complex; they are analogous to the relations between the distances rij when the number of 
points is < 5. 
 If we know the expression for the Euclidean action W in a the system of triads in 
question, then, by a calculation that repeats the ones we made before, one may easily find 
the expression for the external force and moment on an arbitrary triad.  Since the action 

W is a function of xi, yi, zi, ,,,
dt
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dx iii  by the intermediary of rij, ;ij, 2ijk, it is easy to 

regard W as primarily a function of xi, yi, zi, ,,,
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dx iii  and of &i, 'i, )i, pi, qi, ri.  We 

have: 
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in which we have set: 
 

,
i

i
i

i
i

ii

WWW
A

(
%

'
#

&
$

*

*
+

*

*
+

*

*
=  ,

i
i

i
i

i
ii r

W

q

W

p

W
P

*

*
+

*

*
+

*

*
= %#$  

,
i

i
i

i
i

ii

WWW
B

(
%

'
#

&
$

*

*
"+

*

*
"+

*

*
"=  ,

i
i

i
i

i
ii r

W

q

W

p

W
Q

*

*
"+

*

*
"+

*

*
"= %#$  

,
i

i
i

i
i

ii

WWW
C

(
%

'
#

&
$

*

*
""+

*

*
""+

*

*
""=  ,

i
i

i
i

i
ii r

W

q

W

p

W
R

*

*
""+

*

*
""+

*

*
""= %#$  

 
in which (Ai, Bi, Ci) and (Pi, Qi, Ri) are the quantity of motion and the moment of the 
quantity of motion, respectively, for the triad of index i, and: 
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in which (Xi, Yi, Zi) and (Li, Mi, Ni) are the external force and external moment of the triad 
of index i; what remains in these calculations is to exhibit the arguments rij, ;ij, 2ijk, but 
this is easy. 
 We remark that the expression for the external force may be decomposed into two 
parts. The first, which depends on the segments (Ai, Bi, Ci), (Pi, Qi, Ri) and their 
derivatives, is the properly dynamical part.  The second, which results from the presence 
of the arguments rij, ;ij, 2ijk in W corresponds to the force that the triad of index i is 
subject to on the part of the other triads of the system.  Consider the expression: 
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which represent the sum of the elementary works of the forces applied to the different 
triads.  If we calculate them upon replacing Xi, Yi, Zi, Li, Mi, Ni, with the preceding values 
then we find the following expression for the elementary work relative to the dynamical 
part of the external force and the external moment: 
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and, for the elementary work due to the forces that are exerted between the triads of the 
system, we have: 
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If we add these two expressions, and set: 
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then we see that the sum of the elementary works is: 
 

W
dE dt

t

*
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in which we suppose that W is independent of t, and when we give E the name of energy 
of motion and position for the system of triads in question, we obtain a proposition that is 
entirely analogous to that of sec. 65. 
 From the foregoing, it is easy to deduce a system dynamic that is established on the 
same basis as the classical theory, but without limiting ourselves to central forces, as in 
the latter case.  Moreover, the actual exposition presents the advantage of associating the 
diverse laws of force at a distance that were studied by GAUSS, RIEMANN, WEBER, 
and CLAUSIUS (1), who uniquely introduced the arguments rij, ;ij, %ijk to their true 
origin. 
 
 
 69.  The Euclidian action of constraint and the dissipative Euclidian action. – 
The considerations that we must develop in regard to the Euclidian action at a distance 
lead to the notion of constraint in a natural manner, a notion that was due to GAUSS and, 
as one knows, was applied by HERTZ to the study of the foundations of mechanics by 

                                                
1 See R. REIFF and A. SOMMERFELD, Encyclopädie der Math. Wissenschaften, 52, pp. 3-62. 
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following a path already explored by BELTRAMI, R. LIPSCHITZ, and G. DARBOUX 
(1). 
 To simplify, let there be a point that describes a definite trajectory by the three 
functions x0, y0, z0, and time t when its movement is free.  On the other hand, denote the 
functions of time t that describe its trajectory when it is subject to constraints by x, y, z.  
We may envision the two points (X, Y, Z), (X0, Y0, Z0), whose coordinates are obtained, 
for example, by the formulas: 
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which provide the TAYLOR development up to the first three terms.  If we assume that 
the constraints are frictionless then we may demand that at the instant t in question one 
has: 

x = x0,      y = y0,   z = z0,   ,0

dt
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dt

dy

dt

dy
=  .0

dt

dz

dt

dz
=  

 
 Having said this, the introduction of the notion of constraint due to GAUSS amounts 
to replacing r by its value, where r denotes the distance, after having considered the 
Euclidean action at a distance U1(r) in such a way that one is led to the function U of the 
argument % that is defined by the formula: 
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 If we then apply the method of variable action, we have: 
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in which we have set: 
                                                
1 BELTRAMI, Sulla teoria generale dei parametric differenziali, Mem. Della R. Accad. Di Bologna, Feb. 
25, 1869. 
 
R. LIPSCHITZ, Untersuchungen eines Problemes der Variationsrechnung, in welchem das Problem der 
Mechanik enthalten ist, Journ. fhr die reine und angewandte Mathmematik, 74, pp. 116-149, 1872; 
Bemerkung zu dem Princip des kleinsten Zwanges, ibid., 82, pp. 311-342, 1877. 
 
G. DARBOUX, Leçons sur la théorie générale des surfaces, 2nd Part, Book V, Chap. VI, VII, VIII, Paris, 
1889. 
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 If, with GAUSS, we call the argument % the constraint then the force ', (, ) may be 

called the force of constraint that is applied to the point (x, y, z), and may be regarded as 

having the effect of impeding the free motion of the point; on the contrary, the force + ', 

+ (, + ) has the effect of changing the free motion into the constrained motion. 

 The essential difference between the present conception of force and the one that 
results from NEWTON’s laws of motion is the following: in the latter form, one 
considers the action relative to two infinitely close positions + one present, one future + 
on the same trajectory; in the conception of GAUSS and HERTZ, the action is referred to 
two future positions: one on the trajectory we called free, the other on the trajectory we 
called constrained.  In the two cases, one obviously has a theory that permits us to predict 
the future motion, which is the object of point dynamics.  However, in addition, and this 
is the point that we would particularly like to clarify, the action is Euclidean. 
 On the subject, it is interesting to remark that GAUSS has explicitly established an 
agreement between the action of constraint and the law of errors, which has the same 
form in effect.  One therefore sees that the fundamental character of the law of errors is 
the Euclidean invariance of that law, and that the new branch of mechanics, which was 
created by MAXWELL, BOLTZMANN, and W. GIBBS in the name of statistical 
mechanics, may likewise receive the deductive form that we propose to give ordinary 
mechanics here. 
 We may further observe that the forces of constraint translate into an indeterminacy 
that is the product of the definition of the force, and which leads to the introduction of 
LAGRANGE multipliers, just as in the mechanics that one derives from NEWTON’s 
ideas as in what one deduced from the notion of GAUSS constraint. 
 GAUSS’s idea may also be applied to friction by envisioning a Euclidean action on 
the two points: 
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in which the point x0, y0, z0 refers to a free trajectory, and the point x, y, z refers to a 
trajectory that is traversed with friction.  As we are dealing with sliding friction here, we 

must set :x = x0, y = y0, z = z0, ,0
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factor 1 – µ, which corresponds precisely to the notion of the dissipation of the free 
action at a point x0, y0, z0. 
 The arguments rij, ;ij, 2ijk that we considered in sec. 68, translate, by definition, into 
an analogous idea with regard to a triad we take to be isolated in the system of n triads in 
question.  One may, if one prefers, distinguish between these arguments, and say that rij 
is a potential argument, and that ;ij, 2ijk are dissipative arguments.  The central force 
hypothesis thus amounts to considering only the dynamics of systems without friction at 
a distance in mechanics.  From the arguments rij, ;ij, 2ijk, one may, on the other hand, 

derive the particular argument of WEBER ,
dt

drij and if one passes from the discontinuous 

medium to the continuous medium, in which the concept rests on the consideration of ds2 
for the space, then one finds oneself led to introduce the viscosity arguments 
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dt
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dt

d%
,2

dt

d% 3d

dt

%
in the action W.  Beside such arguments, which were 

envisioned for the first time by NAVIER and POISSON, one must obviously also place 
arguments such as the argument &1&2 + '1'2 + )1)2, which was considered in sec. 47, and 
arguments such as 71, 72, 73 from sec. 67.  We confine ourselves to these summary 
indications on viscosity, which has not been given further study in a sufficiently 
systematic manner up till now. 



VI. – THE EUCLIDEAN ACTION 

FROM THE EULERIAN VIEWPOINT 

 
 70.  The independent variables of Lagrange and Euler.  The auxiliary functions 

considered from the hydrodynamical viewpoint. – In the statics and dynamics of 
deformable media, we took x0, y0, z0, and x0, y0, z0, t, respectively, to be the independent 
variables.  In the former case (statics), one lets x0, y0, z0 denote the coordinates of the 
point M0 of the natural state (M0) by imaging that this natural state is deformed in an 
infinitely slow fashion so that its points do not acquire any velocity, and passes from the 
position (M0) to the position (M) in a continuous fashion (1).  In the second case 
(dynamic), one lets x0, y0, z0 denote the coordinates of the position M0 at a definite instant 
t0 of the point that is at M at the instant t.  The position (M0) of the medium plays a 
particular role. 
 The deformable medium (M) has been considered to be generated by a triad ,zyxM """  
whose origin M has the coordinates x, y, z, and whose vectors have the direction 
cosines , , ; , , ; , ,$ $ $ # # # % % %" "" " "" " ""  with respect to the fixed axes Ox, Oy, Oz.  In the static 
case x, y, z, , , ,$ $ %" ""! are considered to be functions of the independent variables x0, y0, 
z0, and, in the dynamics case, as functions of the four independent variables x0, y0, z0, t.  
In either case, we say that the independent variables imagined are the LAGRANGE 
variables, and if we would like to make this concept specific we demand that: 
 
(66)  x = x(x0, y0, z0),  y = y(x0, y0, z0), z = z(x0, y0, z0), 
or: 

)66( "   x = x(x0, y0, z0, t),  y = y(x0, y0, z0, t), z = z(x0, y0, z0, t), 
 
and, similarly, we have either: 
 
(67)  ),,,( 000 zyx$$ =  ),,,( 000 zyx$$ "="  ),,,( 000 zyx$$ ""=""  

or 
)76( "   ),,,,( 000 tzyx$$ =  ),,,,( 000 tzyx$$ "="  ),,,,( 000 tzyx$$ ""=""  

 
with analogous formulas for .,,,,, %%%### """"""  
 However, we may now imagine that one performs a change of variables on the 
independent variables.  In particular, by analogy with what one does in hydrodynamics, 
we may imagine that one takes x, y, z, or x, y, z, t to be the independent variables.  We 
then say that we are imagining the EULER variables. 
 What is the fundamental question we must ask?  In the theory that we just developed, 
where one considered that question to be either the question of defining the elements of 
force, etc., or, conversely, that of determining the position (M), we encountered the 

                                                
1 In this conception of the infinitely slow deformation of a medium, which is analogous to the reversible 
transformations of thermodynamics, we have defined the external force and moment, the effort and 
moment of deformation that one may qualify as static, and then the work done in passing from (M0) to (M), 
and, consequently, we obtain the notion of the energy of deformation, which is placed beside that of action, 
which we started with. 
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functions x, y, z, , , ,$ $ %" ""!  of x0, y0, z0, or of x0, y0, z0, t that are defined by (66), (67), or 
by ).76(),66( ""   Imagine that one solves equations (66) or )66( "  with respect to x0, y0, z0; 
one has: 
(68)  x0 = x0(x, y, z),  y0 = y0(x, y, z),  z0 = z0(x, y, z), 
or 

)86( "   x0 = x0(x, y, z, t),  y0 = y0(x, y, z, t), z0 = z0(x, y, z, t), 
 
and, substituting these in (67) or )76( " , we have: 
 
(69)  ),,,( zyx$$ =   ),,,( zyx$$ "="  ),,,( zyx$$ ""=""  
or 

)96( "   ),,,,( tzyx$$ =  ),,,,( tzyx$$ "="  ).,,,( tzyx$$ ""=""  
 
 We presently know the functions x0, y0, z0, , , ,$ $ %" ""! of x, y, z, or of x, y, z, t, and, 
conversely, by solving (68), (69) or ),86( " (69 )" one will then pass to (66), (67) or to 

).76(),66( ""  
 However, one must complete the statement that must be made by observing that in 
either case it may be convenient to introduce the auxiliary functions. 
 If we imagine the case of LAGRANGE variables, it may happen that the functions x, 
y, z do not figure in the question explicitly (1); it may therefore be convenient to introduce 
the first derivatives of x, y, z with respect to x0, y0, z0, or with respect to x0, y0, z0, t as 
auxiliary variables (2).  In this case, by imagining x, y, z, ,,,, %$$ """! one may also 

introduce the translations and rotations &i, …, ri, &, …, r as auxiliary functions if only x0, 
y0, z0 or x0, y0, z0, t figure in the givens. 
 If we imagine the case of the EULER variables then we may indicate analogous 
circumstances in which the use of the auxiliary variables may offer advantages.  First, 
suppose that the hypotheses that we must consider for the LAGRANGE variables are 
realized.  We may preserve the indicated auxiliary functions.  The only essential 
difference from the preceding case resides in the ultimate determination of formulas (66), 
(67) or the analogous ones, if one performs them.  If we suppose, furthermore, that x0, y0, 
z0 do not figure in the question then we may introduce the derivatives of x0, y0, z0 with 
respect to x, y, z or with respect to x, y, z, t as the auxiliary variables. 
 Following these indications, one sees that there may be some use for the equations 
that served as the point of departure since they were presented in a convenient form from 
the standpoint of the auxiliary functions.  One observes that this goal is already attained 
by the equations that we previously obtained, in which the auxiliary functions &i, …, ri, &, 
…, r already figure. 
                                                
1 This is what normally happens if one starts with results like the ones given in our exposition and if one 
does not modify the expressions of force, etc., by virtue of the formulas (66), (67) or );76(),66( ""  indeed, 

the letters x, y, z do not figure explicitly in W. 
 
2 These auxiliary functions are actually coupled by relations that are easy to form; the same remark applies 
in general.  They are not introduced in hydrodynamics, where the auxiliary functions are derivatives with 
respect to just the variable t (and where the use of these auxiliary functions is often limited to the case of 
introducing the EULER variables). 
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 71.  Expressions for &i, …, ri (or for &i, …, ri, &, …, r) by means of the functions 

x0, y0, z0, , , ,$ $ %" ""! of x, y, z (or of x, y, z, t) and their derivatives; introduction of the 

Eulerian arguments. – From the explanations that must be given, it results that it may be 
useful to have expressions for &i, …, ri or for &i, …, ri, &, …, r, which are evaluated, no 
longer in accord with formulas (66), (67) or ),76(),66( "" which suppose that x0, y0, z0 or 
x0, y0, z0, t are independent variables, but in accord with formulas (68), (69) or 

),96(),86( "" which introduce the functions x0, y0, z0, , , ,$ $ %" ""! of x, y, z or of x, y, z, t. 
 We think about the case in which t figures in a general manner.  The formulas 
obtained give, in particular, the case in which x, y, z, , , ,$ $ %" ""! are independent of t.  By 

virtue of ),76(),66( ""  the quantities &i, … are calculated by the formulas (1): 
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(in which !1 = x0, !2 = y0, !3 = z0), and these are calculated by means of x0, y0, z0, 

, , ,$ $ %" ""! and their derivatives with respect to x, y, z using formulas ).96(),86( ""  

 To that effect, we shall show that the quantities &i, …, ri, &, …, r, which will 
henceforth be called Lagrangian arguments, are simply expressed by means of the 
following auxiliary functions, which we call Eulerian arguments: 
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1 We use the habitual notations for the derivatives with respect to t.  (See e.g., APPELL, Traité de 
Mécanique, T. III, 1st ed., pp. 277). 
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in which we have set: 
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with analogous formulas for [p2], [q2], [r2], and for [p3], [q3], [r3] that are obtained by first 
changing %, # into $, %, and then into #, $, and we employ the well-known notations (1) 
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 We differentiate relations )86( " successively with respect to the LAGRANGE 
variables; they become four systems of three equations that, by virtue of notations (70) 
and (72), one may write: 
 
(75) &i(&i) + 'i('i) + )i()i) = 1,  &j(&k) + 'j('k) + )j()k) = 0, (j % k), 
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 By virtue of the preceding relations (75) (as well as things that result from formulas 
(78) given before), the last three relations (76) may be written: 
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 Once we solve equations (75) and (76), we observe that we may replace these 
systems with equivalent systems that are obtained by differentiating relations )66( "  with 
respect to the EULER variables x, y, z, t successively, and which, by virtue of notations 
(72), may be written (upon multiplying by , ,$ $ $" ""  and adding, etc.). 

                                                
1 See APPELL, Traité de Mécanique, T. III, 1st  ed., pp. 277. 
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to which we adjoin ).67( "   By multiplying system )57( "" by , ,$ $ $" ""and adding, etc., it may 
also be written: 
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 Once again, observe that the following form, which implies (75), is intermediate 
between )57( "" and (75), and ultimately results from formulas (70) combined with (75) and 
formulas (74): 
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One sees that the Lagrangian arguments are functions of only the Eulerian arguments and 
conversely (at least as far as translations are concerned). 
 First determine the Lagrangian arguments by means of the Eulerian arguments.  Let . 
denote the determinant: 
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 Let 1 1 1 2 2 2 3 3 3, , , , , , , ,& ' ( & ' ( & ' (" " " " " " " " "  be the coefficients of the elements of the determinant 

., i.e., the minors given a convenient sign, which therefore amounts to setting: 
 

,23321 ('('& +="  ,23321 &(&(' +="  ,23321 '&'&( +="  … 

 
 Upon solving equations (75) with respect to (&i), ('i), ()i), (&), ('), ()), and then 
substituting in (76), one obtains: 
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 Conversely, determine &i, 'i, )i, &, ', ) as a function (&i), ('i), ()i), (&), ('), ()).  We 
observe that the determinant whose elements are .(&i), .('i), .()i) is the adjoint 

determinant (1) of ., in such a way that we must let 
.

1
designate the determinant: 
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 Solve formulas (75) and (76) with respect to &i, 'i, )i, &, ', ).  Upon designating the 
coefficients of the elements of the determinant (78) by ),(),(),( iii ('& """ they become (2): 
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We now propose to determine the rotations. 
 Differentiate relations )76( " with respect to x, y, z, t.  While always employing the 
well-known notation for derivatives with respect to time, we have (3): 
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1 This adjoint determinant is the square of .. 
 
2 The first nine formulas of (79) (I = 1, 2, 3) are true if one considers the known consequences of the theory 
of adjoint determinants.  It is clear that all of the present calculations may be attached to the theory of forms 
and to that of linear substitutions. 
 

3 We distinguish 
dt

d$
from ,

t*

*$
…, consistent with the notation employed by APPELL, Traité de 

Mécanique, T. III., pp. 277.  As for x0, y0, z0, we do not need to introduce ,,, 000

dt

dz

dt

dy

dt

dx
since they are 

zero.  One observes that the present x0, y0, z0, t are functions of x, y, z, t, which, when equated to the old x0, 
y0, z0, define functions x, y, z that are thus implicit functions.  We shall return to this point later. 



216 THEORY OF DEFORMABLE MEDIA 

   ,0

0

0

0

0

0 z

z

zy

y

yy

x

xy *

*

*

*
+

*

*

*

*
+

*

*

*

*
=

*

* $$$$
 

   ,0

0

0

0

0

0 z

z

zz

y

yz

x

xz *

*

*

*
+

*

*

*

*
+

*

*

*

*
=

*

* $$$$
 

   ,0

0

0

0

0

0 dt

d

t

z

zt

y

yt

x

xt

$$$$$
+

*

*

*

*
+

*

*

*

*
+

*

*

*

*
=

*

*
 

 
with analogous formulas for the cosines .,,, %%# ""!  
 The formulas (74) then give: 
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and, using formulas (72), formulas (73) give: 
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which give us the latter Eulerian arguments (pi), (qi), (ri), (p), (q), (r) by means of the 
Lagrangian arguments (it suffices to replace (&1), … with their values). 
 Conversely, to obtain the latter Lagrangian arguments p1, …, we may solve the 
system (80), but one may also directly differentiate the relations with respect to x0, y0, z0, 
t successively; we have: 
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After taking (70) into account, relations (71) then give us: 
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which one may write in the intermediate form: 
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with analogous formulas for p2, q2, r2; p3, q3, r3 that one obtains upon changing &1, '1, )1,  
into &2, '2, )2, and then into &3, '3, )3, or upon changing x0 into y0, and then into z0; one 
has, moreover: 
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 72.  Static equations of a deformable medium relative to the Euler variables as 
deduced from the equations obtained from the Lagrange variables.  We have already 
performed the passage from the LAGRANGE variables to the EULER variables in the 
context of the statics of deformable media.  It will suffice for us to complete the results so 
obtained (1). 
 We found formulas such as the following in sec. 53: 
 

 ,3
0

2
0

1
0

A
z

x
A

y

x
A

x

x
pxx

*

*
+

*

*
+

*

*
=.   ,3

0
2

0
1

0

P
z

x
P

y

x
P

x

x
qxx

*

*
+

*

*
+

*

*
=.  

 ,3
0

2
0

1
0

A
z

y
A

y

y
A

x

y
p yx

*

*
+

*

*
+

*

*
=.   ,3

0
2

0
1

0

P
z

y
P

y

y
P

x

y
q yx

*

*
+

*

*
+

*

*
=.  

 ,3
0

2
0

1
0

A
z

z
A

y

z
A

x

z
pzx

*

*
+

*

*
+

*

*
=.   ,3

0
2

0
1

0

P
z

z
P

y

z
P

x

z
qzx

*

*
+

*

*
+

*

*
=.  

 

in which one has: 
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1 We then seek to obtain the definitive results directly. 
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 Suppose that W is expressed by means of the arguments (&i), ('i), ()i), (pi), (qi), (ri), 
and set: 

W = .8. 
 
By virtue of the formulas (77) of the preceding paragraph, one will have: 
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and, as a result, since . does not depend on pi, qi, ri: 
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 Upon differentiating relations (75) with respect to &i, one gets: 
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from which, one deduces: 
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and then, by the relations (80): 
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with analogous formula for the derivatives with respect to 'i, )i.  If one sets: 
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 By virtue of the formulas (72), (73), (74), ),57( "" and upon letting [Ai], [Bi], [Ci]; [Pi], 
[Qi], [Ri] denote the components relative to the axes Ox, Oy, Oz of the two vectors whose 
components with respect to the axes , ,Mx My Mz" " "  are );(),(),( iii CBA """ ),(),(),( iii RQP """ one 

deduces the following three formulas: 
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with analogous formulas for Bi, Ci, and pxy, pyy, pzy, pxz, pxz, pxz .  One then has: 
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and, again taking ),57( ""  into account, we obtain the following three formulas: 
 
   qxx = $[P1] + #[P2] + %[P3], 
   qyx = $[Q1] + #[Q2] + %[Q3], 
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   qzx = $[R1] + #[R2] + %[R3], 
 
with analogous formulas for Qi, Ri, and qxy, qyy, qzy, qxz, qxz, qxz. 
 

 

 73.  Dynamical equations of the deformable medium relative to the Euler 

variables as deduced from the equations obtained for the Lagrange variables. – We 
have also performed the passage from the LAGRANGE variables to the EULER 
variables in the context of the dynamics of the deformable medium.  We shall first 
complete the results so obtained. 
 Ai is augmented with: 
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however, from (76) and (80): 
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with analogous formulas, in such a way that if we set: 
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then we must add 
A(&), A('), A()), 

 
respectively, to the given values of Ai , i = 1, 2, 3, that were given in the last paragraph, 
where we have set: 
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The expressions that we add to the values of pxx, pxy, pxz, of the preceding paragraph are 
therefore: 
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however, from the values (76) of (&),('),()), one has: 
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i.e., by virtue of formulas (75 )"" : 
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in such a way that the expressions that we must add to the pxx, pxy, pxz of the preceding 
paragraph are: 
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 One will have analogous expressions for pyx, …, pzx,… by the obvious change of A 
into two analogous expressions B and C that are deduced by reducing the [&i], [pi] by the 
corresponding quantities ['i], [qi] and [)i], [ri]. 
 We now introduce the notations A, B, C; we show that they are identical to the 
notations introduced in the Lagrangian theory: 
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However, from formulas (76) and (80), one has: 
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and analogous relations for ', ).  By virtue of relations (72), we obtain: 
 

].)[(])[(])[(])[(])[(])[( 321321 pRpQpPCBA
A

"+"+"+"+"+"=
.

+ &&&  

 
 Similarly, for the P, Q, R of the Lagrangian theory, namely: 
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one has, by virtue of the relations (80): 
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 Finally, consider the modification that must be made to the formulas of the preceding 
paragraph in order to have the qxx, … relate to the actual case of dynamics. 
 The quantities that we have called Pi are augmented for i = 1, 2, 3, either by: 
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)},()()(){( RQP "+"+". %#$(  

 
by virtue of formulas (80).  One sees that these increases are: 
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 The expressions that must be added to the values of qxx, qxy, qxz of the preceding 
section are thus: 
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One will have analogous expressions for qyz, …; qzx, … by changing P into Q, and then 
into R. 
 

 

 74.  Variations of the Eulerian arguments deduced from those of the Lagrangian 
arguments. – With the aim of directly formulating the Eulerian equations that relate to 
the deformable medium, we shall calculate the variations of the Eulerian arguments.  We 
commence by deducing the variations from the Lagrangian arguments in order to verify 
them, and then we calculate them directly. 
 If we apply - to equations (75) then they become three systems like the following 
one: 

&1-(&1) + '1-('1) + )1-()1) = + (&1)-&1 + ('1)-'1 + ()1)-)1, 
&2-(&1) + '2-('1) + )2-()1) = + (&1)-&2 + ('1)-'2 + ()1)-)2, 
&3-(&1) + '3-('1) + )3-()1) = + (&1)-&3 + ('1)-'3 + ()1)-)3 . 

 
Hence, keeping relations (77) in mind: 
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or, upon replacing -&i, -'i, -)i with their values, and taking relations )57( "  and (80) into 
account: 
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however, by virtue of equations )57( "" one has: 
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for example.  We therefore obtain the following relation: 
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in order to find -('1), -()1), it suffices to make a circular permutation of (&1), ('1), ()1) to 
replace , ,$ $ $" ""  with ,,, ### """  and then with ,,, %%% """  and to replace the pi with qi and 

then with ri.  One has analogous systems of formulas for -(&2), -('2), -()2); -(&3), -('3), 
-()3). 
 By means of (76) and the values for -&, -', -), one has, in turn: 
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however, by virtue of (76), relations (80) give: 
 

(p1)& + (q1)' + (r1)) = + {p1(&) + p2(') +p3())}, 
(p2)& + (q2)' + (r2)) = + {q1(&) + q2(') +q3())}, 
(p3)& + (q3)' + (r3)) = + {r1(&) + r2(') +r3())}, 

 
from which, we finally have: 
 

3
4
5

"
#
$

"+"+
*

"*
+

*

"*
+

*

"*
+

"
+= yrzq

z

x

dt

dz

y

x

dt

dy

x

x

dt

dx

dt

xd
--

----
&&- )()()()( 1  

 
3
4
5

"
#
$

"+"+
*

"*
+

*

"*
+

*

"*
+

"
+ zpxr

z

y

dt

dz

y

y

dt

dy

x

y

dt

dx

dt

yd
--

----
' )()()( 1  

 .)()()( 1
3
4
5

"
#
$

"+"+
*

"*
+

*

"*
+

*

"*
+

"
+ xqyp

z

z

dt

dz

y

z

dt

dy

x

z

dt

dx

dt

zd
--

----
(  

 

 One will get analogous values for -('), -()) upon changing (&1), ('1), ()1) into (&2), 
('2), ()2), and then into (&3), ('3), ()3). 
 From (80), we now have: 
 

-(p1) = (&1)-p1 + (&2)-p2 + (&3)-p3 + p1-(&1) + p2-(&2) + p3-(&3), 
 
i.e., by virtue of formulas (75 )"" : 

JrKqp "+"= --- )()()( 111  

JpKp
z

I

y

I

x

I
"+"+

*

"*
""+

*

"*
"+

*

"*
+ --

-
$

-
$

-
$ )()( 32  

3
4
5

"
#
$

"+"+
*

"*
""+

*

"*
"+

*

"*
+ ypzp

z

x

y

x

x

x
p --

-
$

-
$

-
$ )()()( 321  

3
4
5

"
#
$

"+"+
*

"*
""+

*

"*
"+

*

"*
+ zpxp

z

y

y

y

x

y
q --

-
$

-
$

-
$ )()()( 131  

3
4
5

"
#
$

"+"+
*

"*
""+

*

"*
"+

*

"*
+ zpyp

z

z

y

z

x

z
r --

-
$

-
$

-
$ )()()( 211  

 

with analogous formulas for -(q1), -(r1), and for -(p2), -(q2), -(r2); -(p3), -(q3), -(r3). 
 We have have: 
 

-(p) = -p + (&)-p1 + (')-p2 + ())-p3 + p1-(&) + p2-(') + p3-()), 
 

i.e., by virtue of formulas ),57( "" (76), and (80): 
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with analogous formulas for -(q), -(r). 
 Now, we seek to find the formulas that must be established when one introduces the 
auxiliary functions -x, -y, -z, -I, -J, -K, which are defined as before.  For example, one 
has: 
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and analogous expressions for ,,
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and analogous systems for the derivatives with respect to y and z.  One has similar 
formulas that relate to , ,I J K- - -" " "  and -I, -J, -K.  By virtue of formulas (72), and upon 
supposing that the determinant | |$ # %" " "" = 1, one then has: 
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with analogous formulas. 
 The value of -(&) that was written on page (?) may be put into the form: 
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however, by virtue of formulas (73) that define (p), (q), (r), one has formulas like the 
following ones: 
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and, as result, by virtue of formulas (72), one has: 
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a formula in which one may revert to the derivatives ,
dt

d
 as we shall see in detail later 

on. 
 By virtue of the formulas that define -x, -y, -z, -I, -J, -K, one has: 
 

  Irq
x

K

x

J

x

I
p -#%

-
$

-
$

-
$$- )]()([)( 111 ++,

-

.
/
0

1

*

*
""+

*

*
"+

*

*
=     

   Jrq
y

K

y

J

y

I
-#%

-
$

-
$

-
$$ )]()([ 11 "+"+,,

-

.
//
0

1

*

*
""+

*

*
"+

*

*
"+  

   Krq
z

K

z

J

z

I
-#%

-
$

-
$

-
$$ )]()([ 11 ""+""+,

-

.
/
0

1

*

*
""+

*

*
"+

*

*
""+  

&
'

(
)
*

+
,
-

.
/
0

1
+

*

*
""+,,

-

.
//
0

1

*

*
""+

*

*
"+

*

*
"+,

-

.
/
0

1

*

*
""+

*

*
"+

*

*
+ !

z

x

y

z

y

y

y

x

x

z

x

y

x

x
p

-
$$

-
$

-
$

-
$$

-
$

-
$

-
$$)( 1  

&
'

(
)
*

+
,
-

.
/
0

1
+

*

*
""+,,

-

.
//
0

1

*

*
""+

*

*
"+

*

*
"+,

-

.
/
0

1

*

*
""+

*

*
"+

*

*
+ !

z

x

y

z

y

y

y

x

x

z

x

y

x

x
q

-
#$

-
#

-
#

-
#$

-
#

-
#

-
#$)( 1  

,)( 1 &
'

(
)
*

+
,
-

.
/
0

1
+

*

*
""+,,

-

.
//
0

1

*

*
""+

*

*
"+

*

*
"+,

-

.
/
0

1

*

*
""+

*

*
"+

*

*
+ !

z

x

y

z

y

y

y

x

x

z

x

y

x

x
r

-
%$

-
%

-
%

-
%$

-
%

-
%

-
%$  

 

which, by virtue of formulas (73), may be written: 
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and one has analogous results for -(q1), … 
 Finally, observe that one may write: 
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a formula in which one may also revert to the derivatives .
dt

d
  One has two analogous 

formulas for -(q), -(r). 
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 75.  Direct determination of the variations of the Eulerian arguments. – We 
suppose that one subjects the functions x, y, z of x0, y0, z0, t to the variations -x, -y, -z.  
Consider the relations that one obtains by differentiating relations )86( " successively with 
respect to the LAGRANGE variables; from this, we deduce: 
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if one substitutes the values of these derivatives into the preceding expression then one 
has: 
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the parentheses in this latter equality are thus null, and one has: 
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Similarly, we have: 
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upon replacing -[&1], -['1], -[)1] with the values that we must obtain they become: 
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with analogous formulas for -('), -()).  To retrieve the formula that we obtained in sec. 
74, it suffices to remark that one has: 
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but we will not use the formula on page (?) and its analogues in what follows.  Indeed, it 
is convenient to observe only the domain of integration of the integrals over x, y, z, which 
we consider to depend on t, in the case in which x, t, z, t are the independent variables, 
and not revert to the integrations over x, y, z, and t, as is the habitual custom (as with x0, 
y0, z0).  If one must integrate by parts with respect to t then one must introduce the 
auxiliary variables x0, y0, z0, and use only derivatives with respect to t that take the 

form ,
dt

d
which will necessitate the use of formulas such as the one that wrote above for 

-(&).  
 The calculations that must be done in order to obtain -(pi), -(qi), -(ri), -(p), -(q), -(r), 
like the ones that lead to expressions for -(&i), -('i), -()i), -(&), -('), -()), presently rest 
upon formulas that we just obtained for -[&i], -['i], -[)i].  The transformation that the 
expressions -(p), -(q), -(r), which were given in sec. 74, must be subjected to in order to 

put the derivatives with respect to t into the form ,
dt

d
is the same as the one that we 

indicated for -(&), -('), -()). 
 
 

 76.  The action of deformation and motion in terms of Euler variables.  

Invariance of the Eulerian arguments.  Application to the method of variable action. 
– The action of deformation and motion becomes: 
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in which W is a function of x0, y0, z0, t; &i, 'i, )i, pi, qi, ri; &, ', ), p, q, r. 
 From formulas (79) and (81), ),18( "  one may also say that W is a function of x0, y0, z0, 

t; (&i), ('i), ()i), (pi), (qi), (ri); (&), ('), ()), (p),( q), (r), and, if one sets (1): 
 

W
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then the preceding action may be written: 
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The integration over x, y, z is taken over the medium S, i.e., over a domain that varies 
with time. 
 One may also see how one can arrived at this latter action independently of the 
former.  Indeed, the Lagrangian arguments are, as we saw before, Euclidian invariants; 
however, since the Eulerian arguments are uniquely functions of the Lagrangian 
arguments, from formulas (77) and (80), it results from this that they are also Euclidian 
invariants; furthermore, one may establish this in a direct manner by means of formulas 
(82), (83) and (84), (85), by setting: 
 

-x = (a1 + /2z – /3y)dt, 
-y = (b1 + /3x – /1z)dt, 
-z = (c1 + /1y – /2x)dt, 

-I = /1-t, -J = /2-t, -K = /3-t. 
 
From this, it results that one is directly led to give the following form to the action of 
deformation and movement in terms of the EULER variables taken over the interior of 
the surface S, and during the time interval between instants t1 and t2: 
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in which the function 8 has the following remarkable: 
 

8(x0, y0, z0, t; (&i), ('i), ()i), (pi), (qi), (ri); (&), ('), ()), (p),( q), (r)). 
 
 Consider an arbitrary variation of the action of deformation and motion in the interior 
of a surface (S) in the medium (M), and the time interval between the instants t1 and t2, 
and, to that effect, give the x, … the variations -x, … 
 

                                                
1 We suppose that . is positive and therefore equal to |.|. 
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For the moment, write the integral in the form: 
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its variation is: 
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and, as a result, the variation of the integral is: 
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The variation -8 of 8 is: 
 

),(
)(

)(
)(

)(
)(

)(
)(

q
q

p
pi

i
i

i

--'-
'

&-
&

-
*

8*
++

*

8*
+

3
4
5

"
#
$

+
*

8*
+

*

8*
=8 % !!  

 

in which -(&i), -('i), …, -(r) are determined by the formulas of sec. 74 and 75, in such a 

way that only the derivatives with respect to t in the form
d

dt
are involved.  We may apply 

GREEN’S formula to the terms that explicitly refer to a derivative with respect to one of 
the variables x, y, z.  As far as the terms that explicitly refer to a derivative with respect to 
time are concerned, here is how we deal with them (the domain of integration over x, y, z 
varies with time):  let: 
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be a typical term; if we pass to the intermediary of the variables x0, y0, z0 then it becomes: 
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when we revert to the variables x, y, z (1). 
 If we let l, m, n denote the direction cosines of the exterior normal to the surface S 
that bounds the medium after deformation at the instant t with respect to the fixed axes 
Ox, Oy, Oz, and let d0 be the area element of that surface: 
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in which we have set, following the notations of sec. 73: 
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and, in addition: 
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with analogous formulas for qxy, qyy, qzy, qxz, qyz, qzz . 
 

 

 77.  Remarks on the variations introduced in the preceding sections.  Application 
of the method of variable action as in the usual calculus of variations. – We used the 
calculus of variations in the preceding section; it is useful to elaborate on the significance 
of those formulas according to the approach of JORDAN (1). 
 For the sake of completeness, recall the exposition of JORDAN.  JORDAN sought 
the variation of 

S> dxdydz 
 
when one supposes, on the one hand, that x, y, z are subject to variations, and, on the 
other hand, that the functions that figure in > are also subject to variation.  From this fact, 
> is subject to two variations whose effects are added together.  JORDAN successively 
considered the variation due to the variation of the functions that figure in >, and then the 
variation due to the variation of x, y, z that is juxtaposed with the preceding. 
 One may just as well search for the complete effect of juxtaposing the two variations 
on the letters u, …, u$#%, … that figure in >.  If we call these complete variations -u, … 
then one will have: 

!+
*

*
= u

u
-

7
-7  

for the complete variation -7 of 7. 
 Having said this, one remarks that the previously calculated variations are what we 
must call the complete variations and that the calculations in the preceding section were 
carried out from this latter viewpoint. 
 If one prefers to present things in a form that is identical to that of JORDAN then 
here is what one must do.  In what follows, we introduce the functions x0, y0, 
z0, ,,,, %$$ """! of x, y, z, which figure explicitly and by their derivatives, at least in part.  
The functions x0, y0, z0 of x, y, z, t are the ones that must be used in the left-hand side of 

)86( " in order to derive x, y, z as functions of x0, y0, z0, t.  From this, and the fact that x, y, 

z are subjected to variations -x, -y, -z, it results that these functions x0, y0, z0 of x, y, z, t 

                                                
1 JORDAN, Cours d’ Analyse de l’Ecole polytechnique, 1st ed., T. III, no. 339, pp. 533-535; 2nd ed., T. III, 
no. 396, pp. 528-530. 
 



236 THEORY OF DEFORMABLE MEDIA 

are also subjected to variations, which we designate (1) by (-x0), …, and one has the 
formulas: 
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which express that the complete variations of these function are null.  The variations 
(-x0), (-y0), (-z0) that figure in the last three formulas are copied from the variations that 
figure in the exposition of JORDAN, as we shall see.  This remark seems to seems to 
have been discussed in the considerations that were developed by C. NEUMANN in his 
research (2) on the MAXWELL and HERTZ equations; it conforms, on the one hand, to 
the rules of calculus that were adopted by H. POINCARÉ, in his memoir on the dynamics 
of the electron (3), which we shall discuss later on. 
 As far as , , ,$ $ %" ""! are concerned, we have the variations (-$), …, in the sense of 
JORDAN; however, the variations that were introduced in the preceding sections, and 
which we continue to denote by -$, …, will be the complete variations, in such a way 
that one will have: 

.)( z
z

y
y

x
x
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$
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-$-$
*
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+
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+
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+=  

 
 This amounts to saying that when we introduce the variations (-$), …, in the sense of 
JORDAN, we introduce, in addition, the auxiliary functions ,,, KJI """ --- which we define 

in terms of (-$), -x, … by way of: 
 

                                                
1 In general, in order to avoid confusion we denote the variations that areobtained by leaving x, y, z fixed by 
(-). 
 
2 C. NEUMANN. – Die elektrischen Kräfte, T. II, Leipzig, 1898; Über die Maxwell-Hertz’sche Theorie 
(Abhandl. der k. Sächs Gesells. der Wiss. zu Leipzig; Math.-phys. Klasses, T. XXVII, nos. 2 and 8, 1901-
1902). 
 
3 H. POINCARÉ, Rend. di Palermo, Tome XXI, pp. 129 et seq. (1905), 1906.  H. POINCARÉ uses 
different notations from ours, in particular, as far as derivatives with respect to t are concerned; our 
notation, d, ,* which is that of APPELL (Traité de Mecanique, Tome II, 1st ed., pp. 277), is the opposite of 

POINCARÉ.  He distinguishes the ordinary variation (-7) of a function 7 in the sense of JORDAN, which 

he denotes by ,,
,

7
d

d

d
from its variation -7 (which we call complete), which he denotes by 

7
-,

,

*

*
 [in 

particular, see the formula (11 bis), page 140]. 
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The fundamental convention is expressed by the relations (86), as one sees.  It will be 
found, in an eventual work on the theory of temperature, for the functions that figure by 
way of their differential parameters + for example, in the case that amounts to a pointlike 
medium + if one abstracts from the formulas in which the complete variations of these 
functions are presented. 
 One will observe that presently the simplest way to perform these calculations is not 
the one that was followed in the aforementioned exposition of JORDAN, but consists of 
determining, as we did before, the complete variation of the function under the 
integration sign.  Nevertheless, in view of the comparisons that are to be performed when 
one develops the two viewpoints that are suggested by the notion of temperature later on, 
it will be useful to likewise follow the path of JORDAN. 
 We have: 
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in which the (-) sign corresponds to the variation that is obtained by leaving x, y, z fixed, 
in such a way that one has, in a general fashion: 
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d d d

x y z
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- - - - -= + + +
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+ + . 

 
 We substitute the auxiliary functions -x, -y, -z, , ,I J K- - -" " " that are defined by the 

formulas (86), (87) for the variations (-x0), …  In regard to the integration over t, we 
must also recall that the domain of integration over x, y, z varies with t, and that one may 
not switch the order of integrating over t and the system of integrations over x, y, z in the 
habitual fashion that is employed for the variables x0, y0, z0.  
 If we replace (-x0), (-y0), (-z0), (-(&i)), … by their values from (89), which subsumes 
(86), we obtain: 
 

(90)  22222222 )
*

+ 8
+

8
+

8
+=8

S

t

tS

t

t
z

dz

d
y

dy

d
x

dx

d
dxdydzdt ----

2

1

2

1

 



238 THEORY OF DEFORMABLE MEDIA 

( ) ( ) ( ) ( ))(
)(

)(
)(

)(
)(

)(
)(

r
r

r
r i

i
i

i

-&-
&

-&-
& *

8*
++

*

8*
+

3
4
5

"
#
$

*

8*
++

*

8*
+% !!  

.)()()( dxdydzdtz
dz

d
y

dy

d
x

dx

d
&
'

(
8+8+8+ ---  

 
If we consider first 
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and then: 
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just as, in the preceding section, we divided the sum into: 
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and (92), one sees that the calculation is identical to the one that we did earlier. 
 
 
 78. – The Lagrangian and Eulerian conceptions of action.  The method of 

variable action applied to the Eulerian conception of action as expressed by the 

Euler variables. – In his work sur la dynamique de l’électron, which was presented at 
the July 23, 1905 session of the Cercle de Palerme, H. POINCARÉ presented a 
conception of the action for an infinite domain that was different from the one that we 
envisioned up till now.  If one clarifies the idea of H. POINCARÉ when considering a 
finite domain then one is led to distinguish the following two conceptions of action, the 
one being Lagrangian, and the other, Eulerian. 
 We may integrate the general function W or 8 over the independent variables (1) x0, 
y0, z0, or the independent variables (2) x, y, z in a fixed domain, and then integrate over t. 
 
 1.  Start with the space (M0), and imagine that an observer attached to the reference 
axes directs his attention to a portion (S0) of that space and to the different positions that 
it ultimately takes, namely:  (S) at an arbitrary instant t, (S1) and (S2) at the times t1 and t2.  
 We imagine the integral: 

                                                
1 In this case, we denote the function by W. 
 
2 In this case, we denote the function by 8. 
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in which the domain of integration (S) with respect to x, y, z varies with t, and which 
takes the form: 
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upon effecting the change of variables that is defined by )66( " or )86( " , in which W 

denotes the expression that is obtained by replacing the letters x, y, z in 8. by their 
expressions in )66( " , and the domain of integration over x0, y0, z0, (S0) is independent of t.  
We then have the Lagrangian conception of the action. 
 
 2.  While always envisioning an observer that is fixed with respect to the reference 
axes, imagine that he constantly directs his attention to fixed and definite portion of space 
(M); let x0, y0, z0 denote the coordinates that are calculated by means of formulas )86( " at 
the point M0 of (M0), and becomes the point M of (M), with coordinates, x, y, z at the 
instant t, and let (S0) be the region contained in M0 that becomes (S) at the instant, t; we 
may then let (S01), (S02) denote the regions that (S0), which varies with t, becomes for the 
values t1 and t2 of t. 
 If 8 refers to both x, y, z, and the functions expressed by the formulas )66( "  then we 
envision: 
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in which the domain of integration over x, y, z + namely, (S) + is independent of t this 
time, and which takes the form: 
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upon effecting the change of variables that is defined by )66( " or )86( " , in which the 

domain of integration over x, y, z + namely, (S) + varies with t.  We then have the 
eulerian conception of action. 
 We have considered the first case in the earlier paragraphs; we shall now occupy 
ourselves with the second one.  Formula (88) is then replaced with the following (1): 
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1 Upon referring to the exposition of JORDAN, one will observe that the terms 

( ) ( ) ( )
d d d

x y z
dx dy dz

- - -8 + 8 + 8  come from the fact that the domain is moving, and correspond to the 

variation of the letters x, y, z, as well as the independent variables. 
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and, by virtue of (89), formula (90) is replaced by the following one: 
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 This sequence of calculations resembles the ones in sec. 77.  At the same time, a 
difference was introduced as far as the derivatives with respect to time are concerned.  At 
the moment, one may exchange the integration over t and the integration over the domain 
of the variables x, y, z, and, that exchange having been performed, the integration over 
time must be done by imagining that x, y, z are constant.  The integration by parts over 

time must be done by making them depend on the derivatives ,
t*

*
 and not on ,

dt

d
 as we 

did in sec. 76 and 77, and conforming to the remark made in sec. 75 and 76. 
 
 The integration by parts now gives: 
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in which we have set, with the notations of sec. 72 and 73: 
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[pi] into ['i], [qi], and then into [)i], [ri], respectively, and, in addition: 
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may, by virtue of the relation: 
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be written: 
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On the other hand, ;, PPAA ="="  from this it results that one has: 
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with analogous relations. 
 The force and exterior moment thus have the same definition as in sec. 62, 63. 
However, the same is not the case for the effort and the moment of deformation; from 
sec. 72, 76, we have: 
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with analogous expressions for ?xy, ?yy, ?zy; ?xz, ?yz, ?zz that are obtained by cyclic 
permutation of A, B, C, and x, y, z; in addition: 
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with analogous expressions for 4xy, 4yy, 4zy; 4xz, 4yz, 4zz that are obtained by cyclic 
permutation of A, B, C, and x, y, z. 
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 79.  The method of variable action applied to the Eulerian conception of action 
as expressed by the Lagrange variables. – We shall once more develop the Eulerian 
concept of action with the Lagrange variables.  We begin with the integral: 
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in which the domain of integration over x0, y0, z0 now varies with time t, and corresponds 
to the fixed integration domain that is described by the point (x, y, z). 
 Following the exposition of JORDAN, we have: 
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in which (-x0), (-y0), (-z0) are defined by formulas (86) by means of the auxiliary 
variables -x, -y, -z. 
 The sequence of calculations resembles those that we encountered in the dynamics of 
deformable media; at the same time, a difference was introduced, insofar as 
differentiation with respect to time is concerned.  This time, one may not change the 
order of integrating over time and integration over the domain of variables x0, y0, z0.  One 
will therefore apply reasoning analogous to that of sec. 76.  One first introduces only the 

derivatives with respect to time in the form 
t

*
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by using the formula: 
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t t t
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 denote the derivatives with respect to t of the functions x0, y0, z0, 

of x, y, z, t that one infers from formulas ).66( "   Upon using the notations we introduced 
before, the preceding formulas may be written: 
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then one writes: 
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and, upon integrating by parts: 
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i.e., reverting to the variables x0, y0, z0: 
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Having said this, from the previous formulas for the dynamics of deformable media and 
from (94), we obtain, upon integrating by parts: 
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upon setting: 
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We may observe that by virtue of (94) ,0X " for example, may be written: 
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however, one has: 



246 THEORY OF DEFORMABLE MEDIA 

,
)()()(1

000
,,
-

.
//
0

1

*

*
+

*

*
+

*

*
+=

*

.*

. zyxt

('&
 

 
and, as a result, 0X "  has the same value: 
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as in sec. 62; the same remarks apply to .,,,, 00000 NMLZY """""   However, the same is not 

true for the effort and moment of deformation; by simple transformations, one once more 
recovers relations (93) and )39( "  of sec. 78. 
 
 
 80.  The notion of radiation of the energy of deformation and motion. – We have 
seen that the density of energy of deformation and motion, when expressed as a function 
of the Lagrangian arguments and referred to the space of (x0, y0, z0), is: 
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this same density, when referred to the space of (x, y, z) and expressed by means of the 
function 8 of the Eulerian arguments (&i), ('i), ()i), (pi), (qi), (ri); (&), ('), ()), (p), (q), (r) 
is: 
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 This result is obtained either by transforming expression (95) by means of the 
relations that we indicated before that exist between the Lagrangian arguments and the 
Eulerian arguments, or by directly repeating the reasoning of sec. 65 on the elementary 
work: 
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that the forces and external moments and the efforts and external moments of 
deformation exert on the portion (M) of the medium that the portion (M0) of the natural 
state occupies at the instant t.  By this latter path, we recover the expression: 
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for the elementary work, in which 8 is assumed to be independent of t. 
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If we observe that we has the following identity: 
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which was employed by POINCARÉ in the memoir that was cited in sec. 77, and which 
we apply to an arbitrary function, then we arrive at the following new expression: 
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or: 
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for the elementary work. 
 The second integral in (97) expresses the flux of energy of deformation and motion 
across a fixed surface S in the deformed body. 
 Now consider the Eulerian conception of action.  In the preceding sections we 
confirmed that the values of the forces and external moments remain the same, but that 
the following terms disappear from the expressions for the efforts pxx, pxy, pxz: 
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and the following terms disappear from the expressions for the moments of deformation 
qxx, qxy, qxz: 
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with analogous expressions for the quantities ?yz, ?yy, ?yz, ?zx, ?zy, ?zz, and 
4yz, 4yy, 4yz, 4zx, 4zy, 4zz .  From this, it results that the elementary work that is obtained in 
the preceding must be added to a new surface integral that has the expression: 
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One may call this new integral the flux of radiant energy crossing the boundary S of the 
deformed body. 
 The reasoning made in sec. 64, which was based on the Euclidean invariance of the 
action density, no longer leads to the same conclusions for the forces and external 
moments as it does for the new efforts and external moments of deformation.  This may 
be interpreted by saying that the new efforts and moments of deformation no longer 
satisfy what POINCARÉ called the principle of reaction.  This latter conclusion is 
likewise recovered, as one knows, in the electric theory of LORENTZ.  However, the 
existence of radiation that we just showed permits us to approach the efforts and 
moments of deformation ?xx, ?yx, …, 4xx, 4yx, … as being what MAXWELL, from 
considerations deduced from the electromagnetic theory of light, and BARTOLI, from 
those of thermodynamics, called the pressure of radiant energy, and one may therefore 
retrieve the principle of reaction. 
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