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Generalized Convexity Conditions: Implications

Coercivity

Existence of Minimizers

Quasiconvexity

Ellipticity

”
s.w.l.s“

Polyconvexity

Convexity

with growth conditions:

W (F ) ≤ k ‖F ‖p +C

Quasiconv.: W (F̄ ) ·Vol(B) ≤
∫
B W (F̄ +∇w) dV → F̄ is global minimizer.

Ellipticity: Positive definite acoustic tensor → Real wave speeds.
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Polyconvexity Condition

Polyconvexity ⇒ Quasiconvexity ⇒ Ellipticity
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Localization analysis for constrained compression test

Polyconvexity, Ball [1977]

The elastic free energy W (F ) is polyconvex if and only if there exists a function
P : M3×3 ×M3×3 × R 7→ R (in general non unique) such that

W (F ) = P (F ,CofF ,det F )

and the function R19 7→ R, (X,Y, Z) 7→ P (X,Y, Z) is convex.
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Common Polyconvex Energy Functions

• Isotropy: Polyconvex models, e.g. Ogden-type models (α1, α2, δ1 ≥ 0)

ψiso = α1I1 + α2I2 + δ1I
2
3 − (2α1 + 4α2 + 2δ1)ln

√
I3,

formulated in principal invariants I1 = trC, I2 = tr[CofC] and I3 = detC.

Ball [2002], Some open problems in elasticity, Problem 2:

“Are there ways of verifying polyconvexity and quasiconvexity for
a useful class of anisotropic stored-energy functions? “

• Anisotropy: Transversely isotropic (a=1) and orthotropic (a = 3) polyconvex
energy functions first derived in Schröder & Neff [2001,2003] formulated in

tr[CM i], tr[Cof[C]M i], tr[C(1−M i)], tr[Cof[C](1−M i)], i = 1, ..., a

• Further extensions and case studies are documented in: Steigmann [2003],
SNB [2004], Itskov & Aksel [2004], Markert, Ehlers & Karajan
[2005], Balzani [2006], BNSH [2006], Ehret & Itskov [2007].

Are there ways of verifying polyconvexity for
the further ten classes of anisotropic stored-energy functions?
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Anisotropic Elasticity

12 anisotropy classes / 32 crystal classes / 7 crystal systems
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with a = ||a1||, b = ||a2||, c = ||a3||

No. crystal system edge lengths axial angle

1 triclinic a 6= b 6= c α 6= β 6= γ 6= 90◦

2 monoclinic a 6= b 6= c α = β = 90◦; γ 6= 90◦

3 trigonal a = b = c α = β = γ 6= 90◦

4 hexagonal a = b 6= c α = β = 90◦; γ = 120◦

5 rhombic a 6= b 6= c α = β = γ = 90◦

6 tetragonal a = b 6= c α = β = γ = 90◦

7 cubic a = b = c α = β = γ = 90◦
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General Anisotropy in Polyconvex Framework
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Main idea: Introduction of an anisotropic metric tensor G:

• G is a second-order, symmetric and positive definite structural tensor .

• G is the push-forward of a cartesian metric of a fictitious reference configuration
B̄0 onto the real reference configuration B0 :

→ G = HHT → G = QGQT ∀ Q ∈ G ⊂ O(3) .

=⇒ Principle of Material Symmetry is automatically satisfied :

C ·G = QCQT ·G = C ·QTGQ ∀ Q ∈ G ⊂ O(3) .

Literature: Zheng & Spencer [1993], Zheng [1994], Xiao [1996],
Apel [2004], Xiao, Bruhns & Meyer [2007]
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Metric Tensors for the Seven Crystal Systems

Linear Mapping of the cartesian base vectors onto crystallographic motivated base
vectors:

H : ēi 7→ ai → H = [a1,a2,a3] with ai = H ēi

Special choice: a1 ‖ e1, a2 ⊥ e3 :

a23

a1

γ

α

a22

ē3

β

a2

a11
a13

a12

a33

ē1

ē2

a3

H =

 a b cos γ c cos β

0 b sin γ c (cosα− cos β cos γ)/ sin γ

0 0 c [1 + 2 cosα cos β cos γ−
(cos2 α+ cos2 β + cos2 γ)]1/2/sinγ



E.g. Monoclinic Metric Tensor (a 6= b 6= c, α = β = 90◦, γ 6= 90◦):

Gm = HmHmT =

 a2 + b2 cos2 γ b2 cos γ sin γ 0
b2 cos γ sin γ b2 sin2 γ 0
0 0 c2

 → Gm =

 ã d̃ 0
d̃ b̃ 0
0 0 c̃


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Crystallographic Motivated Trigonal Metric Tensor
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Considering rhombohedral base vectors in hexagonal centered cell

a1 =
1
3
(2ah + bh + ch) , a2 =

1
3
(−ah + bh + ch) , a3 =

1
3
(−ah − 2bh + ch) ,

with threefold axis ch = (a1 + a2 + a3) ‖ e3, leads to trigonal metric tensor

Ght = HhtHhtT = diag(a2, a2, c2) → Ght = QGhtQT ∀ Q ∈ Ght
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Crystallographic Motivated Hexagonal Metric Tensor
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Bravais [1866]: Inherent sixfold symmetry of primitive hexagonal cell is
captured by three hexagonal base vectors in the ē1 − ē2−plane

aH, bH, (−aH − bH) .

This symmetry indicates that ē1− ē2−plane acts as isotropy plane, Love [1907].
Therefore the fictitious deformation has to be of the type

Hh = diag(a, a, c) → Gh = diag(a2, a2, c2) → Gh = QGhQT ∀ Q ∈ Gh
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Proof of Polyconvexity of tr[CG] and tr[Cof[C]G]

Generic polyconvex anisotropic functions

[tr(F TFG)]k and [tr(Cof(F T )Cof(F )G)]k

with k ≥ 1 and G ∈ Psym.

Proof of Convexity. With identity [tr(F TFG)]k =‖FH ‖2k= 〈FH,FH〉k
we obtain

DF (〈FH,FH〉k) .ξ = 2k〈FH,FH〉k−1〈FH, ξH〉

D2
F (〈FH,FH〉k) .(ξ, ξ) = 2k〈FH,FH〉k−1〈ξH, ξH〉

+4k(k − 1)〈FH,FH〉k−2〈FH, ξH〉2

= 2k ‖FH ‖2k−2 ‖ξH ‖2

+4k(k − 1) ‖FH ‖2k−4 〈FH, ξH〉2 ≥ 0.

Detailed proofs are given in Schröder, Neff & Ebbing [2008].
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Polyconvex Functional Bases P
– Evaluation of Polyconvex Invariants C ·G and CofC ·G –

Triclinic system: 2nd-order SST

a
b

α
c

β γ

→ complete description

Ga =

 ã d̃ ẽ

d̃ b̃ f̃

ẽ f̃ c̃


Ordering with respect to
individual entries of G yields
Pa := { C11 , C22 , C33 , C12 ,

C13 , C23 }.

Classical Basis:
Ia := { C11 , C22 , C33 , C12 ,

C13 , C23 }.

Monoclinic system: 2nd-order SST

b

c
a

→ complete description

Gm =

 ã d̃ 0
d̃ b̃ 0
0 0 c̃


Pm := { C11 , C22 , C33 , C12,

CofC11 = C22C33 − C2
23 ,

CofC22 = C11C33 − C2
13 ,

CofC33 = C11C22 − C2
12 ,

CofC12 = C13C23 − C12C33 }.

Classical Basis:
Im := { C11 , C22 , C33 , C12 , C

2
13 ,

C2
23 , C13C23 }.
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Polyconvex Functional Bases P

Rhombic system: 2nd-order SST

a

b
c

→ complete description

Go =

 ã 0 0
0 b̃ 0
0 0 c̃


Po := { C11 , C22 , C33 , C22C33

−C2
23 , C11C33 − C2

13 ,

C11C22 − C12
2 }.

Cubic system: 4th-order SST

a

a

a

→ incomplete description

Gc =

 ã 0 0
0 ã 0
0 0 ã


Pc := {I1, I2}.

Hexagonal system: 6th-order SST

c

a

a

→ complete description

Gh =

 ã 0 0
0 ã 0
0 0 c̃


Ph := { C11 + C22 , C33 , C22C33

+C11C33 − (C2
23 + C2

13) ,

C11C22 − C2
12} .

Tetragonal, Trigonal system: 4th-order SSTs

a

a

c

aa

a

→ incomplete description

Gt = Ght = Gh

Pt = Pht = Ph
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Generic Polyconvex Anisotropic Energy Functions

Additive decomposition of the free energy in isotropic and anisotropic terms, i.e.,

ψ = ψiso(I1, I2, I3) + ψaniso(I3, J4j, J5j),

with J4j = tr[CGj] , J5j = tr[Cof[C]Gj] and the j-th metric tensor Gj.

For the isotropic part ψiso we choose a compressible Mooney-Rivlin model,i.e.,

ψiso = α1 I1 + α2 I2 + δ1 I3 − δ2ln(
√
I3), ∀ α1, α2, δ1, δ2 ≥ 0.

Suitable polyconvex anisotropic energies in terms of f3rj, f4rj, f5rj, f6rj, f7rj

ψaniso1 =
n∑
r=1

m∑
j=1

[f3rj(I3) + f4rj(J4j) + f5rj(J5j)] ,

ψaniso2 =
n∑
r=1

m∑
j=1

[f3rj(I3) + f6rj(I3, J4j) + f7rj(I3, J5j)] ,

ψaniso3 =
n∑
r=1

m∑
j=1

[f3rj(I3) + f4rj(J4j) + f5rj(J5j)

+f6rj(I3, J4j) + f7rj(I3, J5j)] .

Further details: Schröder, Neff & Ebbing [2008].
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Generic Polyconvex Anisotropic Functions

Some specific functions which automatically satisfy the condition S|C=1 = 0

ψanisoI =
nX
r=1

mX
j=1

ξrj

24 1

αrj + 1

1

(gj)
αrj

(J4j)
αrj+1

+
1

βrj + 1

1

(gj)
βrj

(J5j)
βrj+1

+
gj

γrj
(I3)

−γrj
35

9>>>>>>=>>>>>>;
,

with ξrj, αrj, βrj ≥ 0 ,

γrj ≥ −1/2 .

→ coercive

ψanisoII =
nX
r=1

mX
j=1

ξrj

24 1

αrj + 1

1

(gj)
αrj

(J4j)
αrj+1

+
1

βrj + 1

1

(gj)
βrj

(J5j)
βrj+1 − ln(I

gj
3 )

35

9>>>>>>=>>>>>>;
, with ξrj, αrj, βrj ≥ 0 .

ψanisoIII =
nX
r=1

mX
j=1

264J
αrj
4j

I
1/3
3

+
J
αrj
5j

I
1/3
3

+
g
αrj
j

βrj
I
−βrj
3

375 ,
with αrj = 5/3 ,

βrj ≥ −1/2 .

ψanisoIV =
nX
r=1

mX
j=1

264J
αrj
4j

I
1/3
3

+
J
αrj
5j

I
1/3
3

− g
αrj
j

βrj ln(I3)

375 ,
with αrj ≥ 1 ,

βrj = αrj − 2/3 .

A priori stress free reference configuration: Itskov & Aksel [2004].
Proof of coercivity: Schröder, Neff & Ebbing [2008].
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A First Applications to Transverse Isotropy

Biaxial Homogeneous Tension Test

x1

u1
u1

x2

x3

u1 u1

u2

u2

Unimodular metric tensor:

Gti = diag(γ, 1√
γ ,

1√
γ)

Additive construction of energy function ψ = ψiso + ψti, with

ψiso = α1I1 + α2I2 + δ1I3 − δ2ln
√
I3

ψti = η1(J
α4
4 + β1J

α5
5 )
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J4 = tr[CGti], J5 = tr[Cof[C]Gti]
γ = 4.0, α1 = 2.0, α2 = 0.0,
δ1 = 10.0, δ2 = 786, η1 = 1.0, β1 = 7.5,
α4 = 2.0, α5 = 3.0 [MPa]
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Fitting of Monoclinic Moduli C = 4∂2
CCψ: Augite

movie

movie

Characteristic surfaces

Young’s modulus

Bulk modulus

Elasticities in [GPa], Simmons [1971]:

C(V )exp =


217.8 72.4 33.9 24.6 0 0

181.6 73.4 19.9 0 0
150.7 16.6 0 0

51.1 0 0
sym. 55.8 4.3

69.7


Error for ψ = ψanisoI and n = m = 3 :

e =
‖ C(V )comp − C(V )exp ‖

‖ C(V )exp ‖
≈ 3.48[%]

Metric Tensors:

Gti
1 = diag(0.419, 0.419, 1.953),

Gm
2 =

[
1.503 −0.513 0

−0.513 0.934 0

0 0 1.572

]
, Gm

3 =

[
2.719 0.496 0

0.496 0.547 0

0 0 1.008

]
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Fitting of Anisotropic Moduli

movie
Aegirite: e = 1.65%

movie
Feldspar(Labradorite): e = 5.28%

movie
Ammonium Sulfate: e = 3.46%

movie
Acenaphthene: e = 2.28%

Monoclinic Materials Rhombic Materials
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Biaxial Tension Test of Perforated Plate with Centered Hole
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Polyconvex Models for Arbitrary Anisotropic Materials

• Triclinic, monoclinic, rhombic, hexagonal as well
as transversely isotropic symmetries can be
“completely described “ by generic invariant func-
tions in terms of single, second-order, positive
definite anisotropic metric tensors.

aa

a

• These invariant functions automatically fulfill the
polyconvexity condition.

l1

• The requirement of a stress-free reference con-
figuration is also automatically satisfied .

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0.5  1  1.5  2

P11
P22
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