Polyconvex Models for
Arbitrary Anisotropic Materials

Vera Ebbing, Jorg Schroder, Patrizio Neff

i

G:=HH" K J,=1tr[CG], J5 = tr[Cof[C]|G]

e Generalized Convexity Conditions
e Crystallographic Motivated Structural Tensors
e Polyconvex Functional Bases
e Polyconvex Anisotropic Free Energy Functions for More General Anisotropy Classes

DFG-Project: NE 902/2-1 SCHR 570/6-1

J. SCHRODER, P. NEFF & V. EBBING [2008], “Anisotropic Polyconvex Energies on the Basis of
Crystallographic Motivated Structural Tensors”, submitted to JMPS

UNIVERSITAT

DUISBURG © Prof. Dr.-Ing. J. Schroder, Institut fiir Mechanik, Universitdt Duisburg-Essen, Campus Essen ‘ :

ESSEN



Generalized Convexity Conditions: Implications

Convexity

l Polyconvexity l

with growth conditions:
s.w.l.s" |- Quasiconvexity
W(F)<k|[F|P+C
Coercivity l
Existence of Minimizers Ellipticity

Quasiconv.: W (F) - Vol(B) < [, W(F + Vw) dV — F is global minimizer.

Ellipticity: Positive definite acoustic tensor — Real wave speeds.
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Polyconvexity Condition

Polyconvexity = Quasiconvexity = Ellipticity

Localization analysis for constrained compression test
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Polyconvexity, BALL [1977]

The elastic free energy W (F') is polyconvex if and only if there exists a function
P : M?*3 x M**? x R — R (in general non unique) such that

W (F) = P(F,CofF,det F)

and the function R — R, (X,Y, Z) — P(X,Y, Z) is convex.
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Common Polyconvex Energy Functions
e Isotropy: Polyconvex models, e.g. OGDEN-type models (aq, asg, d; > 0)
wiso = o111 + asls + (51[§ — (2&1 + 4o + 251)111\/ I3,
formulated in principal invariants I; = trC, I = tr[CofC] and I3 = detC.

BALL [2002], Some open problems in elasticity, Problem 2:

“Are there ways of verifying polyconvexity and quasiconvexity for
a useful class of anisotropic stored-enerqy functions?

e Anisotropy: Transversely isotropic (a=1) and orthotropic (a = 3) polyconvex
energy functions first derived in SCHRODER & NEFF [2001,2003] formulated in

tr[CM"], tr[Cof[C|M"], tr[C(1 — M")], tr[Cof[C](1 — M"Y)], i=1,...,a

e Further extensions and case studies are documented in: STEIGMANN [2003],
SNB [2004], ITskov & AKSEL [2004], MARKERT, EHLERS & KARAJAN
[2005], BALzANI [2006], BNSH [2006], EHRET & ITskov [2007].

Are there ways of verifying polyconvexity for
the further ten classes of anisotropic stored-enerqy functions?
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Anisotropic Elasticity

12 anisotropy classes / 32 crystal classes / 7 crystal systems

with a = ||ai[], b = ||az[], ¢ = ||as]|

No. | crystal system | edge lengths axial angle

1 triclinic a#b#c a # B # v # 90°

2 monoclinic a#b+#c a =3 =90° v # 90°
3 trigonal a=b=c a=pF3=~vy%#90°

4 hexagonal a=b#*c | a=p=90%~v=120°
5 rhombic a#b#c a=[p=~v=90°

6 tetragonal a=0b#c a=[p=~v=90°

7 cubic a=b=c a=[0p=~v=90°
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General Anisotropy in Polyconvex Framework

es - E3

Main idea: Introduction of an anisotropic metric tensor G-
e (G is a second-order, symmetric and positive definite structural tensor .

e G is the push-forward of a cartesian metric of a fictitious reference configuration
By onto the real reference configuration By :

— G=HH' — G=QGQR" vQegGco0(3.
— Principle of Material Symmetry is automatically satisfied :
C-G=QCQR" G=C-Q'GQ vQecgcO(3).

Literature: ZHENG & SPENCER [1993], ZHENG [1994], X1A0 [1996],
APEL [2004], X1A0, BRUHNS & MEYER [2007]
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Metric Tensors for the Seven Crystal Systems

Linear Mapping of the cartesian base vectors onto crystallographic motivated base

vectors:
H:e —a;, — H=|a,asa3] with a; = H e;

€3
Special choice: a;| e, as | e;s: as
~ _ B | 433
a bcosy ¢ cospf o “ i _
H _ 0 bsiny ¢ (cosa—cosf cosvy)/sin~y aqq 'v‘r,\.'———dzygal?) K = 2
0 0 c[l+2 cosa cos3 cosy— 2 /,’ a2
i (cos2 o + cos? B + cos? 7)]1/2/sin7 | C;,l_""c_LQ_Q _____ az
el
E.g. Monoclinic Metric Tensor (a # b # c,a = = 90°, v # 90°):
[ a? 4 b% cos?y b% cosy siny 0 | a d 0
G™"=H"H™ = | b2cosy siny b2 sin~ 0 | =G"=|[db0
2 ~
0 0 c™ 00 ¢
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Crystallographic Motivated Trigonal Metric Tensor

Considering rhombohedral base vectors in hexagonal centered cell
1 1 1
a; = §(2ah +bn,+cp), as= §(_a’h +bn,+cp), az= g(—ah — 2b, +cp)

with threefold axis ¢, = (a1 + a2 + a3) || es, leads to trigonal metric tensor

Ght _ HhtHhtT _ diag(aQ,a2,02) _ Ght _ QGthT v Q c ght
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Crystallographic Motivated Hexagonal Metric Tensor

BRAVAIS [1866]: Inherent sixfold symmetry of primitive hexagonal cell is
captured by three hexagonal base vectors in the e; — es—plane

ap, bH7 (_a’H_bH)

This symmetry indicates that e; — é;—plane acts as isotropy plane, LOVE [1907].
Therefore the fictitious deformation has to be of the type

H" = diag(a,a,c) — G" =diag(a® d®, ) — G"=QG"Q" vQ e g"
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Proof of Polyconvexity of tr|C'G] and tr|Cof|C|G]

Generic polyconvex anisotropic functions
tr(F'FG)]* and [tr(Cof(F')Cof(F)G)]*

with £ > 1 and G € Pgyn,.
Proof of Convexity. With identity [tr(F' FG)|* =|| FH ||**= (FH, FH)*
we obtain
Dr((FH,FH)*) ¢ = 2k(FH,FH)""Y(FH,¢H)
DL((FH,FH)") .(£,§) = 2k(FH,FH)"~'(¢H,(H)
+4k(k — 1)(FH,FH)*2(FH,¢(H)?
= 2k |FH|**? | €H|?
+4k(k —1) |FH|**~* (FH,¢H)? > 0.

Detailed proofs are given in SCHRODER, NEFF & EBBING [2008].
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Polyconvex Functional Bases P

— Evaluation of Polyconvex Invariants C' - G and CofC' - G -

Triclinic system: and-order ST Monoclinic system: 2nd-order ssT
G d ) ad O]
dbf dbo
& f’ G 100 ¢
Ordering with respect to P™ = { Ci1, Ca, Cs3, Ci2,
individual entries of GG yields CofCy1 = C2Cs3 — C;,
P :={Cu, Ca, Cs3, Cr2, CofCa2 = C11Cs3 — Ciy,
013 , 023 } COsz?, = C11C22 — 0122 )
CofCip = C13C23 — C12C3s3 }.
Classical Basis: Classical Basis:
7% :={ Ci1, Coy, Cs3, Ci2, " :={ Ci, Can, Cs3, Cra, C%,
C(13 ’ CQS } 0223 , 013023 }
— complete description — complete description
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Polyconvex Functional Bases P

Rhombic SyStem: 2nd-order SST CUbiC SyStem: 4th-order SST
| | (G 00] (@00
GOZOEO G'=|0a0
Z_ 00 ¢ 100 a
P :i={C1n, Ca, Cs3,C2Cs3 P = {1, I,}.
_0223 ) C'116133 — C’123 )
C11C2 — Cr2° }.
— complete description — incomplete description
Hexagonal system: sth-order ssT Tetragonal, Trigonal system: sthorder sSTs
(4 00|
G'"=10ao0
| 00 ¢

P = { Ci1 + Cos, Cs3, C22Cs3
+C11Cs3 — (C35 + CFy)
011022 — 0122} .

— complete description — Incomplete description
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Generic Polyconvex Anisotropic Energy Functions

Additive decomposition of the free energy in isotropic and anisotropic terms, i.e.,
=0 (Iy, Iy, I3) + "0 (I3, Jaj, J5;),
with Jy; = tr|[CG,], Js; = tr|Cof|C]G;] and the j-th metric tensor G ;.
For the isotropic part 1**° we choose a compressible MOONEY-RIVLIN model,i.e.,
W = a1 I + o I + 61 Is — 8oln(\/I3), Va1, as, 81, 62 > 0.

Suitable polyconvex anisotropic energies in terms of f3,;, farj, f5rj, fori, frrj

aniso _ 21 21 f3ri(I3) 4+ fari(Jaj) + f5ri(T55)],
r=1j=

anzso — Zl Zl :f3rj(l3) + f67“j(I37 J4j) + f?rj(137 J5j)] )
r=1j=

anzso — Zl Zl :f37“j(13) —+ f4f,nj(J4j) + f57°j(<]5j)
r=1j=

+fori (I3, Jaj) + frri(I3, J55)] -

Further details: SCHRODER, NEFF & EBBING [2008].
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Generic Polyconvex Anisotropic Functions

Some specific functions which automatically satisfy the condition S|c—1 =0

) I . . . >
¢anzso _ Z Z ¢ 1 1 (J )arj—l—l Wlth €Tj7aT]7/8Tj >0,
r=1j= " g+ 1(g ) T
0 s > —1/2.
1 1 Bri+l | 95 e Yrj = —1/
sy A=)
Brj + (g.:) T3 Vrj s
J / — coercive
\
1 1 Qi1
aniso __ rj
rlj K K > with ¢.., a.;, 8. >0
1 1 ﬁ»p"i‘l gj ’ rj> Grg Prj =
Y 1 5, e i)
ri (g’ J
nom [Jgord gomd 0 5. with o, =5/3,
wanzso _ Z Z 47 + 5] + J I rJ J
L : 1/3 7 1/3 " 3. ’
r=1j=1 _13 1 J Brj > —1/2.
B O‘rj a?"j . .
nom (J,77 ] o with o, >1,
aniso __ ] ] . i ]
wIV = Z Z 1/3 + 1/3 gj ﬁrj In(I3) | ,
r:lj:l _13 I3 ’BT'j :O‘rj_2/3'

A priori stress free reference configuration: ITSKOV & AKSEL [2004].
Proof of coercivity: SCHRODER, NEFF & EBBING [2008].
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A First Applications to Transverse Isotropy

Biaxial Homogeneous Tension Test

Unimodular metric tensor:

Gti — dlag(77 —= )

ﬁ?

Sl

Additive construction of energy function 1 = **° 4 9**, with

¢i80 = a1l1 +agls + 0115 — 521n\/T3

= m(y" + 5

35000 o
m Ji = tt[CG"], J5 = tr[Cof[C]G"]
20000 v =4.0, a; = 2.0, asy = 0.0,
o Xg 61 =10.0, 6 = 786, 1 = 1.0, By = 7.5,
5000 = S yq = 2.0, 5 — 3.0 [MPa]

0 SRR M al
000 0.5 1 1.5 2

A
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Fitting of Monoclinic Moduli C = 407 -1: Augite

Characteristic surfaces Elasticities in [GPa], SIMMONS [1971]:
- 217.8 72.4 33.9 24.6 0 0 7
181.6 73.4 19.9 0 0
C(V)exp _ 150.7  16.6 0 0
T 51.1 0 0
sym. 55.8 4.3
_ 69.7 |
) Error for ¢ = ¢¢""*° and n =m = 3 :
. y
movie Young's modulus (V)comp (V)exp
| C —C |
e = ~ 3.48[%]
2 | C(V)exp |
Metric Tensors:
G = diag(0.419,0.419,1.953),
X 1.503 —0.513 O 2.719 0.496 0
. y mo_ — mo_
movie G2 0.513 0.934 O y 3 0.496 0.547 0
Bulk modulus 0 0 1.572 0 0 1.008
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Fitting of Anisotropic Moduli

Monoclinic Materials Rhombic Materials

F4
z

X

X

movie movie
Aegirite: e = 1.65% Ammonium Sulfate: e = 3.46%

z z

y

X X

y y

movie movie
Feldspar(Labradorite): e = 5.28% Acenaphthene: e = 2.28%
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Biaxial Tension Test of Perforated Plate with Centered Hole

Rhombic Acenaphthene Monoclinic Aegirite
+ +

Lz Uz
I 1,00 I 050
082 .41
073 0.29
1 064 — 0.2
—1 0.5& F 0.8
1 0.4% — 0.23
1 033 — 0.7
] 07 — 0.14
1 oO.11 ™ 006
0.09 0.05
l -0.09 l 0.0%
-0.11 -0.06
] 0= —1 -0.14
1 023 1 -0.17
1 -0.45 — -0.23
-0.66 .0.78
-0.64 0.3
-0.78 -0.39
-0.82 -0.41
-1.00 -0.50
movie movie
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Polyconvex Models for Arbitrary Anisotropic Materials

e Triclinic, monoclinic, rhombic, hexagonal as well
as transversely isotropic symmetries can be
“completely described “ by generic invariant func-
tions in terms of single, second-order, positive
definite anisotropic metric tensors.

e These invariant functions automatically fulfill the / —
polyconvexity condition. X_%hﬁ( £

35000

P11 -
30000 P22 ——

25000

20000

e The requirement of a stress-free reference con-

figuration is also automatically satisfied . oo aw
0 M’Mx

-5000
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