FAKULTÄT FÜR MATHEMATIK

Prof. Dr. Patrizio Neff Frank Osterbrink Johannes Lankeit UNIVERSITÄT
DUISBURG
ESSEN

27.6.2013

12. Übung zur Funktionalanalysis I im SS 2013

Präsenzaufgabe 1:

Sei $A \colon X \to Y$ eine bijektive stetige lineare Abbildung zwischen zwei Banachräumen. Dann ist A stetig invertierbar.

Präsenzaufgabe 2:

Sei E ein Banachraum und $T:E\to E'$ ein linearer Operator mit

$$\langle Tx, x \rangle := Tx(x) \ge 0 \ \forall x \in E.$$

Zeige mit Hilfe des Satzes vom abgeschlossenen Graphen, dass T beschränkt ist.

Präsenzaufgabe 3:

Sei $A: X \to Y$ (mit Banachräumen X, Y) abgeschlossen. Dann ist ker(A) abgeschlossen.

Präsenzaufgabe 4:

Seien E, F normierte Räume, $D \subset E$ Untervektorraum, $A: D \to F$ linear.

- a) Ist A stetig und abgeschlossen sowie F vollständig, dann ist D abgeschlossen.
- b) Ist A abgeschlossen, so ist auch $A \alpha I$ abgeschlossen (für jedes $\alpha \in \mathbb{R}$).

Hausübungen

Abgabe: 3.7.2013, 6 Uhr

Hausaufgabe 1:

Sei X ein Banachraum bezüglich der Normen $\|\cdot\|_1$ und $\|\cdot\|_2$, wobei für eine Konstante C die Abschätzung $\|x\|_2 \le C\|x\|_1$ gelte. Zeige: Dann sind die beiden Normen bereits äquivalent.

Hausaufgabe 2:

Sei $A: l^2 \supseteq D \to l^2$ definiert durch

$$A(x_k) = (kx_k)$$

für $(x_k) \in D$.

a.) Untersuche A auf Abgeschlossenheit für die beiden Fälle

$$D = \{(x_k) \in l^2 \mid (kx_k) \in l^2\},\$$

$$D = \{(x_k) \in l^2 \mid \exists N \in \mathbb{N} : x_k = 0 \ \forall k \ge N \}.$$

- b.) Seien X,Y beliebige normierte Räume, $D\subset X$ ein Unterraum und $A:D\to Y$ ein linearer Operator mit Ax=0 für alle $x\in D$. Ist A abgeschlossen?
- c.) Seien X, Y Banachräume und $D \subset X$ ein Unterraum. Zeige: Ist A linear, injektiv und abgeschlossen, so ist auch $A^{-1}: Y \supseteq \operatorname{ran}(A) \to X$ abgeschlossen.

Hausaufgabe 3:

Seien E, F normierte Räume, $D \subset E$ Untervektorraum, $A: D \to F$ linear.

- a) Ist D nicht abgeschlossen, so ist A = I zwar stetig, aber nicht abgeschlossen.
- b) Ist E vollständig A abgeschlossen und injektiv, A(D) dicht in F und A^{-1} stetig, so ist A(D) = F.
- c) Ist A abgeschlossen und $\alpha \neq 0$, so ist auch αA abgeschlossen.

Hausaufgabe 4:

Seien $L, L_n: (C^1([0,1]), \|\cdot\|_{\infty}) \to (C([0,1]), \|\cdot\|_{\infty})$ definiert durch Lf = f' und

$$L_n(f)(t) = \begin{cases} \frac{f(t) - f(t - 1/n)}{1/n} & \text{für } t \in (0, 1] \text{ mit } t - 1/n \ge 0, \\ n(f(1/n) - f(0)) & \text{sonst}, \end{cases}$$

für $f \in C^1([0,1]), n \in \mathbb{N}$. Beweise die folgenden Aussagen:

- a.) L ist abgeschlossen, aber nicht stetig.
- b.) L_n ist beschränkt für alle $n \in \mathbb{N}$.
- c.) Für alle $f \in C^1([0,1])$ ist $L_n f \to L f$ für $n \to \infty$ bezüglich $\|\cdot\|_{\infty}$.
- d.) L_n konvergiert nicht gegen L bezüglich der Operatornorm.