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Gelegentlich dieser Versuche wurden auch die Dehnungen in Richtung der mitt--
leren Hauptspannung mit groben Mitteln gemessen., Sie erwiesen sich als klein nur bes
Deformationen mit Spannungszustinden mit anndhernd g == 0, Usber das guantitative
Gesetz dieser ssittleren Dehnungenc kbnnen wir poch nichis behaupten. Jedenfalls tritt
eine plastische Dehnung in Richtung der mittleren Hauptspannung nicht nur dann ein,
wenn diese gleich efner der dufieren Hauptspannungen ist, b
’ Die gleichén Versuche wie die beschrishenen wurden auch an Kupferrohren
gemacht, bisher jedoch in geringer Anzahl, Aus ihnen kann zurzeit nur mitgeteilt
werden, daf sie wenigstens guantitativ dieselben Ergebnisse leferten wie die an Flufieisen.

11. Die Beweéungsglcichungen
_ beim nichtstationsren Flieen plastischer Massen.

Von HEINRICH HENCKY in Delft,
Im elastischen Gebiet 1iBt sich das Gesetz zwischen Spannungen und Dehnungen
in folgender Form aussprachen: :

1, Die Raumausdehnung ist proportional dem hydrostatischen Teil des Spannungs-
_zustandes gy .
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g2 Der Deviator der Deformationen ist Proportional dem Deviator der Spannungen.
- {Den Deviator erhilt man bekanntlich aus dem Tensor, wenn man das arithmetische Mittel
der Normalkomponente_n von jeder Normalkomponente abzieht 3
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Wir verwenden im folgenden zur Anfstellung der Bewegungsgleichungan des
-‘plastischen Kérpers den Riceikalkiil, der dureh den polaren Gegensatz zwischen kontra~
varianten und: kovarianten Komponenten und die dadurch srzeugte Invarianyg vom Koor-
dinatensystem allein imstande ist, das Fprme]gestrﬁpp -u vermeiden, das bisher die Be-
rechnung endlicher elastischer oder plastischer Versohiebungen verhindert hat.
Den fundamentalen metrischen Tensor gy, denken wir uns gegeben und zwar als
eine Funktios anch der -Zelt, und behalten uns vor, ihn spiter zy spezialisieren,
" Das Elastizititsgesets lautet dann in kovarianter Form, wenn der volle Span-
- mingstensor ’ : ’ '
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“und der volle Deformationstensor , :
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Destinieren wir forner als Plastische Deformation die Gestalttinderung, so scheiden
die hydrostatischen Spannungs- und Deformationszustinde vollkommen aus und es blethen
uur dié Deviatoren fibrig, -die man durch gesignete Transformation des Koordinaten-
systems immer auf drei zneinander senkrechis Schubspannungen zuriickfithren kann, -

.Was bedeutet nun die atsache, daf die Beziehung zwischen den Deviatoren
durch eine einzige Elastizititskonstants reguliert wird? Nichts weniger als dies, daB bei
Mittellung eines Spannuugsimpu}ses, woleher das Material tiber die Plastizititsgranze
hinaus bringt, auch der Deviator der nun enfstehenden DeformationsgesohWindigke\'ten
proportional dem Deviator des olastischen Grenzspannungszustandes bleibt, der natfirlick
auch nach Eintreten der Plastizitit sich geltend macht. Damit ist aber sofort die Plasti-
zltétsbedingung gegeben. d

Wir erhalten das dem Hookeschen Elastizititsgesets analoge einfachste Plastizitiits-
gesetz filr den isotropen Kérper, wenn wir fiir die potenticlle Energie des Deviators einen
Grenzbetrag festsetzen, der nicht tibersehritten werden kann. . : '
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Nehmen wir 2 & als Plastizititsgrenze beim einachsigen Zug, so erhalten wir die
auigespeicherte Energie des Deviators im Grenzfall durch doppelte skalare Ueberschiebung
' ' 1 1 2%*
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oder als Plastizititsbedingung
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. Diese Plastizititsbedingung sobliefit sich sehr gut an die neuesten Versuchsergeb-
nisse an. Den Kredit, den die Theorie des grofiten Schubes heute noch in technischen
Krejsen genieBt, verdankt sie lediglich dem Umstand, daB das Grenzprisma St Venants,
-welches man durch Aussetzen der Haupispannungen als Koordinatenachsen erhill, unserem
Grenzeylinder einbeschrieben ist, so daB die bisherige Theorie als grobe Niherung be-
trachiet worden kann, Was geschieht nun, wenn ein grifieres Gebiet-eines festen Kérpers
ins plastische Fliefen gekommen ist? Dann treten aufer dem bereits erwihnten elastischen
Spannungstensor noch Reibungaspannungen -auf uné wenn wir den Ansatz der Hydro-
dynamik z&her Fliissigkeiten einfiihren, so wird es miglich sein alle Spannungs-
- fensoren in den Deformationsgeschwindigkeiten ¢pv auszudriicken.
Dabei ist es zulissig, den Tensor der Delormationsgeschwindigkeiten von vorn-
hersin als Deviator, das heift, das Material als inkompressibel zu betrachten. Wit |
-srhalten so - B .
fiir die Reibungsspannungen p=2xeny . . . L L L L L L, (8 a)
und fiir die elastischen Spannungen pe==2le,-. . . . .., . . . . . {61},
wobel die - letatere Gleichung natfirlich nicht den Sinn ‘eines Elastizititsgesetzes hat,
sondern lediglich zmum Ausdruck bringt, daf nach Bintritt des FlieSens der elastische
‘Spannungszustand durch den FlieBzustand geregelt wird, was ja auch unmittelbar
. einleuchiet, ay * , »
"Der Koeffizient 1 kann aus der Plastizititsbedingung ‘bestimmt werden zu:
: 4 A% Oy eV = §/3 k*
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Die. gemischten Komponenten haben den Vortell, daf sie bei orthogonalen Koordi-
. natensystemen direkt in die sogenannten physikalischen Komponenten iibergehen, so wie ;
" sie bisher bei krummlinigen Systemen verwendet wurden. Beschrinken wir uns auf die
langsame . plastische Bewegung, wie wir sie zum Beispiel in der Natur wahrnehmen an
-der Bewegung von Gletschern und von gliihenden Lavamassen, in der Technik beim
Schmieden, Pressen und Ziehen wvon Metallen, so wie beim Durchgang von Eisenmassen
durch die Walzen eines Walzwerks, so kbnnen wir die Begellounigungen vollkommen -
‘vernachlissigen. Bedenklfcher ist die Annahme Konstanter Temperatur, da die Erfahrung
gelehrt- hat, daB die Abkithlung glithender Massen den Fliefvorgang in ggnz wesent-
lichem Mafle beeinflufit, aber auch diese Annzhme ist fiir die erste Entwicklung der
Theorie nicht zu nmgehen, . : :

Ist ¢ die Masse der Volumeneinheit, X* die Massenkraft, etwa- die Schwere bei der
Bewegung eines Gletschers, so haben wir als (Heichgewichtsbedingungen des Volumen-
olements, daf die Divergenz des Spannungszustandes und die Massenkraft einen Null-
vektor bilden miissen. In den Symbolen des Riccikalkiils mit einem < als Zeichen der
kovarianten Differentiation, das ist ein .Differentiationsprozef bei dem  der EmfluB der
Brummlinigkelt des Koordinatensystems susgesehaltet wird, :

Ty P¥ - 7y p 4 g X e 0
vud nach Einsetzen der Foraelan (6a) wud (6b)

99“%—{— 2% 7y et + 2 (Re¥) - p X0 = g,

Durch Usberschicben mit dem kovarlanten Fundamentaltensor g,. wird hieraus.
: §Ji+ 22y e 4 2V, (le) + 0 X =0 . . . . . . (8)
Hierzu tritt noch dio Gleichung :

&’ == L1
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. Setzb man <, (le) = 0, so bleiben die Differentialgleichungen einer Flissigkeit
mit sebhr grofier Reibung und langsamer Beweguog iibrig. Berechnet man aber die
Arbeit der inneren Reibung, so erhilt mau ein Verhalten, das von dem einér reibenden
Fliissigkeit total verschieden ist.

Die in der Volumeneinhei verlorengehende Epergie D betrfigt ndmlich nicht
D)= 24 ey,6¥ wie bei einer Fliissigkeit,

sondern, ‘ ) ¥e ={p9"+}1pv) Epy

D= 2(n 4-0) ey == 2 4 1) 2 (eu)
Da B(e)! = T,
53 . i 7umy XA '
50 st D e Yy IR ST e (10).

Kann man 4 rational in den Geschwindigkeiien aunsdriickeys, so ist sine Integration
in geschlossener Form mbglich, Dieser Fall tritt ein bei der- rotationssymmetrischen
stationdren Strémung einer plastischen Masse durch ein gerades Rohr, sowie beim Zng-
versuch, solange das Material noch keine Wemerkbare Einschniirong hat. Bemerkenswert
ist, dab in diesem letzten Fall bei Fortdauer der gleiehmifigen Deaformation der Stab
nach einer endlichen Zoit verschwunden sein miifite: e ’

In den ¢ Gleichungen (8) und (9) treten .7 Unbékannte auf.

"Haben wir eine stationire Strémung, so miissen wir die Deformationsgeschwin-
digkeiten in den Geschwindigkeiten ausdriicken wnd haben dapn ehenso viele Gleichungen
als Unbekannte. Die g+’ sind darin willkiirtich wihlbar. Stellen wir uns aber die Aui-
gabe, die Materieteilehen auf ihrer Bahn zu verfolgen, so milssen wir in dem Kbrper ein
Koordinatensystem am Anfang der Bewegung an die Materieteilchen festheften und dann
diese sich mitbewegende Bezugsimolluske als Koordinatensystera benutzen. Natiirlich wied

" dieses System, weon es amch anfangs rechtwinklig war, -bald schisiwinkliz werden.
Wir haben daher allen Grund, unsere Gleichungen von vornherein in kovarianter Form
zu schreiben., ? o o . )

Nun besteht eifie einfache Beziehung zwischen dem kovarianten Fandamentaltensor |
unserer iquivoluminiren Bezugsmolluske und den Komponenten des Deformationstensors.

" Die Einheitssirecken unseres Koordinatensystems sind nimlick gleich den Quadrat-
wurzeln aus-den Komponenten des Fundamentaltensors mit gleichen Indizes. _

Die zeitliche Zunahwe einer solchen Einheitsstrecke ist aber nichts anderes als die
kovariante Komponente. des Tensors der Geschwindigkeitsinderunggn ep..

Gy == (11).
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Man' sieht obne weiteres, daB fiir g = » die Formel richtig ist. Der allgemeine Fall
erfordert .Bine etwas lingers Zwischenrechnung, wobel man den Winkel zwischen den
zwei Koordinatenrichtungen.
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einfiibren muf.

Zur Bestimmung der g,v haben wir als weitere Gleichungen die Bedingung, daB
der Riemann Christoffeltensor, der sich durch die ersten und zweiten Abteilungen der
gnv ausdriicken I48t, eih Nulltensor sein muf.

Die & Gleichungen, die wir so erhalten, sind aber nur dre unabhingigen
Gleichungen gleichwertigz, da die gy auch durch die 3 Geschwindigkeitskomponenten sich
ausdriicken lassen,

Eine angeniherte Integration des Gleichungsssystems ist fiir den ebemen Fall
und fitr den rotationssymmetrischen Fall nicht ausgeschlossen. Abgeschen davon tragen
die Gleichungen jedenfalls zur begrifflichen Kldrung bei. — Der gegenwirtige Stand der
Mechanik der Kontinua ist dadureh gekeunzeichnet, dad in ganz libertriebener Weise
die Aufmerksamkeit auf den Spannungszustand gerichtet ist, weil es an Methoden fehlte,
um die plastischen Deformationen voraus zu berechnen. Aus dem Wunsche heraus,
hierzu beizutragen, sind die obigen Ausfiihrungen enistanden




