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Let XA denote a point in a body, and suppose the body deforms and the point
moves to xi. The deformation gradient FiA is defined by

FiA =
∂xi
∂XA

= xi , A .

A classical elastic solid is one for which the stress tensor σrs and the internal
energy U depend on xi , A and possibly XA , i.e.,

σrs = σrs(xi ,A , XA) ,

U = U(xi ,A , XA).

In the linear approximation this gives σrs as a linear function of strain xi , A ,
which is Hooke’s law.

Over the past 30 years or so there has been significant interest in elastic-like
materials which cannot be adequately described by the classical theory of elasticity.
The present book is concerned with mathematical aspects of three theories which
depart from classical elasticity theory.

A beautiful exposition of two of the nonclassical elastic solid theories may be
found in Truesdell and Noll [6, p. 389]. They point out that Cauchy’s second law
in Continuum Mechanics is a constitutive assumption which says there are neither
body couples nor couple stresses. A class of nonclassical materials are those for
which there may be couple stresses or body couples present, and these are called
polar materials; this theory was first developed by E. and F. Cosserat in 1907. In
fact, it was Duhem who suggested including effects of direction via sets of points
with vectors attached to them, thus giving rise to the theory of oriented media.
This theory was developed by the Cosserats. Another generalization of classical
elasticity is to elastic materials of grade 2 or higher, and this is also lucidly explained
by Truesdell and Noll [6].

The theory of oriented media leads naturally to a theory of elastic rods (Antman
[1]), or to elastic shell theory (Naghdi [3]). Also, it offers a very successful way
to describe liquid crystals, a class of materials surely known to almost everyone in
the developed world. Inclusion of body couples arises naturally in the industrially
important field of ferrohydrodynamics (Rosensweig [5]). Here, the ferrofluid is a
suspension of magnetic particles in a carrier liquid and the resulting fluid possesses
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giant magnetic response. Since the magnetic particles can spin on their own, the
idea of a body couples fits naturally. Another success of oriented media is to the
description of turbulence; the papers of Marshall and Naghdi [2] illustrate this
beautifully.

The book by Ciarletta and Iesan concentrates on three generalizations of the
classical theory of elasticity, namely, that of nonsimple elastic bodies (Chapters
1–3), elastic solids with microstructure (Chapters 4–6), and elastic materials which
contain voids (Chapters 7, 8).

In the class of nonsimple elastic bodies they restrict attention to elastic materials
of grade 2 for which the stress and internal energy contain also the derivative of
the deformation tensor, i.e.,

σrs = σrs(xi ,A , xi ,AB , XA) ,

U = U(xi ,A , xi ,AB , XA).

By elastic solids with microstructure they study bodies where the stress and in-
ternal energy depend also on a variable xiA called a microscopic deformation, or
sometimes a dipolar displacement, and the derivative of xiA. Thus, for this class
of materials

σrs = σrs(xi , A , xiB , xiB ,K , XM ) ,

U = U(xi , A , xiB , xiB ,K , XM ).

In particular the above class may be seen to contain Cosserat materials as a special
case by taking xij = εijkφk , where φk is a microrotation field. The theory
of elastic materials with voids was developed by Nunziato and Cowin [4] and is
physically important as many rubber-like materials do contain air-filled pores. For
this theory there is the usual deformation

xi = xi(XA , t) ,

but there is also a volume fraction field

ν = ν(XA , t) , 0 < ν ≤ 1 ,

such that the mass density satisfies

ρ = νγ ,

where γ is the density of the elastic matrix material. The internal energy for such
a material has constitutive relation

U = U(xi ,A , ν , ν ,B , ν̇ , T , XM ) ,

where ν̇ = dν/dt and T is the temperature.
The mathematical content of the book is to review several types of variational

theorems, reciprocal theorems, existence theorems, continuous dependence results,
uniqueness results, results of St. Venant type concerning the rate of decay of
displacement in a cylinder, and analysis of plane waves and shock waves. In the
treatment of elastic bodies with voids in addition to results of the above type the
writers treat the important topic of acceleration waves. An acceleration wave is a
propagating singular surface across which the acceleration may suffer a finite jump
discontinuity. The evolutionary behaviour of such a wave is resolved. If the wave
amplitude becomes infinite, this can lead to shock wave formation.

Overall the book is clearly written and will certainly be a useful reference to
anyone working in the field. There are many references, and some of those are in
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Eastern bloc journals which may not be so familiar in the West. The book is not
produced in TEX but is nevertheless produced by a pleasant-to-read word-processing
system.
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