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1 Introduction

My master’s thesis “A spatial stress response criterion for the stability of incremental deforma-
tions” discusses stability criterions regarding linearizations. The guiding question related to this
is whether Liu [2, 10] has found a new stability criterion for linearizations on an intermediate
configuration in nonlinear elasticity which may be better than previous ones. In addition, we
are interested in the question of what kind of ellipticity conditions result from it. Furthermore,
we want to show limits of Liu’s statements. Therefore, we will mainly refer to the sources [10]
and [2].
We start by giving a basic overview of elasticity, including important theorems for existence
theory, in order to give an insight into the topic. In addition, we derive the Euler-Lagrange
equations to find a minimum for variational problems in elasticity. Based on this, we give a brief
introduction into the topic of Null-Lagrangians. In the fourth section, we talk about lineariza-
tions in general. We refer exclusively to Liu’s arguments and transform his linearized equation
of equilibrium in the intermediate configuration and the linearized equation of equilibrium in
the reference configuration until they match. Therefore, we use three different deformations,
one affecting the intermediate configuration and two of them affecting the reference configura-
tion. After that, we use them to specify the equations of equilibrium in the reference and in the
intermediate configuration. Then we linearize both and transform them into one new equation.
Besides, we briefly point out the special case for homogeneous initial deformations.
The second main part of this master’s thesis applies the results to a specific energy function by
strictly adhering to Liu’s calculations in [2]. We also give an existence and uniqueness state-
ment like Liu does and point out which important cases he ignores, i.e. where the limits of his
considerations lie. In this regard, we also discuss Korn’s inequality in Section 5 and deficiencies
of Liu’s argumentation. Moreover, we discuss ellipticity and its connection to existence theory.
Therefore, we give verification whether a given linearized energy function in the intermediate
configuration or in the reference configuration fullfills the condition of Lagrange-Hadamard el-
lipticity and compare it to the classical concept of ellipticity. Finally, we give a brief outlook of
which questions might still be of interest in the future.
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2 Mathematical basics and notations

In the following, we introduce some mathematical basics and notations which are important for
elasticity in general and for the problem of this master’s thesis in particular.

2.1 Sets in R3×3

For further work, we define a number of sets in R3×3.

Definitions 2.1.1. The set

GL(3) := {X ∈ R3×3| det(X) 6= 0}

is called the group of invertible matrices or general linear group. The group of invertible matrices
with a positive determinant is a subset of GL(3), defined by

GL+(3) := {X ∈ R3×3| det(X) > 0}.

Another subset is the special linear group

SL(3) := {X ∈ R3×3| det(X) = 1}.

Other important sets are the group of orthogonal matrices

O(3) := {X ∈ R3×3|XTX = 1}

and its subset

SO(3) := {X ∈ R3×3|XTX = 1,det(X) = 1},

called the set of rotation matrices or special orthogonal group. Also all symmetric matrices
depict a set, the set of symmetric matrices

Sym(3) := {X ∈ R3×3|XT = X}.

Its subset

Sym+(3) := {X ∈ R3×3|XT = X, 〈Xv, v〉 > 0 ∀ v ∈ R3 \ {0}}

is the set of symmetric positive definite matrices.

2.2 Elasticity

In elasticity, we consider elastic deformations of solid bodies. These deformations are represented
by a mapping ϕ which is defined on a bounded, open, connected subset Ω ⊂ R3, cf. Fig. 1. In
contrast to plasticity, “elastic” means that the deformed body is able to revert its shape back
to its original state after releasing inner/outer forces.

Ω ϕ(Ω)
ϕ

Figure 1: Deformation ϕ of a solid body with its reference configuration Ω and its current
configuration ϕ(Ω).
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We assume the solid body to be continuous and call Ω the stress-free reference configuration.
The deformed state ϕ(Ω) := Ω̂ ⊂ R3 is termed the current configuration. In addition, we
describe the coordinates x ∈ Ω in the reference configuration as Lagrangian coordinates and
the coordinates ϕ(x) ∈ Ω̂ in the current configuration as Eulerian coordinates. We define the
deformation gradient as

∇ϕ :=




∂1 ϕ1 ∂2 ϕ1 ∂3 ϕ1

∂1 ϕ2 ∂2 ϕ2 ∂3 ϕ2

∂1 ϕ3 ∂2 ϕ3 ∂3 ϕ3


 ∈ GL+(3). (2.2.1)

Furthermore, we assume that the deformation gradient ∇ϕ satisfies

det∇ϕ > 0 for all x ∈ Ω, (2.2.2)

since ∇ϕ needs to be orientation-preserving by definition. In particular, ∇ϕ is invertible.
Moreover, changes of area, length and volume of Ω are governed by Cof(∇ϕ)1, det∇ϕ and ∇ϕ.
More precisely, Cof(∇ϕ) is responsible for the change in area, det∇ϕ for the change in volume
and ∇ϕ for the change in length. We want to illustrate these statements with some calculations;
for this we define F := ∇ϕ.
The deformation gradient is responsible for change in length L, because for a vector ξ ∈ Ω we
can compute the vector’s length in the current configuration as

L(Fξ) = ‖Fξ‖ =
√
〈Fξ, Fξ〉 =

√
〈F TFξ, ξ〉. (2.2.3)

Besides for two vectors ξ, η ∈ Ω which describe an area in Ω we obtain ‖η × ξ‖. This implies
‖Fη × Fξ‖ for the deformed area. We compute

Fη × Fξ =




F11η1 + F12η2 + F13η3

F21η1 + F22η2 + F23η3

F31η1 + F32η2 + F33η3


×




F11ξ1 + F12ξ2 + F13ξ3

F21ξ1 + F22ξ2 + F23ξ3

F31ξ1 + F32ξ2 + F33ξ3




=




(F21η1 + F22η2 + F23η3)(F31ξ1 + F32ξ2 + F33ξ3)
−(F31η1 + F32η2 + F33η3)(F21ξ1 + F22ξ2 + F23ξ3)

(F31η1 + F32η2 + F33η3)(F11ξ1 + F12ξ2 + F13ξ3)
−(F11η1 + F12η2 + F13η3)(F31ξ1 + F32ξ2 + F33ξ3)

(F11η1 + F12η2 + F13η3)(F21ξ1 + F22ξ2 + F23ξ3)
−(F21η1 + F22η2 + F23η3)(F11ξ1 + F12ξ2 + F13ξ3)




=




(F22F33 − F23F32)(η2ξ3 − η3ξ2) + (F31F23 − F21F33)(η3ξ1 − η1ξ3)
+(F21F32 − F31F22)(η1ξ2 − η2ξ1)

(F32F13 − F12F33)(η2ξ3 − η3ξ2) + (F11F33 − F31F13)(η3ξ1 − η1ξ3)
+(F31F12 − F11F32)(η1ξ2 − η2ξ1)

(F12F23 − F22F13)(η2ξ3 − η3ξ2) + (F21F13 − F11F23)(η3ξ1 − η1ξ3)
+(F11F22 − F21F12)(η1ξ2 − η2ξ1)




=




F22F33 − F23F32 F31F23 − F21F33 F21F32 − F31F22

F32F13 − F12F33 F11F33 − F31F13 F31F12 − F11F32

F12F23 − F22F13 F21F13 − F11F23 F11F22 − F21F12


 ·




η2ξ3 − η3ξ2

η3ξ1 − η1ξ3

η1ξ2 − η2ξ1




= Cof




F11 F12 F13

F21 F22 F23

F31 F32 F33


 ·






η1

η2

η3


×




ξ1

ξ2

ξ3






= Cof(F ) · (η × ξ), (2.2.4)

1Cof(X) = det(X)X−T for X ∈ GL(n).
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with

F =




F11 F12 F13

F21 F22 F23

F31 F32 F33


 ∈ GL(3), η =




η1

η2

η3


 , ξ =




ξ1

ξ2

ξ3


 ∈ R3.

Thus we obtain

‖Fη × Fξ‖ = ‖Cof(F ) · (η × ξ)‖ (2.2.5)

and therefore, Cof(F ) describes the change in area. In addition, with some transformations and
an arbitrary subset C ⊂ Ω we get

Vol(ϕ(C)) =

∫

ξ∈ϕ(C)
1 dξ =

∫

η∈C
1 · | det(∇ϕ)|dη = | det(∇ϕ)| ·Vol(C). (2.2.6)

We have to consider that the last step only holds if ∇ϕ is independent of η. Therefore, we
assume the deformation to be infinitesimal (C to be an infinitesimal cube). Thus, det(∇ϕ) is
responsible for change in volume.
The displacement u is defined as

u : Ω→ R3 with u(x) := ϕ(x)− x. (2.2.7)

Hence, the relation between the deformation gradient ∇ϕ and the displacement gradient

∇u :=




∂1 u1 ∂2 u1 ∂3 u1

∂1 u2 ∂2 u2 ∂3 u2

∂1 u3 ∂2 u3 ∂3 u3


 (2.2.8)

is expressed by the equation

∇ϕ = 1 +∇u (2.2.9)

with 1 ∈ GL+(3) as the identity matrix. Typically, we only know the deformation ϕ for a part
Γ ⊂ ∂ Ω of the boundary and have to find the deformation of the whole body Ω, see Fig. 2.

Γ ϕ(Γ)

ϕ

Figure 2: Deformation ϕ of the elastic body Ω induced by a displacement of the boundary.

The main idea of nonlinear hyperelasticity is to describe the deformation ϕ as a solution of
a minimum problem concerning an elastic energy.
We define the elastic energy function

W : R3 × R3 ×GL+(3)→ R with (x, y,X) 7→W (x, y,X), (2.2.10)

which is assumed to be twice continuously differentiable. It represents the elastic energy of an
infinitesimal cube as shown in the picture below (Fig. 3).

ϕ

x0 ϕ(x0)

Figure 3: Deformation of an infinitesimal cube.
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The energy W of the infinitesimal cube at the point x0 ∈ Ω depends on the place x0 ∈ Ω
in the reference configuration, on the deformation ϕ(x0) at this point and on the deformation
gradient ∇ϕ(x0); higher orders of Dnϕ(x) are omitted. In the following, we assume the body Ω
to be homogeneous, which means the elastic energy of the infinitesimal cubes should not depend
on the place. Furthermore, for a point x in an arbitrary cube in the reference configuration we
obtain

ϕ(x) = ϕ(x0 + h) = ϕ(x0) +∇ϕ(x0).h+
1

2
D2ϕ(x0).(h, h) + ...

= ϕ(x0) +∇ϕ(x0).h+O
(
‖h‖2

)
,

i. e. the position ϕ(x0) in the deformed configuration only represents an “affine movement of the
infinitesimal cube” which does not change the shape of the cube. Moreover, for an infinitesimal
cube (h→ 0) higher order terms O

(
‖h‖2

)
vanish. Thus, we can define the energy value of any

infinitesimal cube as a function

Ŵ : GL+(3)→ R Ŵ (∇ϕ(x)) =: W (x, ϕ(x),∇ϕ(x)). (2.2.11)

In addition, the energy function Ŵ should be frame-indifferent, which means that a rotation
after the actual deformation X should not change the elastic energy, i.e.

Ŵ (QX) = Ŵ (X), ∀Q ∈ SO(3). (2.2.12)

Furthermore, the following standardizations may apply:

Ŵ (∇ϕ) ≥ 0 ∀∇ϕ ∈ GL+(3) and Ŵ (1) = 0.

Thereby, for the set M = {ϕ ∈ C2(Ω)|∇ϕ ∈ GL+(3) and ϕ|Γ = g}, we get an energy functional

I : M→ R with I(ϕ) :=

∫

Ω
Ŵ (∇ϕ) dx (2.2.13)

which describes the total elastic energy of the body Ω.2

ϕ

Figure 4: Visualization of the energy functional I(ϕ) of the whole body Ω through approximation

with infinitesimal cubes and the energy function Ŵ .

Furthermore, a deformation has to be energy optimal, i.e. it has to minimize the elastic
energy under given boundary conditions. Therefore we get a variational problem

I(ϕ) =

∫

Ω
Ŵ (∇ϕ) dx→ min , ϕ ∈M. (2.2.14)

2Note that the integral in (2.2.13) can be obtained as the limit of sums of the energies of infinitesimal cubes.
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Because of the relation between the deformation gradient ∇ϕ and the displacement field ∇u in
(2.2.9), we can consider the equivalent variational problem

I(u) =

∫

Ω
Ŵ (1 +∇u) dx→ min , u ∈M (2.2.15)

instead of problem (2.2.14).

2.2.1 Polar decomposition

In elasticity we deal with energy functionals which we assume to be isotropic3. For this, we need
the polar decomposition [21].

Definition 2.2.1. Let F ∈ GL+(3). The decomposition

F = R · U with R ∈ SO(3), U ∈ Sym+(3) (2.2.16)

is called left polar decomposition (Fig.5) and the decomposition

F = V ·R with R ∈ SO(3), V ∈ Sym+(3) (2.2.17)

is termed right polar decomposition (Fig. 6).

Here, R is a rotation, U is a right stretch and V is a left stretch.
Moreover, the polar decomposition is uniquely determined.

U R

F

Figure 5: Visualization of the left polar decomposition F = R · U .

R V

F

Figure 6: Visualization of the right polar decomposition F = V ·R.

3Isotropic means that the material does not have any preferred direction, i.e. applying a rotation Q ∈ SO(3)
before the actual deformation X = ∇ϕ should not change the energy, ∀Q ∈ SO(3) : W (XQ) = W (X). Together
with frame-indifference we get ∀Q ∈ SO(3) : W (QXQT ) = W (X), see Münch and Neff in [13].
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Theorem 2.2.2 (Existence and uniqueness). For each F ∈ GL+(3) there exists an uniquely de-
termined left and an uniquely determined right polar decomposition. Furthermore, the rotation
R ∈ SO(3) in both decompositions is equal.

Proof. We define B := FF T and C := F TF . Let v ∈ R3 \ {0R3}. Then4

〈v, Cv〉 =
〈
v, F TFv

〉
= 〈Fv, Fv〉 = ‖Fv‖2 > 0

and

〈v,Bv〉 =
〈
v, FF T v

〉
=
〈
F T v, F T v

〉
= ‖F T v‖2 > 0.

In addition CT =
(
F TF

)T
= F TF = C, BT =

(
FF T

)T
= FF T = B, thus B,C ∈ Sym+(3).

Now let U :=
√
C and V :=

√
B with U, V ∈ Sym+(3). For R := FU−1,

det(R) = det(F ) · det(U−1) > 0 and RTR = (FU−1)T (FU−1) = U−TF TFU−1 = U−1CU−1 =
U−1U2U−1 = 1. Hence, R ∈ SO(3).
To show thatR is identical in both decompositions we compute (FUF−1)2 = (FUF−1)(FUF−1) =
FU2F−1 = FF TFF−1 = FF T = V 2. Since, U2 = F TF ⇐⇒ F TFU = UF TF and
U ∈ Sym+(3) =⇒ U−1 ∈ Sym+(3), we get FUF−1 = F−TUF T = (FUF−1)T and

〈
FUF−1v, v

〉
=
〈
UF−1v, F T v

〉
=
〈
U−1F T v, F T v

〉 FT v=:w
=

〈
U−1w,w

〉
≥ 0.

So, FUF−1 ∈ Sym+(3). Thus V = FUF−1 ⇐⇒ V −1 = FU−1F−1 ⇐⇒ FU−1 = V −1F .

Finally, the polar decomposition is uniquely determined, because for R̂ ∈ SO(3) and for Û ∈
Sym+(3) with F = R̂Û , we find U2 = F TF = ÛT R̂T R̂Û = Û2 and thus, U = Û , since
U =

√
C ∈ Sym+(3) is uniquely determined by the square root. In addition, R = R̂, because R̂

is uniquely determined by Û . With the same arguments we get that V is uniquely defined. �

Due to the previous theorem, we can split our deformation gradient ∇ϕ ∈ GL+(3) uniquely
into

∇ϕ := F = V R = RU with V,U ∈ Sym+(3) and R ∈ SO(3). (2.2.18)

Moreover, as stated in the proof of Theorem 2.2.2, we can diagonalise U and V and due to the
equality V = RURT they have the same eigenvalues s+

1 , s
+
2 , s

+
3 ∈ R+. These eigenvalues are

called the singular values of the deformation gradient F .

2.2.2 Invariants

With the help of C := F TF = U2, called the right Cauchy-Green-tensor, and B := FF T = V 2,
called the left Cauchy-Green-tensor, as well as certain invariants, we can simplify our isotropic
energy function Ŵ .
“Invariant” in this case means invariant under orthogonal operations, i.e. a function

I : R3×3 → R with B 7→ I(B) and B ∈ R3×3 (2.2.19)

4The inner product in R3×3 is called Frobenius scalar product, defined by 〈·, ·〉 : R3×3 × R3×3 → R with

〈X,Y 〉 :=
3∑
i=1

3∑
j=1

xijyij . It induces the Frobenius norm ‖·‖ : R3×3 → R with ‖X‖ :=
√
〈X,X〉. For more

information, see [21].
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is invariant if I(QBQT ) = I(B) for all Q ∈ O(3). In isotropic nonlinear elasticity, we define
three different matrix invariants I1, I2 and I3 by Ii : R3×3 → R

I1(B) = tr(B), (2.2.20)

I2(B) =
1

2

[
(tr(B))2 − tr

(
B2
)]

= tr(Cof(B)), (2.2.21)

I3(B) = det(B). (2.2.22)

For B ∈ Sym+(3), there exists Q ∈ O(3) with B = QT diag(λ1, λ2, λ3)Q, where λ1, λ2, λ3 ∈ R+

are the eigenvalues of B. Thus

I1(B) = tr(B) = tr
(
QT diag(λ1, λ2, λ3)Q

)
= λ1 + λ2 + λ3, (2.2.23)

I2(B) = tr(Cof(B)) = λ1λ2 + λ1λ3 + λ2λ3, (2.2.24)

I3(B) = det(B) = λ1λ2λ3. (2.2.25)

In terms of the deformation gradient F ,

I1(B) = tr(B) = 〈B, 1〉 =
〈
FF T ,1

〉
= 〈F, F 〉 = ‖F‖2, (2.2.26)

I2(B) =
1

2

[
(tr(B))2 − tr

(
B2
)]

= tr(Cof(B)) = tr
(
det(B) ·B−T

)

= det
(
FF T

)
· tr
(
B−T

)
= det

(
FF T

) 〈(
FF T

)−T
, 1
〉

= det
(
FF T

) 〈
F−T

(
F−T

)T
, 1
〉

=
〈
det(F ) det(F )F−T , F−T

〉

=
〈
det(F )F−T , det(F )F−T

〉
= 〈Cof(F ),Cof(F )〉

= ‖Cof(F )‖2, (2.2.27)

I3(B) = det(B) = det(F ) · det
(
F T
)

= det(F )2. (2.2.28)

Note that I1 , I2 , I3 > 0.
Due to Marsden and Hughes [12], isotropic energy functions can be represented in dependence
of the invariants I1, I2, I3,5 so we can define a new energy function

W̃ : R+ × R+ × R+ → R with W̃ (I1, I2, I3) := Ŵ (F ). (2.2.29)

2.2.3 Matrix derivation

In Section 4, we will need some matrix derivatives to linearize important equations in nonlinear
elasticity. For differentiation in R, we use the Taylor series to find a derivative of a function
f : R→ R, x 7→ f(x). More precisely,

f(x+ h) = f(x) + f ′(x) · h+O
(
|h|2
)
, (2.2.30)

where h ∈ R indicates an arbitrary direction. Nearly the same formula applies for differentiation
in R3×3. Here, we have to distinguish between scalar valued functions T : R3×3 → R and tensor
functions T̂ : R3×3 → R3×3. In these respective cases, we get

T (X +H) = T (X) + 〈DT [X], H〉+O
(
‖H‖2

)
(2.2.31)

and

T̂ (X +H) = T̂ (X) +DT̂ [X].H +O
(
‖H‖2

)
(2.2.32)

5Note that if we assume F1, F2 ∈ GL+(3) with I1(F1) = I1(F2), I2(F1) = I2(F2), I3(F1) = I3(F2), then the

corresponding B1 and B2 are similar. Hence, V1 =
√
B1 and V2 =

√
B2 are similar as well. Thus Ŵ (F1) = Ŵ (F2),

since we assume Ŵ to be objective and isotropic.
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for an arbitrary direction H ∈ R3×3, where 〈DT [X], H〉 ∈ R, DT̂ [X].H ∈ R3×3 and O
(
|h|2
)
,

O
(
‖H‖2

)
represent terms of higher order.

For further considerations we need the expansion of the Cofactor mapping Cof : R3×3 → R3×3

in the direction of H ∈ R3×3. First we have to compute det(X+H) ∈ R and (X+H)−T ∈ R3×3.
We calculate

det(1 +H) = det




1 +H11 H12 H13

H21 1 +H22 H23

H31 H32 1 +H33




= (1 +H11)(1 +H22)(1 +H33) +H12H23H31 +H13H21H32 −H13(1 +H22)H31

−H23H32(1 +H11)− (1 +H33)H21H12

= (1 +H22 +H11 +H11H22)(1 +H33) +H12H23H31 +H13H21H32

−H13H31 −H13H31H22 −H23H32 −H23H32H11 −H21H12 −H33H21H12

= 1 +H33 +H22 +H22H33 +H11 +H11H33 +H11H22 +H11H22H33

+H12H23H31 +H13H21H32 −H13H31 −H13H31H22 −H23H32

−H23H32H11 −H21H12 −H33H21H12

= 1 + (H11 +H22 +H33) + (H11H22 +H11H33 +H22H33 −H13H31 −H23H32 −H12H21)

+ (H11H22H33 +H12H23H31 +H13H21H32 −H22H31H13 −H33H21H12 −H33H32H23)

= 1 + tr(H) + tr(Cof(H)) + det(H)

= det(1) + 〈1, H〉+O(‖H‖2). (2.2.33)

Thus

det(X +H) = det
(
X
(
1 +X−1H

))
= det(X) · det

(
1 +X−1H

)

= det(X) ·
(
det(1) +

〈
1, X−1H

〉
+O

(
‖H‖2

))

= det(X) + det(X)
〈
X−T , H

〉
+O

(
‖H‖2

)

= det(X) + 〈Cof(X), H〉+O
(
‖H‖2

)
. (2.2.34)

Now, we look at the expansion of (X +H)−T , using the Neumann series:

(1−X)−1 = 1 +X +X2 +X3 + ... for ‖X‖ < 1. (2.2.35)

We compute

(X +H)−1 =
(
X
(
1 +X−1H

))−1
=
(
1−

(
−X−1H

))−1 ·X−1

=
(
1 +

(
−X−1H

)
+O

(
‖H‖2

))
·X−1

= X−1 −X−1HX−1 +O
(
‖H‖2

)
(2.2.36)

and

(X +H)T = XT +HT . (2.2.37)

Thus

(X +H)−T =
(
(X +H)T

)−1
=
(
XT +HT

)−1
= X−T −X−THTX−T +O

(
‖H‖2

)
. (2.2.38)

Alltogether, we get

Cof(X +H) = det(X +H) · (X +H)−T

=
(
det(X) + 〈Cof(X), H〉+O

(
‖H‖2

))
·
(
X−T −X−THTX−T +O

(
‖H‖2

))

= det(X) ·X−T − det(X) ·X−THTX−T + 〈Cof(X), H〉 ·X−T +O
(
‖H‖2

)

= Cof(X)− det(X) ·
(
X−1HX−1

)T
+ det(X)

〈
X−T , H

〉
X−T +O

(
‖H‖2

)

= Cof(X)− det(X) ·
(
X−1HX−1

)T
+ tr

(
X−1H

)
· Cof(X) +O

(
‖H‖2

)
(2.2.39)

for the Cofactor mapping.
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2.2.4 Stress tensors

In a solid body there are two types of external forces, the body force and the surface force. The
surface force acts upon every element of the body’s surface and the body force acts upon every
volume element of the body. Furthermore, there are also internal forces induced by mutual
interactions of inner parts of the body. The internal forces are the forces which lead us to define
stresses in relation to deformed bodies [11]. To understand how a stress tensor is defined, we
need to consider the concept of stress vectors.
Physically a stress vector t in a point P of an intersection is defined by

t = lim
∆A→0

∆F

∆A
=
∂F

∂A
, (2.2.40)

with the force ∆F which acts upon the area ∆A, see Fig. 7.

Figure 7: Visualization of a stress vector t in a point P of an area ∆A. Source: [6, p. 71]

The stress vector t depends on the orientation of the intersection through P , i.e. t := t(~n).
Based on mechanical reasoning it can be shown that for a body in equilibrium6 the mapping
~n 7→ t(~n) must be linear, i. e. t(~n) = σ.~n for some σ ∈ R3×3.

Figure 8: Visualization of the stress tensor σ.

Furthermore, the relations σyz := τyz = τzy, σxz := τxz = τzx, σxy := τxy = τyx must hold.
Thus, we get

σ :=




σxx τxy τxz
τyx σyy τyz
τzx τzy σzz


 ∈ Sym(3) (2.2.41)

with six independent components [6].
The second-order tensor7 σ, called the Cauchy stress tensor8, represents the stress in the current

6A body is in a static equilibrium if the fundamental stress principle of Euler and Cauchy is satisfied, see [1].
7A second-order tensor is expressed by a square matrix.
8The Cauchy stress tensor is also called the true stress, because it describes the stress which is measured in

the actual deformed state.
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configuration per deformed surface and can be defined even without an elastic energy W . Note
that in the context of hyperelasticity, the existence and properties of the Cauchy stress tensor
follow from frame-indifference of the energy W and the Piola transform (2.2.43).
Other important stress tensors are the first Piola-Kirchhoff stress tensor and the second Piola-
Kirchhoff stress tensor. In the hyperelastic framework, the former is defined by

S1(F ) := DF Ŵ (F ), (2.2.42)

with the elastic energy function Ŵ defined in (2.2.11), where DF Ŵ (F ) is the derivate of Ŵ
with respect to F . It represents the stress per current surface.
Furthermore, there is a relation between the Cauchy stress tensor and the first Piola-Kirchhoff
stress tensor which is expressed by the equation

σ(F ) = S1(F ) · Cof(F )−1. (2.2.43)

In general, this relation is also called Piola transform which expresses a particular transformation
between tensors defined in the reference configuration Ω and tensors defined in the deformed
configuration ϕ(Ω) = Ω̂. One important property of this transformation will be discussed in
Section 2.3.
The second Piola-Kirchhoff stress tensor is defined by

S2(F ) := F−1S1(F ). (2.2.44)

While we consider many other stress tensors, as well, they are not important for the present
work, so if the reader is interested in them they can find more information in [1, 20].

2.2.5 Linear elasticity

We distinguish between linear and nonlinear elasticity. The latter was discussed in the previous
sections. In linear elasticity, we deal with infinitesimal strains, i.e. ”small” deformations. It
is used in the field of continuum mechanics. “Linear” in this case means that we consider the
relation between stress and strain to be linear. This relation is expressed by the isotropic Hooke’s
law [9]

σ(ε) = 2µ ε+ λ tr(ε)1, (2.2.45)

where µ and λ are the Lamé (elastic) moduli and ε := sym(F −1) = sym(∇u) = 1
2 [∇u+ (∇u)T ]

is the infinitesimal strain tensor with the displacement field ∇u. Together with the equation
ε = ε − 1

3 tr(ε) 1 + 1
3 tr(ε)1 = dev(ε) + 1

3 tr(ε) 1, Hooke’s law generates the equivalent stress
strain law

σ(ε) = 2µdev(ε) + κ tr(ε) 1 (2.2.46)

for isotropic linear elastic materials, where κ = 2µ+3λ
3 is called the bulk modulus.

2.3 Fundamental principles of functional analysis and
the calculus of variations

In addition to the previous sections, we need some fundamental principles from the field of
functional analysis. We presuppose terms like metric, metric space, norm and normed space9.
This leads us to the following definitions.

Definition 2.3.1. A metric space X in which every Cauchy sequence (xn)n∈N converges to a
x ∈ X is called complete. A complete and normed space is called Banach space.

9For repetition see [8, 22].
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Definition 2.3.2. A Banach space H is called a Hilbert space, if there exists an inner product10

〈·, ·〉 which generates the norm on H with ‖·‖ =
√
〈·, ·〉.

Other important spaces are the Lebesgue spaces.

Definition 2.3.3. For K ∈ {R,C}, Ω ⊂ Rp measurable, 0 < p < ∞, λn the n-dimensional
Lebesgue measure, Lp(Ω) := {f : Ω→ K, f measurable,

∫
Ω |f |

p dλn <∞} and
N := {f ∈ Lp | ‖f‖Lp = 0}, we call the quotient space Lp := Lp/N p-Lebesgue space with the
norm

‖f‖Lp = ‖f‖Lp :=

(∫

Ω
|f |p dλn

) 1
p

, (2.3.1)

for more detailed considerations see [22].

To define certain inequalities like the Poincaré inequality and the Korn inequality11, we need
to define the so-called Sobolev spaces as well [19].

Definition 2.3.4. Let Ω ⊂ Rn be an open subset, k ∈ N and p ∈ [1,∞]. Then we call

W k,p(Ω) = W k,p(Ω,R) := {u ∈ Lp(Ω,R) |Dαu ∈ Lp(Ω) ∀α ∈ Nn with |α| ≤ k} (2.3.2)

Sobolev space with the norm

‖u‖Wk,p :=


∑

|α|≤k
‖Dαu‖pLp




1
p

, (2.3.3)

where Dαu(x) := ∂|α|

∂α1x1...∂αnxn
u(x) is the weak derivative and |α| :=

∑n
i=1 αi.

Remark 2.3.5. For p = 2, we write

Hk(Ω) = W k,2(Ω), (k = 0, 1, 2, ...),

to emphasize that W k,2(Ω) defines a Hilbert space, see [4].

Definition 2.3.6. Let U ⊂ Rn be an open subset. The space

C∞0 (U) := {v ∈ C∞(Rn) : supp(v) ⊂ U compact} (2.3.4)

is called the space of test functions, where the support is defined by

supp(v) := {x ∈ U : v(x) 6= 0}. (2.3.5)

Now we are able to define Sobolev spaces with zero boundary conditions.

Definition 2.3.7. Let 1 ≤ p <∞. Then

W k,p
0 (Ω) = {u ∈W k,p(Ω) | ∃ (uj)j∈N ⊂ C

∞
0 (Ω), ‖u− uj‖Wk,p → 0} ⊂W k,p(Ω) (2.3.6)

is called Sobolev space with zero boundary conditions.
10A mapping 〈 . , . 〉 : H × H → R is called an inner product if it is linear in both of its arguments and if the

following conditions apply:

i) 〈u, v〉 = 〈v, u〉 ∀u, v ∈ H,

ii) 〈u, u〉 ≥ 0 ∀u ∈ H,

iii) 〈u, u〉 = 0 ⇐⇒ u = 0.

11See Section 2.3.3.
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Remark 2.3.8. For p = 2, we write

Hk
0 (Ω) = W k,2

0 (Ω),

as well.

For the space W 1,p
0 (Ω), we can specify the Poincaré inequality, see [19], which we state here

without proof.

Theorem 2.3.9 (Poincaré inequality). Let 1 ≤ p <∞, Ω ⊂ Rn be an open bounded subset and
V ⊂ W 1,p

0 (Ω). Then there exists a constant c > 0 which depends only on p and Ω but not on u
such that

‖u‖W 1,p(Ω) ≤ c · ‖∇u‖Lp(Ω) ∀u ∈ V. (2.3.7)

We rewrite this inequality so that the Lp-norm of a Sobolev function with zero boundary
conditions is controlled by the Lp-norm of its gradient:

‖u‖W 1,p ≤ c · ‖∇u‖Lp ⇐⇒


∑

|α|≤1

‖Dαu‖pLp




1
p

≤ c ·
(∫

Ω
‖∇u‖p dV

) 1
p

⇐⇒
∑

|α|≤1

∫

Ω
‖Dαu‖p dV ≤ cp ·

∫

Ω
‖∇u‖p dV

⇐⇒
∫

Ω
‖u‖p dV +

∫

Ω
‖∇u‖p dV ≤ cp ·

∫

Ω
‖∇u‖p dV

⇐⇒
∫

Ω
‖u‖p dV ≤ (cp − 1) ·

∫

Ω
‖∇u‖p dV

⇐⇒ ‖u‖pLp ≤ (cp − 1) · ‖∇u‖pLp . (2.3.8)

For the computations for example in (3.1.7) and (3.1.9), we will also require partial integration
in the multi-dimensional case. It follows from Gauß’s theorem, which is a special case of Stokes’
theorem12 and describes the connection between the divergence of a vector field in an arbitrary
volume and the flow of this field through the surface of the volume. Furthermore, its importance
is attributed to energy conservation, shown in Fig. 9.

Theorem 2.3.10 (Gauß’s theorem). Let V ⊂ Rn be a subset which is compact and has a
piecewise smooth boundary. In addition, let the vector field F be continuously differentiable on
an open set U with V ⊂ U . Then the following equation holds:

∫

V
divF dV =

∫

∂V
〈F,~n〉dS. (2.3.9)

Proof. See [4]. �

Source strength Flow

=

Figure 9: Principle of energy conservation.

12See [7].
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Thus, for div
(
AT v

)
= 〈A,∇v〉+ 〈v,DivA〉 with A ∈ R3×3, v ∈ R3, we find

∫

Ω
〈DivA, v〉dx = −

∫

Ω
〈A,∇v〉dx+

∫

Ω
div
(
AT v

)
dx

= −
∫

Ω
〈A,∇v〉dx+

∫

∂Ω

〈
AT v, ~n

〉
dx

= −
∫

Ω
〈A,∇v〉dx+

∫

∂Ω
〈v,A~n〉 dx. (2.3.10)

With some application of Green’s identities13, equation (2.3.9) also applies for tensor fields T
and is given by

∫

Ω
Div T dV =

∫

∂Ω
T · ~ndS . (2.3.11)

2.3.1 Fundamental lemma of the calculus of variations and the Piola transform

Moreover, we need one important theorem of calculus of variations for the Euler-Lagrange
equations in Section 3.1.

Lemma 2.3.11 (Fundamental lemma of the calculus of variations). Let Ω ⊂ Rn be an open
subset and g ∈ L1,loc(Ω) with

∫

Ω
g(x) v(x) dx = 0 (2.3.12)

for all v ∈ C∞0 (Ω). Then g(x) ≡ 0 almost everywhere in Ω.

Proof. First we consider the case g ∈ C(Ω). We assume the above prerequisite∫
Ω g(x)v(x) dx = 0 for all v ∈ C∞0 (Ω). Now let η ∈ C∞0 (Rn), η ≥ 0 with supp(η) = {x : η(x) 6= 0} ⊂
B1(0),

∫
Rn η(x) dx = 1 and η(x) = η(−x). We choose the standard mollifier [4]

η(x) :=

{
c · exp

(
1

|x|2−1

)
: |x| < 1,

0 : |x| ≥ 1.
(2.3.13)

For ε > 0, let ηε(x) := ε−nη
(
x
ε

)
. Then supp(ηε) ⊂ Bε(0). If 0 < ε < dist(x, ∂ Ω), then

(ηε ∗ g)(x) =

∫

Ω
ηε(x− y)g(y) dy = 0

applies for the convolution14 of g. Hence,

|g(x)| = |g(x)− (ηε ∗ g)(x)| = |
∫

Ω
ηε(x− y) [g(x)− g(y)] dy| ≤

∫

Ω
|ηε(x− y)||g(x)− g(y)|dy

≤ 1 · sup
y∈Bε

|g(x)− g(y)| →
ε→0

0,

13For an open and bounded subset Ω ⊂ Rn, let u, v ∈ C2(Ω). Then

i)
∫

Ω
(〈u,∆v〉+ 〈∇u,∇v〉) dV =

∫
∂ Ω
〈u, ∂ v

∂ n
〉 dS,

ii)
∫

Ω
(〈u,∆v〉 − 〈v,∆u〉) dV =

∫
∂ Ω

(
〈u, ∂ v

∂ n
〉 − 〈v, ∂ u

∂ n
〉
)

dS,

with the Laplace operator ∆ and ∂ v
∂ n

:= ∇v · ~n.
14If f : Ω→ R is locally integrable, we define the convolution of f by

(ηε ∗ f)(x) :=

∫
Ω

ηε(y)f(y) dy =

∫
Bε(0)

ηε(y)f(x− y) dy

for x ∈ {x ∈ Ω|dist(x, ∂Ω) > ε}.
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because g is continuous in Ω.
Now consider the case g ∈ L1, loc(Ω). Again, assume condition (2.3.12). Let v ∈ C∞0 (Ω), v ≥ 0
and 0 < ε < dist(supp(v), ∂ Ω). Then with the use of Fubini15, and since (ηε ∗ v) ∈ C∞0 (Ω), the
following calculation applies:

∫

Ω
(ηε ∗ g) (x) v(x) dx =

∫

Ω

∫

Ω
ηε(x− y) g(y) dy v(x) dx =

∫

Ω
g(y)

∫

Ω
ηε(x− y) v(x) dx dy

=

∫

Ω
g(y) (ηε ∗ v) (y) dy = 0.

Therefore, together with the first case and the properties of the convolution16, we obtain ηε∗g =
0. Thus, we get g(x) ≡ 0 almost everywhere in Ω.[4] �

Now we can introduce the following theorem which expresses one important property of the
Piola transform mentioned in Section 2.2.4.
We define x ∈ Ω ⊂ Rn as an element in the reference configuration and ξ := ϕ(x) ∈ Ω̂ as an
element in the deformed configuration, as shown in Fig. 10.

ϕ

Ω Ω̂
ξ

x

Figure 10: Piola transformation.

15If f : Rn+m = Rn×Rm → [0,∞] is measurable, then fy := f(·, y) : Rn → [0,∞] and fx := f(x, ·) : Rm → [0,∞]
are measurable. Furthermore the following equation applies∫

Rn+m

f dλn+m =

∫
Rm

(∫
Rn

f(x, y) dλn(x)

)
dλm(y) =

∫
Rn

(∫
Rm

f(x, y) dλm(y)

)
dλn(x).

16The convolution ηε ∗ f of f has the following properties [4]:

i) (ηε ∗ f) ∈ C∞(Ωε) with Ωε := {x ∈ Ω|dist(x, ∂Ω) > ε},
ii) (ηε ∗ f)→ f almost everywhere as ε→ 0,

iii) If f ∈ C(Ω), then (ηε ∗ f)→ f uniformly on compact subsets of Ω,

iv) If 1 ≤ p <∞ and f ∈ Lp,loc(Ω), then (ηε ∗ f)→ f in Lp, loc(Ω).
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Theorem 2.3.12 (Piola-Transform). Let Ω ⊂ Rn be bounded, open and connected. Assume that
ϕ is a mapping which is defined on Ω with ϕ : Ω→ Ω̂ and ϕ(x) =: ξ. Moreover, let σ be a tensor
field on the deformed configuration Ω̂ and let S be a tensor field on the reference configuration
Ω with the relation (Piola transformation)

S(x) = σ(ξ) · Cof(∇xϕ(x)). (2.3.14)

Then17

Divx(S(x)) = det(∇xϕ(x)) ·Divξ σ(ξ). (2.3.15)

Proof. Together with equation (4.4.3), the Piola identity18 and δkl =

{
1 k = l
0 k 6= l

, we find

[Divx S(x)]i =
n∑

j=1

∂xj S(x)ij =
n∑

j=1

∂xj [σ(ξ) · Cof(∇xϕ(x))]ij

=
n∑

j,k=1

∂xj (σ(ξ)ik) · Cof(∇xϕ(x))kj + (σ(ξ) ·Div(Cof(∇xϕ(x)))i

=
n∑

j,k,l=1

∂ξl σik(ξ) ∂xjξl ϕ(x) · det(∇xϕ(x)) ·
[
∇xϕ(x)−T

]
kj

(2.3.16)

=

n∑

k,l=1

∂ξl σik(ξ) · det(∇xϕ(x)) ·
n∑

j=1

[∇xϕ(x)]lj ·
[
∇xϕ(x)−T

]
kj

=
n∑

k,l=1

∂ξl σik(ξ) · det(∇xϕ(x)) · δlk = det(∇xϕ(x)) ·
n∑

l=1

∂ξl σil(ξ)

= det(∇xϕ(x)) · [Divξ σ(ξ)]i . �
17Note that ∫

Ω

〈Divx S(x), v(x)〉 dx = −
∫

Ω

〈S(x),∇v(x)〉 dx,

for all v ∈ C∞0 (Ω) and ∫
Ω̂

〈Divξ σ(ξ), v̂(ξ)〉 dξ = −
∫

Ω̂

〈σ(ξ),∇v̂(ξ)〉 dξ,

for all v̂ ∈ C∞0 (Ω̂).

18Let ∇ϕ =

 ϕ1,x1 ϕ1,x2 ϕ1,x3

ϕ2,x1 ϕ2,x2 ϕ2,x3

ϕ3,x1 ϕ3,x2 ϕ3,x3

 and Cof(∇ϕ)i j = ∇ϕi+1 j+1 · ∇ϕi+2 j+2 − ∇ϕi+1 j+2 · ∇ϕi+2 j+1 with

all indices counted modulo 3. Then

[Div (Cof(∇ϕ))]i = div ((Cof(∇ϕ)i)) =

3∑
j=1

∂

∂ xj
(Cof(∇ϕ))i j =

3∑
j=1

∂

∂ xj
(∇ϕi+1 j+1 · ∇ϕi+2 j+2 −∇ϕi+1 j+2 · ∇ϕi+2 j+1)

=

3∑
j=1

∂

∂ xj

(
ϕi+1,xj+1 · ϕi+2,xj+2 − ϕi+1,xj+2 · ϕi+2,xj+1

)
=

3∑
j=1

(
ϕi+1,xj+1,xj · ϕi+2,xj+2 + ϕi+1,xj+1 · ϕi+2,xj+2,xj − ϕi+1,Xj+2,xj · ϕi+2,xj+1 − ϕi+1,xj+2 · ϕi+2,xj+1,xj

)
= 0.

Thus, Div(Cof(∇ϕ)) = 0.
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2.3.2 Theorem of Lax-Milgram

We are mainly interested in the existence and uniqueness of a solution of a given boundary value
problem, especially of the corresponding variational problem. For this we need one of the most
important theorems in linear functional analysis, the theorem of Lax-Milgram.

Theorem 2.3.13 (Theorem of Lax-Milgram). Let L : H ×H → R be a bilinear mapping on a
real Hilbert space H with norm ‖.‖H and inner product 〈 . , . 〉H . Additionally, let f : H → R be
a bounded linear functional on H.
If there exist constants α, γ > 0 with

i) |L(u,w)| ≤ γ · ‖u‖H‖w‖H ∀u,w ∈ H,
ii) L(u, u) ≥ α · ‖u‖2H ∀u ∈ H, (2.3.17)

then there exists a unique element u ∈ H with

L(u,w) = 〈f, w〉 ∀w ∈ H. (2.3.18)

Proof. See [4, 8]. �

2.3.3 Korn’s inequalities

Korn’s inequalities play an important role in linear elasticity. They replace the Poincaré in-
equality if it is only possible to estimate the symmetric part of the gradient of u, which is a
measure for the deformation of an elastic body. We will need these equations in Section 5 in
order to be able to make certain ellipticity statements regarding linearizations.

Theorem 2.3.14 (Korn’s inequalities for p = 2). Let Ω ⊂ Rn be a bounded, connected subset
with a smooth boundary ∂Ω. Then there exist constants c0, c1 ∈ R such that

i) ‖∇u‖2L2(Ω) ≤ c0‖sym(∇u)‖2L2(Ω) ∀u ∈ H1
0 (Ω),

ii) ‖u‖2H1(Ω) ≤ c1

(
‖u‖L2(Ω) + ‖sym(∇u)‖L2(Ω)

)2 ∀u ∈ H1(Ω).

Furthermore, it is possible to generalize Korn’s first inequality, which is stated in i). For
example, the following generalization is applicable to elasto-plasticity at large deformations [15].

Theorem 2.3.15 (Generalization of Korn’s first inequality). Let Ω ⊂ R3 be a bounded, connected
domain with Lipschitz boundary ∂ Ω and let F̃ , F̃−1 ∈ C1(Ω,R3×3) with det(F̃ ) ≥ c > 0, c ∈ R+.
Moreover, assume Curl(F̃ ) ∈ C1(Ω,R3×3). Then there exists a constant c+ > 0 such that

‖∇u · F̃−1(x) + F̃−T (x) · (∇u)T ‖2L2(Ω) ≥ c
+‖u‖2H1(Ω) ∀u ∈ H1

0 (Ω).

Remark 2.3.16. For F̃ = 1 we obtain

‖∇u+ (∇u)T ‖2L2(Ω) ≥ c
+‖u‖2H1(Ω) ∀u ∈ H1

0 (Ω),

which is another form of Korn’s first inequality [15].

For further generalizations, see e.g. [17].
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3 Null-Lagrangians in nonlinear elasticity

This section is a preliminary chapter for the guiding question of this masterthesis, “the equiva-
lence of linearized equations of equilibrium”. To understand what we want to linearize and why,
we have to clarify what is meant by Null-Lagrangians and Euler-Lagrange-equations.

3.1 Euler-Lagrange equations

First we assume Ω ⊂ Rn to be a bounded, open subset with smooth boundary ∂Ω and a smooth
function

L : Ω× Rn × Rn×n → R, (x, u, ξ) 7→ L(x, u, ξ), (3.1.1)

which is termed Lagrangian. Now we define

I(w) :=

∫

Ω
L(x,w(x),∇w(x))dx (3.1.2)

for a smooth function w : Ω→ Rn satisfying the boundary condition

w = g on ∂Ω. (3.1.3)

We consider a function u with u = g on ∂Ω to be a minimizer of (3.1.2). Let v ∈ C∞0 (Ω) be an
arbitrary function and define

f(t) := I(u+ t v) with t ∈ R. (3.1.4)

Then f has a minimum at t = 0 and thus the equation

f ′(0) =
∂

∂t
I(u+ t v)|t=0 = 0 (3.1.5)

holds. Now we form the first variation:

f(t) =

∫

Ω
L(x, u+ t v,∇u+ t∇v) dx. (3.1.6)

Hence,

f ′(t)|t=0 =

∫

Ω
[〈Du L(x, u+ t v,∇u+ t∇v), v〉Rn + 〈Dξ L(x, u+ t v,∇u+ t∇v),∇v〉Rn×n ] |t=0 dx

=

∫

Ω
〈Du L(x, u,∇u), v〉+ 〈Dξ L(x, u,∇u),∇v〉 dx

P.I.
=

v|∂Ω=0

∫

Ω
Du L(x, u,∇u), v〉dx−

∫

Ω
〈Div(Dξ L(x, u,∇u)), v〉dx

=

∫

Ω
〈Du L(x, u,∇u)−Div(Dξ L(x, u,∇u)), v〉 dx. (3.1.7)

Therefore, together with the Fundamental lemma of calculus of variations 2.3.11, we obtain the
Euler-Lagrange-equation[4]

Du L(x, u,∇u)−Div(Dξ L(x, u,∇u)) = 0. (3.1.8)

Now we calculate the Euler-Lagrange equation for the energy functional I defined in (2.2.15).
As before, we get the Euler-Lagrange equations by forming the first variation in an arbitrary di-
rection v ∈ C∞0 (Ω). ForM, defined in (2.2.13), let u ∈M. By using the dominated convergence
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theorem19 we compute

0 =
d

dt
I(u+ t · v) |t=0 =

d

dt

∫

Ω
W (∇u+ t · ∇v) dx |t=0 =

∫

Ω

d

dt
[W (∇u+ t · ∇v)] dx |t=0

=

∫

Ω
〈DFW (∇u+ t · ∇v),∇v〉dx |t=0 =

∫

Ω
〈DFW (∇u),∇v〉dx

=

∫

∂Ω
〈v,DFW (∇u)〉dx−

∫

Ω
〈Div(DFW (∇u)), v〉 dx = −

∫

Ω
〈Div(DFW (∇u), v〉dx

=⇒ Div(DFW (∇u)) = 0. (3.1.9)

Hence, the Euler-Lagrange equation in nonlinear elasticity is given by

Div[S1(F )] = 0 (3.1.10)

with the deformation gradient F := ∇ϕ. At this point, it is important to mention that it makes
no difference whether we consider the Cauchy stress tensor or the Piola-Kirchhoff stress tensor
to be in equilibrium, because with the properties of the Piola transformation in (2.3.15), we get

Div[S1(F )] = Div[σ(F ) · Cof(F )] = det(F ) ·Div[σ(F )], (3.1.11)

where det(F ) 6= 0. That implies

Div[S1(F )] = 0 ⇐⇒ Div[σ(F )] = 0. (3.1.12)

These statements lead us to define Null-Lagrangians.

Definition 3.1.1. The Lagrangian L in (3.1.1) is called a Null-Lagrangian if all smooth functions
u : Ω→ Rn satisfy the Euler-Lagrange-equation (3.1.8).

In elasticity, Null-Lagrangians are important because the corresponding energy functional I
in (2.2.13) with

I(u) =

∫

Ω
W (x, ϕ,∇ϕ) dx (3.1.13)

only depends on the boundary conditions [4]:

Theorem 3.1.2. If L is a Null-Lagrangian and there are two functions u, u ∈ C2(Ω,Rn) which
are identical on the boundary of Ω, i.e. u ≡ u on ∂Ω, then the energy functional I for u is equal
to the energy functional I for u on the whole set, i.e.

I(u) = I(u). (3.1.14)

Proof. Like in (3.1.4), we define a function f with

f(τ) := I(τu+ (1− τ)u) , 0 ≤ τ ≤ 1. (3.1.15)

19If we assume the functions {fk}∞k=0 to be integrable and fk → f and |fk| ≤ g almost everywhere, for some
summable function g. Then ∫

Rn

fk dx→
∫
Rn

f dx.
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Now,

f ′(τ) =
d

dτ
I(τu+ (1− τ)u) =

d

dτ

∫

Ω
W (x, τu+ (1− τ)u, τ∇u+ (1− τ)∇u) dx

=

∫

Ω
〈DξW (x, τu+ (1− τ)u, τ∇u+ (1− τ)∇u),∇u−∇u〉

+ 〈DuW (x, τu+ (1− τ)u, τ∇u+ (1− τ)∇u), u− u〉 dx
P.I.
=

u|∂Ω=u|∂Ω

∫

Ω
〈−Div(DξW (x, τu+ (1− τ)u, τ∇u+ (1− τ)∇u), u− u〉

+ 〈DuW (x, τu+ (1− τ)u, τ∇u+ (1− τ)∇u), u− u〉 dx
= 0. (3.1.16)

The last relation applies because with u − u = 0 on the boundary ∂Ω, the Euler-Lagrange-
equation (3.1.8) is valid. Thus f is constant on [0, 1]. Furthermore, for τ = 0 and for τ = 1, we
get f(0) = I(u) and f(1) = I(u), so I(u) = I(u). �

3.2 Examples of Null-Lagrangians

We want to give some important examples of Null-Lagrangians in nonlinear elasticity.

Example 3.2.1. The first one is the Jacobi determinant. Consider L(F ) := det(F ) with the
deformation gradient F . We compute Div(DF det(F )) and, together with DF (det(F )) = Cof(F )
in (2.2.34) and the Piola-identity, obtain

Div(DF det(F )) = Div(Cof(F )) = 0. (3.2.1)

So the Euler-Lagrange-equation (3.1.10) holds and the Jacobi determinant is a Null-Lagrangian.

Example 3.2.2. Another important example depends on the deformation gradient F itself, in
particular L(F ) := tr(F ). For this we also calculate

Div(DF tr(F )) = Div(1) = 0, (3.2.2)

where the fist equality applies because of

tr(F +H) = 〈F +H,1〉 = 〈F,1〉+ 〈H,1〉 (3.2.3)

for an arbitrary direction H ∈ R3×3. So the trace is a Null-Lagrangian as well.

Example 3.2.3. The last example we want to mention is L(F ) := tr(Cof(F )). First, we have
to calculate tr(Cof(F +H)). For this we use the identity

tr(Cof(X)) =
1

2

[
(tr(X))2 − tr

(
X2
)]
, ∀X ∈ Rn×n. (3.2.4)

Then20

tr(Cof(F +H)) =
1

2

[
(tr(F +H))2 − tr

(
(F +H)2

)]

=
1

2

[
(tr(F )2 + 2 tr(F ) · tr(H) + tr(H)2 − tr(F 2)− tr(2FH)− tr(H2)

]

=
1

2

[
tr(F )2 − tr

(
F 2
)]

+ tr(F ) tr(H)− tr(FH) +
1

2

[
tr(H)2 − tr

(
H2
)]

= tr(Cof(F )) + tr(F )〈H,1〉 − 〈FH, 1〉+O
(
‖H‖2

)

= tr(Cof(F )) + 〈tr(F )1, H〉 − 〈F T , H〉+O
(
‖H‖2

)

= tr(Cof(F )) + 〈tr(F )1− F T , H〉+O
(
‖H‖2

)
. (3.2.5)

20For the calculation we have to consider that tr(HF ) = 〈HF, 1〉 =
〈
F,HT

〉
= 〈FH, 1〉 = tr(FH).
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Hence,

DF (tr(Cof(F ))) = tr(F ) 1− F T (3.2.6)

and thus

Div(DF tr(Cof(F ))) = Div
(
tr(F )1− F T

)
. (3.2.7)

Now, we want to show that this equality turns to zero for the two-dimensional case as well as
for the three-dimensional case. Let us start with

F = ∇ϕ =

(
∂1ϕ1 ∂2ϕ1

∂1ϕ2 ∂2ϕ2

)
∈ R2×2. (3.2.8)

Then

Div
(
tr(F )1− F T

)
= Div

[(
∂1ϕ1 + ∂2ϕ2 0

0 ∂1ϕ1 + ∂2ϕ2

)
−
(
∂1ϕ1 ∂1ϕ2

∂2ϕ1 ∂2ϕ2

)]

= Div

(
∂2ϕ2 −∂1ϕ2

−∂2ϕ1 ∂1ϕ1

)
=

(
∂1∂2ϕ2 − ∂2∂1ϕ2

−∂1∂2ϕ1 + ∂2∂1ϕ1

)
=

(
0
0

)
. (3.2.9)

Now, consider

F = ∇ϕ =




∂1ϕ1 ∂2ϕ1 ∂3ϕ1

∂1ϕ2 ∂2ϕ2 ∂3ϕ2

∂1ϕ3 ∂2ϕ3 ∂3ϕ3


 ∈ R3×3. (3.2.10)

We find

Div
(
tr(F )1− F T

)
= Div





∑3

i=1 ∂i ϕi 0 0

0
∑3

i=1 ∂i ϕi 0

0 0
∑3

i=1 ∂i ϕi


−




∂1ϕ1 ∂1ϕ2 ∂1ϕ3

∂2ϕ1 ∂2ϕ2 ∂2ϕ3

∂3ϕ1 ∂3ϕ2 ∂3ϕ3






= Div




∂2ϕ2 + ∂3ϕ3 −∂1ϕ2 −∂1ϕ3

−∂2ϕ1 ∂1ϕ1 + ∂3ϕ3 −∂2ϕ3

−∂3ϕ1 −∂3ϕ2 ∂1ϕ1 + ∂2ϕ2




=




∂1∂2ϕ2 + ∂1∂3ϕ3 − ∂2∂1ϕ2 − ∂3∂1ϕ3

−∂1∂2ϕ1 + ∂2∂1ϕ1 + ∂2∂3ϕ3 − ∂3∂2ϕ3

−∂1∂3ϕ1 − ∂2∂3ϕ2 + ∂3∂1ϕ1 + ∂3∂2ϕ2


 =




0
0
0


 . (3.2.11)

So the Euler-Lagrange equation in (3.1.10) holds for F ∈ R2×2 and for F ∈ R3×3. Thus,
L(F ) = tr(Cof(F )) is a Null-Lagrangian.
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4 Linearisation in elasticity

In nonlinear elasticity we deal with difficult problems21. So we want to simplify these prob-
lems. Therefore, we use the method of linearization applied to important equations in nonlinear
elasticity. First we want to define what is meant by the linearization of an equation, see also
[12].

Definition 4.0.1. Let X and Y be Banach spaces and let U ⊂ X be open. Additionally, let
f : U → Y be a C1 map and let x0 ∈ U . The linearization of the equation f(x) = 0 about x0 is
the equation:

Lx0(v) = 0 (4.0.1)

where Lx0(v) = f(x0) +Df(x0) · v with an arbitrary direction v ∈ X.

So with the help of the linearization method, we can approximate nonlinear mappings with
linear mappings. For this reason, Marsden and Hughes call it the keylink between linear and
nonlinear elasticity.
At this point, we have to notice the connection between the previous definition and the Tay-
lor series, which is also mentioned in Section 2.2.3. For simplification, we use the linearization
method/the Taylor series about x0 = 1+∇u, where u is the displacement of a given deformation
ϕ, which we assume to be small. For example, we can linearize equation (2.2.43) for the Cauchy
stress tensor.
But above all, we are interested in linearization of equations of equilibrium and stability. More
precisely, we are interested in the linearization of the Euler-Lagrange equation for the energy
functional I defined in (2.2.15).
With this in mind, our intention is to find out if Liu generates some new stability requirements
in [10].
He considers a back transformation of the Cauchy stress tensor to an intermediate configuration
which he calls “the (first) Piola-Kirchhoff stress tensor relative to the updated reference config-
uration”. For this transformation, he enforces incremental linear approximations. Now we want
to clarify if these approximations differ from the incremental linear approximations regarding to
the usual Piola transformation in (2.3.15) with respect to the reference configuration. First we
consider the mappings ϕ : Ω→ Ω′, ϕ′ : Ω′ → Ω′′ and ϕ̃ : Ω→ Ω′′, as illustrated in Figures 11-14.

ϕ

Ω Ω′

Figure 11: Deformation ϕ affecting the reference configuration Ω.

21An example is the main problem in elastostatics, i.e. finding a deformation ϕ with ϕ : Ω → R3×3 such that
DivS1(∇ϕ)+ρreff = 0, where S1 is the first Piola-Kirchhoff stress tensor, ρref is the mass density in the reference
configuration Ω and f expresses the body force, see [12].
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Ω′

ϕ′

Ω′′

Figure 12: Deformation ϕ′ affecting the intermediate configuration Ω′.

Ω

ϕ̃

Ω′′

Figure 13: Deformation ϕ̃ affecting the reference configuration Ω.

ϕ

Ω Ω′

ϕ̃

ϕ′

Ω′′

Figure 14: Multiplicative composition ϕ̃ = ϕ′ ◦ ϕ of mappings.

Here, Ω ⊂ Rn is the reference configuration, Ω′ ⊂ Rn is the intermediate configuration and
Ω′′ ⊂ Rn is the final/current configuration. We employ the following notation: σ : GL+(n) →
Sym(n) denotes the (constitutive) mapping F 7→ σ(F ) of the deformation gradient F to the
corresponding Cauchy stress tensor, Σ′ : Ω′ → Sym(n) denotes the Cauchy stress tensor field
induced by ϕ on the intermediate configuration Ω′ and Σ̃ : Ω′′ → Sym(n) denotes the Cauchy
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stress tensor field induced by ϕ̃ on Ω′′; more precisely,

Σ′(x′) = σ
(
∇ϕ(ϕ−1(x′))

)
for all x′ ∈ Ω′ (4.0.2)

and Σ̃(x′′) = σ
(
∇ϕ̃(ϕ̃−1(x′′))

)
for all x′′ ∈ Ω′′ . (4.0.3)

4.1 Equations of equilibrium and stability

According to (3.1.10) and (3.1.12) the homogeneous equations of equilibrium (Euler-Lagrange-
equations) for Σ′ and for Σ̃ are given by

Divx′ Σ
′(x′) = 0 for all x′ ∈ Ω′ , (4.1.1)

Divx′′ Σ̃(x′′) = 0 for all x′′ ∈ Ω′′ . (4.1.2)

Now we propose the following basic stability criterion in the spatial configuration: if

i) ϕ and ϕ̃ both satisfy the equations of equilibrium (4.1.1) and (4.1.2),

ii) ϕ′ is sufficiently close to the identity mapping,

iii) ϕ′ does not change the boundary of the configuration,

then ϕ′ = id or, equivalently, ϕ̃ = ϕ. This condition ensures a “local uniqueness” of the
displacement boundary problem.

4.1.1 The equations of equilibrium in the intermediate configuration

In the following, we assume that ϕ and ϕ̃ satisfy the equations of equilibrium (4.1.1) and (4.1.2).
Furthermore, we assume that ϕ and ϕ̃ satisfy the same displacement boundary conditions, i.e.
ϕ|∂Ω = ϕ̃|∂Ω; note that this identity can equivalently be expressed as ϕ′|∂Ω′ = id and implies
Ω′ = Ω′′.

Due to the assumption that “ϕ′ is sufficiently close to the identity mapping”, we write ϕ′ as

ϕ′(x′) = x′ + h(x′) for all x′ ∈ Ω′ (4.1.3)

with h : Ω′ → Rn. We also define H := ∇h, thus

∇ϕ′(x′) = 1 +H(x′) for all x′ ∈ Ω′ . (4.1.4)

Note that

∇ϕ̃(x) = ∇
(
ϕ′(ϕ(x))

)
= ∇ϕ′(ϕ(x)) · ∇ϕ(x) = (1 +H(ϕ(x))) · ∇ϕ(x)

= ∇ϕ(x) +H(ϕ(x)) · ∇ϕ(x) (4.1.5)

for all x ∈ Ω.
Due to the Piola transformation in (2.3.15) and det(∇ϕ′(x′)) 6= 0, equation (4.1.2) can

equivalently be written as

Divx′′ Σ̃(x′′) = 0 ⇐⇒ Divx′′
[
σ
(
∇ϕ̃(ϕ̃−1(x′′))

)]
= 0

⇐⇒ det(∇ϕ′(x′)) ·Divx′′
[
σ
(
∇ϕ̃(ϕ̃−1(x′′))

)]
= 0

⇐⇒ Divx′
[
σ
(
∇ϕ̃(ϕ̃−1(ϕ′(x′)))

)
· Cof(∇ϕ′(x′))

]
= 0

⇐⇒ Divx′
[
Σ̃(ϕ′(x′)) · Cof∇ϕ′(x′)

]
= 0. (4.1.6)
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The last equation in (4.1.6) corresponds to Liu’s boundary value problem of an elastic body in
equilibrium [10, eq. (6)], which is given by




−Div(S) = 0 on Ω′ × (t0, t],

S · ~n = f on Γ1 × (t0, t],
〈u, ~n〉 = g on Γ2 × (t0, t].

(4.1.7)

Here, S denotes the back transformation to the intermediate configuration Ω′ which Liu calls
the (first) Piola-Kirchhoff stress tensor relative to the updated reference configuration, ~n is
the normal vector on the surface of Ω′, u is the displacement vector relative to the intermediate
configuration and (t0, t] denotes a period of time. Furthermore, ∂Ω′ = Γ1∪Γ2, f is the prescribed
surface traction and g is the displacement which Liu assumes to be time dependent. Note that
in our case, we assume the surface traction f and the displacement g to be constant.
Now continue with relation (4.1.6). Due to (4.0.3) and (4.1.5), we get

Σ̃(x′′) = σ
(
∇ϕ̃(ϕ̃−1(x′′))

)

= σ
(
∇ϕ(ϕ̃−1(x′′)

)
+H

(
ϕ(ϕ̃−1(x′′))

)
· ∇ϕ

(
ϕ̃−1(x′′))

)
(4.1.8)

for all x′′ ∈ Ω′′. Thus, together with ϕ̃(x) = ϕ′(ϕ(x)), we find

Σ̃(ϕ′(x′)) = σ
(
∇ϕ(ϕ̃−1(ϕ′(x′))

)
+H

(
ϕ(ϕ̃−1(ϕ′(x′)))

)
· ∇ϕ

(
ϕ̃−1(ϕ′(x′)))

)

= σ
(
∇ϕ(ϕ−1(x′)

)
+H

(
ϕ(ϕ−1(x′))

)
· ∇ϕ

(
ϕ−1(x′))

)

= σ
(
∇ϕ(ϕ−1(x′)

)
+H(x′) · ∇ϕ

(
ϕ−1(x′))

)
. (4.1.9)

Combining (4.1.4), (4.1.6) and (4.1.9), we find that the equation of equilibrium (4.1.2) is equiv-
alent to

0 = Divx′
[
σ
(
∇ϕ(ϕ−1(x′)

)
+H(x′) · ∇ϕ

(
ϕ−1(x′))

)
· Cof∇ϕ′(x′)

]

= Divx′
[
σ
(
∇ϕ(ϕ−1(x′)

)
+H(x′) · ∇ϕ

(
ϕ−1(x′))

)
· Cof(1 +H(x′))

]
. (4.1.10)

4.1.2 The equation of equilibrium in the reference configuration

Under the assumptions of Section 4.1.1, we now consider the equation of equilibrium in terms
of the reference configuration. Again, we employ the Piola transformation (2.3.15) to find

Divx′′ Σ̃(x′′) = 0 ⇐⇒ Divx′′
[
σ
(
∇ϕ̃(ϕ̃−1(x′′))

)]
= 0

⇐⇒ det (∇ϕ̃(x)) ·Divx′′
[
σ
(
∇ϕ̃(ϕ̃−1(x′′))

)]
= 0

⇐⇒ Divx
[
σ
(
∇ϕ̃(ϕ̃−1(ϕ̃(x)))

)
· Cof (∇ϕ̃(x))

]
= 0

⇐⇒ Divx

[
Σ̃(ϕ̃(x)) · Cof (∇ϕ̃(x))

]
= 0 (4.1.11)

(⇐⇒ Divx [S1 (∇ϕ̃(x))] = 0 ) .

4.2 Linearisation in the intermediate configuration

In order to linearize equation (4.1.10), we first observe that together with (2.2.39), i.e.

Cof(1 +X) = 1 + tr(X) · 1−XT +O
(
‖X‖2

)
, (4.2.1)

we find

Cof
(
1 +H(x′)

)
=
(
1 + tr(H(x′))

)
· 1−H(x′)T +O

(
‖H(x′)‖2

)
(4.2.2)
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and thus, for sufficiently small H,

σ
(
∇ϕ(ϕ−1(x′)) +H(x′) · ∇ϕ(ϕ−1(x′))

)
· Cof

(
1 +H(x′)

)

=
[
σ
(
∇ϕ(ϕ−1(x′))

)
+Dσ

(
∇ϕ(ϕ−1(x′))

)
.
[
H(x′) · ∇ϕ(ϕ−1(x′))

]

+O
(
‖H(x′)‖2

) ]
·
[ (

1 + tr(H(x′))
)
· 1−H(x′)T +O

(
‖H(x′)‖2

) ]

= σ
(
∇ϕ(ϕ−1(x′))

)
·
[ (

1 + tr(H(x′))
)
· 1−H(x′)T

]

+Dσ
(
∇ϕ(ϕ−1(x′))

)
.
[
H(x′) · ∇ϕ(ϕ−1(x′))

]
+O

(
‖H(x′)‖2

)
(4.2.3)

for all x′ ∈ Ω′. The linearization of the equation of equilibrium with respect to the intermediate
configuration is therefore given by

0 = Divx′
[
σ
(
∇ϕ(ϕ−1(x′))

)
·
[(

1 + tr(H(x′))
)
· 1−H(x′)T

]

+Dσ
(
∇ϕ(ϕ−1(x′))

)
.
[
H(x′) · ∇ϕ(ϕ−1(x′))

] ]
(4.2.4)

for all x′ ∈ Ω′.

4.3 Linearisation in the reference configuration

Now we want to linearize equation (4.1.11). Therefore, with respect to (2.2.39), i.e.

Cof(X +H) = Cof(X)− det(X)
(
X−1HX−1

)T
+ tr

(
X−1H

)
· Cof(X) +O

(
‖H‖2

)
,

we get

Cof(A+X) = Cof(A) + tr
(
Cof(A)TX

)
·A−T − det(A) ·A−TXTA−T +O

(
‖X‖2

)
(4.3.1)

= Cof(A) + tr
(
Cof(A)TX

)
·A−T −A−TXT Cof(A) +O

(
‖X‖2

)
(4.3.2)

for A ∈ GL+(n) and X ∈ Rn×n. So together with (4.1.5), we find

Cof (∇ϕ̃(x)) = Cof (∇ϕ(x) +H(ϕ(x)) · ∇ϕ(x))

= Cof(∇ϕ(x)) + tr
(
Cof(∇ϕ(x))TH(ϕ(x)) · ∇ϕ(x)

)
· ∇ϕ(x)−T

−∇ϕ−T · ∇ϕT ·H(ϕ(x))T · Cof(∇ϕ(x)) +O
(
‖H(ϕ(x))‖2

)

= Cof(∇ϕ(x)) + tr
(
det(∇ϕ(x)) · ∇ϕ(x)−1 ·H(ϕ(x)) · ∇ϕ(x)

)
· ∇ϕ(x)−T

−H(ϕ(x))T · Cof(∇ϕ(x)) +O
(
‖H(ϕ(x))‖2

)

= Cof(∇ϕ(x)) + tr (det(∇ϕ(x)) ·H(ϕ(x))) · ∇ϕ(x)−T

−H(ϕ(x))T · Cof(∇ϕ(x)) +O
(
‖H(ϕ(x))‖2

)

= Cof(∇ϕ(x)) + tr (H(ϕ(x))) · Cof(∇ϕ(x))

−H(ϕ(x))T · Cof(∇ϕ(x)) +O
(
‖H(ϕ(x))‖2

)

=
[
(1 + tr(H(ϕ(x)))) · 1−H(ϕ(x))T

]
· Cof(∇ϕ(x)) +O

(
‖H(ϕ(x))‖2

)
. (4.3.3)
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Thus, for the first Piola-Kirchhoff stress tensor we get

S1(∇ϕ̃(x)) = Σ̃(ϕ̃(x)) · Cof∇ϕ̃(x)

= σ
(
∇ϕ̃(ϕ̃−1(ϕ̃(x)))

)
· Cof (∇ϕ̃(x))

= σ (∇ϕ̃(x)) · Cof (∇ϕ̃(x))

= σ (∇ϕ(x) +H(ϕ(x)) · ∇ϕ(x)) · Cof (∇ϕ̃(x))

=
[
σ (∇ϕ(x)) +Dσ (∇ϕ(x)) . [H(ϕ(x)) · ∇ϕ(x)]

]
· Cof (∇ϕ̃(x)) +O

(
‖H(ϕ(x))‖2

)

= σ (∇ϕ(x)) · Cof (∇ϕ̃(x)) +
[
Dσ (∇ϕ(x)) . [H(ϕ(x)) · ∇ϕ(x)]

]

· Cof(∇ϕ̃(x)) +O
(
‖H(ϕ(x))‖2

)

= σ (∇ϕ(x)) · Cof (∇ϕ̃(x)) +
[
Dσ (∇ϕ(x)) . [H(ϕ(x)) · ∇ϕ(x)]

]

·
[
(1 + tr(H(ϕ(x)))) · 1−H(ϕ(x))T

]
· Cof (∇ϕ(x)) +O

(
‖H(ϕ(x))‖2

)

= σ (∇ϕ(x)) ·
[
(1 + tr(H(ϕ(x)))) · 1−H(ϕ(x))T

]
· Cof (∇ϕ(x))

+
[
Dσ (∇ϕ(x)) . [H(ϕ(x)) · ∇ϕ(x)]

]
·
[
(1 + tr(H(ϕ(x)))) · 1−H(ϕ(x))T

]

· Cof (∇ϕ(x)) +O
(
‖H(ϕ(x))‖2

)

= σ (∇ϕ(x)) ·
[
(1 + tr(H(ϕ(x)))) · 1−H(ϕ(x))T

]
· Cof (∇ϕ(x))

+
[
Dσ (∇ϕ(x)) . [H(ϕ(x)) · ∇ϕ(x)]

]
· Cof (∇ϕ(x)) +O

(
‖H(ϕ(x))‖2

)
. (4.3.4)

The linearized equation of equilibrium with respect to the reference configuration is therefore
given by

0 = Divx

[[
σ (∇ϕ(x)) ·

[
(1 + tr(H(ϕ(x)))) · 1−H(ϕ(x))T

]

+Dσ (∇ϕ(x)) . [H(ϕ(x)) · ∇ϕ(x)]
]
· Cof(∇ϕ(x))

]
(4.3.5)

for all x ∈ Ω, which (due to the Piola transformation (2.3.15)) is in turn equivalent to

0 = det(∇ϕ(x)) ·Divx′
[
σ
(
∇ϕ(ϕ−1(x′))

)
·
[(

1 + tr(H(x′))
)
· 1−H(x′)T

]

+Dσ
(
∇ϕ(ϕ−1(x′))

)
.
[
H(x′) · ∇ϕ(ϕ−1(x′))

] ]

⇐⇒ 0 = Divx′
[
σ
(
∇ϕ(ϕ−1(x′))

)
·
[(

1 + tr(H(x′))
)
· 1−H(x′)T

]

+Dσ
(
∇ϕ(ϕ−1(x′))

)
.
[
H(x′) · ∇ϕ(ϕ−1(x′))

] ]
(4.3.6)

for all x′ ∈ Ω′. So, in conclusion, the linearized equation of equilibrium in the reference config-
uration is equivalent to the linearized equation of equilibrium in the intermediate configuration
(4.2.4). This result is also shown in Fig. 15.
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Piola transformation

Piola transformation

Reference configuration

Ω

Current configuration

Ω′′

Intermidate configuration

Ω′

Linearisation

LinearisationEquation of

equilibrium

Figure 15: Visualization of previous calculations.

Moreover, equation (4.3.6) corresponds to Liu’s linearized boundary value problem [10, eq.
(7)], which is given by




−Div

[
trH · σ − σHT +DFσ.[HF ]

]
= Div σ on Ω′ × (t0, t],[

trH · σ − σHT +DFσ.[HF ]
]
· ~n = f − σ · ~n on Γ1 × (t0, t],

〈u, ~n〉 = g on Γ2 × (t0, t],
(4.3.7)

with the same conditions as in (4.1.7).

Remark 4.3.1. Note that in (4.3.4) we started with

S1 [∇ϕ̃(x)] = S1

[
∇ϕ′(ϕ(x)) · ∇ϕ(x)

]
= S1 [(1 +H(ϕ(x))) · ∇ϕ(x)]

= S1 [∇ϕ(x) +H(ϕ(x)) · ∇ϕ(x)] .

So (4.3.5) is equivalent to

0 = Divx [S1 [∇ϕ(x) +H(ϕ(x)) · ∇ϕ(x)]]

= Divx
[
S1 (∇ϕ(x)) +DFS1 (∇ϕ(x)) .[H(ϕ(x)) · ∇ϕ(x)] +O

(
‖H(ϕ(x)) · ∇ϕ(x)‖2

)]

≈ Divx [S1 (∇ϕ(x)) +DFS1 (∇ϕ(x)) .[H(ϕ(x)) · ∇ϕ(x)]] .

Furthermore, if we assume ∇ϕ to be a gradient of an equilibrium solution, the equation reduces
to

0 = Divx [DFS1 (∇ϕ(x)) .[H(ϕ(x)) · ∇ϕ(x)]] . (4.3.8)

4.4 Restriction to homogeneous initial deformations

If x 7→ ϕ(x) = F · x with F ∈ GL+(n) is a homogeneous22 deformation, then the linearization
in (4.3.6) immediately reduces to

(
1 + trH(x′)

)
· σ(F )− σ(F ) ·H(x′)T +Dσ(F ).

[
H(x′) · F

]
+O

(
‖H(x′)‖2

)

= σ(F ) ·
[(

1 + trH(x′)
)
· 1−H(x′)T

]
+Dσ(F ).

[
H(x′) · F

]
+O

(
‖H(x′)‖2

)
. (4.4.1)

In the case n = 3, we get

Divx′
[(

1 + tr(H(x′))
)
· 1−H(x′)T

]

= Divx′




1 + ∂x′2h2 + ∂x′3h3 −∂x′1h2 −∂x′1h3

−∂x′2h1 1 + ∂x′1h1 + ∂x′3h3 −∂x′2h3

−∂x′3h1 −∂x′3h2 1 + ∂x′1h1 + ∂x′2h2


 = 0.

22A deformation is homogeneous if the deformation gradient is independent of the place.
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The transformation also applies in the n-dimensional case,23 thus,

Divx′
[(

1 + tr(H(x′))
)
· 1−H(x′)T

]
= 0 (4.4.2)

for any gradient field H on Ω′.
Moreover, the i-th component of the divergence of a matrix product of A,B ∈ Rn×n can be
written as

(Div(A ·B))i =
n∑

j=1

∂xj (A ·B)ij

=

n∑

j=1

∂xj

n∑

k=1

AikBkj

=
n∑

j,k=1

[
(∂xjAik) ·Bkj +Aik · (∂xjBkj)

]

=
n∑

j,k=1

(∂xjAik) ·Bkj +
n∑

j,k=1

Aik · (∂xjBkj)

=

n∑

j,k=1

(∂xjAik) ·Bkj +

n∑

k=1

(Aik ·
n∑

j=1

(∂xjBkj))

=
n∑

j,k=1

(∂xjAik) ·Bkj +
n∑

k=1

(Aik · (DivB)k

=
n∑

j,k=1

(∂xjAik) ·Bkj + (A ·DivB)i . (4.4.3)

Since F is assumed to be constant, the linearized equation of equilibrium can therefore be stated
as

0 = Divx′
[
σ(F ) ·

[(
1 + trH(x′)

)
· 1−H(x′)T

]
+Dσ(F ).

[
H(x′) · F

] ]

= Divx′
[
σ(F ) ·

[(
1 + trH(x′)

)
· 1−H(x′)T

] ]
+ Divx′

[
Dσ(F ).

[
H(x′) · F

] ]

= Divx′
[
Dσ(F ).

[
H(x′) · F

] ]
(4.4.4)

for all x′ ∈ Ω′.

4.5 Application to a specific energy

We consider the energy-function

Ŵ (F ) := µ ·
[

1

2
‖F‖2 − log(det(F ))

]
(4.5.1)

with the infinitesimal shear modulus µ. Now, we want to find the linearized equation of equilib-
rium and subsequently the linearized boundary value problem for Ŵ with respect to previous
results. First, we define F0 := ∇ϕ, F := ∇ϕ′ = 1 + H with H = ∇h (see (4.1.3) and (4.1.4))
and F̃ := ∇ϕ̃ with the relation F̃ = ∇ (ϕ′ ◦ ϕ) = ∇ϕ′ · ∇ϕ = F · F0 = (1 +H)F0, see Fig. 16.

23Because of the considerations of the Null Lagrangian L(F ) = tr(Cof(F )) in Example 3.2.3, we know that
Div

(
(1 + tr(H)) 1−HT

)
= Div (DH(tr(Cof(H))) = 0 as well.
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ϕ

Ω Ω′

ϕ̃

ϕ′

Ω′′

Figure 16: Reminder: Relationships between the deformations ϕ, ϕ′, ϕ̃ and the configurations
Ω (reference configuration), Ω′ (intermediate configuration), Ω′′ (current configuration).

In order to find a formula for the Cauchy stress tensor relative to the intermediate configuration,
we compute

σ(F0) = DF Ŵ (F0) · Cof(F0)−1 = µ ·
[

1

2
· 2F0 −

1

det(F0)
· Cof(F0)

]
· Cof(F0)−1

= µ ·
[
F0 · Cof(F0)−1 − 1

det(F0)
· 1
]

=
µ

det(F0)
[B0 − 1] . (4.5.2)

Hence,

DF0σ(F0).[HF0] = µ
[
−det(F0)−2 · 〈Cof(F0), HF0〉 · (B0 − 1) + det(F0)−1 · (HF0F

T
0 + F0(HF0)T )

]

= µ
[
〈−det(F0)−1F−T0 , HF0〉 ·

(
F0F

T
0 − 1

)
+ det(F0)−1 ·

(
HF0F

T
0 + F0F

T
0 H

T
)]

=
µ

det(F0)

[
−〈F−T0 , HF0〉 ·

(
F0F

T
0 − 1

)
+
(
HF0F

T
0 + F0F

T
0 H

T
)]

=
µ

det(F0)

[
− tr(H) · (B0 − 1) +

(
HB0 +B0H

T
)]
, (4.5.3)

where B0 := F0F
T
0 denotes the right Cauchy-Green tensor.

Therefore, due to equation (4.2.3), the Piola-Kirchhoff stress tensor is given by

S1(F̃ ) = σ(F0 +HF0) · Cof(F ) =
[
σ(F0) +DF0σ(F0).[HF0] +O

(
‖H‖2

) ]
· Cof(1 +H)

=

[
σ(F0) +

µ

det(F0)

(
− tr(H) · (B0 − 1) +

(
HB0 +B0H

T
))

+O
(
‖H‖2

)]
· det(1 +H) · (1 +H)−T

= (1 + tr(H)) ·
[
σ(F0) +

µ

det(F0)

(
− tr(H)(B0 − 1) +

(
HB0 +B0H

T
))]
·
(
1−HT

)
+O

(
‖H‖2

)

= σ(F0) +
µ

det(F0)

[
− tr(H)(B0 − 1) +

(
HB0 +B0H

T
)]
− σ(F0) ·HT + tr(H) · σ(F0) +O

(
‖H‖2

)

= σ(F0) +
µ

det(F0)

(
HB0 +B0H

T
)
− σ(F0) ·HT +O

(
‖H‖2

)
. (4.5.4)

Thus, together we get the linearized equation of equilibrium in the intermediate configuration

0 = Div

[
σ(F0) +

µ

det(F0)

(
HB0 +B0H

T
)
− σ(F0) ·HT

]
, (4.5.5)
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which is equivalent to equation (4.2.4).
From this and together with H = ∇u we obtain the linearized boundary value problem, which
is given by





−Div
[
σ(F0) + µ

det(F0)

(
HB0 +B0H

T
)
− σ(F0) ·HT

]
= 0 on Ω,[

σ(F0) + µ
det(F0)

(
HB0 +B0H

T
)
− σ(F0) ·HT

]
· ~nk = f on Γ1

〈u, ~nk〉 = 0 on Γ2

u = 0 on Γ3,

(4.5.6)

where ~nk is the exterior unit normal on ∂ Ω = Γ1 ∪Γ2 ∪Γ3 and f is a constant surface traction.

This boundary value problem can be formulated as a variational problem, as Liu does for the
Cauchy stress tensor

σ(F ) = −p 1 + s1B + s2B
−1 (4.5.7)

with the pressure p and constant material parameters s1 and s2 [2]. Let Ω ⊂ R3 be a smooth
bounded domain. For the displacement u, let

V := {u ∈ (H1(Ω))3 : 〈u, ~nk〉 = 0 on Γ2, u = 0 on Γ3}. (4.5.8)

Now for w ∈ V, H := ∇u and K(H) := µ
det(F0)

[(
HB0 +B0H

T
)]
− σ(F0) ·HT , we calculate

0 =

∫

Ω
−Div [σ(F0) +K(H)] · w dV

P.I.
= −

∫

∂Ω
〈[σ(F0) +K(H)] · ~nk, w〉 dS +

∫

Ω
〈σ(F0) +K(H),∇w〉dV

=

∫

Ω
〈σ(F0),∇w〉dV +

∫

Ω
〈K(H),∇w〉 dV −

∫

Γ1

〈f, w〉 dS. (4.5.9)

Thus,

∫

Ω
〈K(H),∇w〉dV =

∫

Γ1

〈f, w〉 dS −
∫

Ω
〈σ(F0),∇w〉 dV

⇐⇒
∫

Ω
tr
(
K(H) · (∇w)T

)
dV =

∫

Γ1

〈f, w〉 dS −
∫

Ω
tr
(
σ(F0) · (∇w)T

)
dV . (4.5.10)

Hence, we define a bilinear form L(u,w) and a linear form N (w) by

L(u,w) :=

∫

Ω
tr
(
K(∇u) · (∇w)T

)
dV , (4.5.11)

N (w) :=

∫

Γ1

〈f, w〉dS −
∫

Ω
tr
(
σ(F0) · (∇w)T

)
dV . (4.5.12)
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Moreover, L and N can be written in coordinates as

L(u,w) =

∫

Ω
tr
(
K(∇u) · (∇w)T

)
dV

=

∫

Ω
〈K(∇u),∇w〉 dV

=

∫

Ω

3∑

i=1

3∑

j=1

K(∇u)ij · (∇w)ij dV

=

∫

Ω

3∑

i=1

3∑

j=1

[
µ

det(F0)

[
∇uB0 +B0(∇u)T

]
− σ(F0)(∇u)T

]

ij

· (∇w)ij dV

=
µ

det(F0)

∫

Ω

3∑

i=1

3∑

j=1

3∑

k=1

(
∂ ui
∂ xk

B0kj +B0ik

∂ uj
∂ xk

)
· ∂ wi
∂ xj

dV

−
∫

Ω

3∑

i=1

3∑

j=1

3∑

k=1

[
σ(F0)ik ·

∂ uj
∂ xk

]
· ∂ wi
∂ xj

dV , (4.5.13)

N (w) =

∫

Γ1

〈f, w〉dS −
∫

Ω
〈σ(F0),∇w〉 dV

=

∫

Γ1

3∑

i=1

fi · wi dS −
∫

Ω

3∑

i=1

3∑

j=1

σ(F0)ij ·
∂ wi
∂ xj

dV . (4.5.14)

Overall, the variational problem corresponding to the boundary value problem in (4.5.6) is to
find a solution u ∈ V such that

L(u,w) = N (w), ∀w ∈ V. (4.5.15)

4.5.1 Existence and uniqueness of a solution

In the following, we will study the existence and uniqueness of a solution u to (4.5.15), i.e. to
(4.5.6) and we apply Liu’s considerations in [2] to the energy

Ŵ (F ) := µ ·
[

1

2
‖F‖2 − log(det(F ))

]
. (4.5.16)

If u ∈ V is a solution of (4.5.15), then u is a weak solution of (4.5.6). This leads us to formulate
the following theorem.

Theorem 4.5.1. Let Ω ⊂ R3 be a bounded Lipschitz domain. Assume that for F0 = ∇ϕ,
µ

det(F0) ∈ L
∞(Ω) and σ(F0), B0 ∈  L∞(Ω,R3×3), where σ(F0) denotes the Cauchy stress corre-

sponding to the intermediate configuration and B0 denotes the right Cauchy-Green tensor.
If u is a solution of the variational problem (4.5.15), i. e.

∫

Ω
tr
(
K(∇u) · (∇w)T

)
dV =

∫

Γ1

〈f, w〉dS −
∫

Ω
tr
(
σ(F0) · (∇w)T

)
dV , ∀w ∈ V

then u is a weak solution of the boundary-value problem (4.5.6), i. e.





−Div
[
σ(F0) + µ

det(F0)

(
HB0 +B0H

T
)
− σ(F0) ·HT

]
= 0 on Ω,[

σ(F0) + µ
det(F0)

(
HB0 +B0H

T
)
− σ(F0) ·HT

]
· ~nk = f on Γ1

〈u, ~nk〉 = 0 on Γ2

u = 0 on Γ3.
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Proof. See [2]. �

In the following, we will concentrate on the two-dimensional case, i.e.

V := {u ∈ H1(Ω)2 : 〈u, ~nk〉 = 0 on Γ2 and u = 0 on Γ3}. (4.5.17)

For u and w ∈ V we define the inner product

〈u,w〉V :=

∫

Ω
〈∇u1(x),∇w1(x)〉R2 + 〈∇u2(x),∇w2(x)〉R2 dx (4.5.18)

and the norm

‖u‖2V := ‖∇u1‖2L2 + ‖∇u2‖2L2 . (4.5.19)

At this point, we want to show briefly that these definitions really define an inner product and a
norm, respectively. We already know the Poincaré inequality, which was introduced in Theorem
2.3.9: there exists a constant c̃ > 0, such that ‖u‖2V ≥ c̃ · ‖u‖2L2 for all u ∈ V. So for λ ∈ R, u,
w ∈ V, and with the Poincaré inequality in mind, we get

i) ‖λ · u‖V =
√
‖λ∇u1‖2L2 + ‖λ∇u2‖2L2 =

√
|λ|2

(
‖∇u1‖2L2 + ‖∇u2‖2L2

)
= |λ| · ‖u‖V ,

ii) ‖u‖V = 0⇒ ‖u‖2V = 0⇒ ‖u‖2L2 ≤ 0⇒ ‖u‖2L2 = 0⇒ u ≡ 0; u ≡ 0⇒ ‖u‖V = 0,

iii) ‖u+ w‖2V = ‖∇u1 +∇w1‖2L2 + ‖∇u2 +∇w2‖2L2

= ‖∇u1‖2L2 + ‖∇u2‖2L2 + 2 · (‖∇u1∇w1‖L2 + ‖∇u2∇w2‖L2) + ‖∇w1‖2L2 + ‖∇w2‖2L2

≤ ‖u‖2V + 2 ·
√
‖∇u1∇w1‖2L2 + ‖∇u2∇w2‖2L2 + ‖∇u2∇w1‖2L2 + ‖∇u1∇w2‖2L2 + ‖w‖2V

= ‖u‖2V + 2‖u‖V‖w‖V + ‖w‖2V
= (‖u‖V + ‖w‖V)2

⇒ ‖u+ w‖V ≤ ‖u‖V + ‖w‖V ;

I) 〈u,w〉V =

∫

Ω
〈∇u1(x),∇w1(x)〉+ 〈∇u2(x),∇w2(x)〉 dx

=

∫

Ω
〈∇w1(x),∇u1(x)〉+ 〈∇w2(x),∇u2(x)〉 dx

= 〈w, u〉V ,
II) 〈u, u〉V = ‖u‖2V ≥ 0,

III) 〈u, u〉V = 0 ⇐⇒ ‖u‖2V = 0 ⇐⇒ u = 0.

Therefore, 〈·, ·〉V is symmetric, positive definite and linear in both arguments (because 〈·, ·〉R2 is
an inner product) and hence defines an inner product, thus ‖·‖V is a norm on V as well.

We return to checking for existence and uniqueness of a solution u to (4.5.15) . In order to use
Theorem 4.5.1, we assume s1 := µ

det(F0) ∈ L∞(Ω) and B0 ∈ L∞(Ω, Sym+(2)). Moreover, we

consider the Cauchy stress tensor corresponding to the intermediate configuration (related to
the energy in (4.5.16))

σ(F0) =
µ

det(F0)
(B0 − 1) (4.5.20)

and note that the bilinear form L in (4.5.11) is continuous on V × V and can be represented by

L(u,w) =

∫

Ω
A(x;∇u(x),∇w(x)) dx (4.5.21)
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with A(x;∇u(x),∇w(x)) = − tr
[
σ(F0)(∇u)T (∇w)T

]
+ µ

det(F0) tr
[
(∇uB0 +B0(∇u)T )(∇w)T

]
.

For w = u, we find

L(u, u) =

∫

Ω
A(x;∇u,∇u) dx. (4.5.22)

Now we want to examine the bilinear form L for coercivity, i.e. we try to find a constant α > 0
with

L(u, u) ≥ α · ‖u‖2V ∀u ∈ V. (4.5.23)

For this purpose, it is sufficient to show the uniform coercivity of A, i.e. to find a constant β > 0
with

A(x;X,X) ≥ β · ‖X‖2R2×2 ∀x ∈ Ω. (4.5.24)

First we formulate an equivalent statement to (4.5.46), for which without loss of generality24 we
assume B0 ∈ Sym+(2) to be a diagonal matrix

B0 :=

(
γ1 o
0 γ2

)
(4.5.25)

with the eigenvalues γ1 and γ2. Then

σ(F0) =
µ

det(F0)
·
(
γ1 − 1 0

0 γ2 − 1

)
. (4.5.26)

Moreover, we can divide ∇u in a symmetric and in a skew symmetric part ∇u = sym(∇u) +
skew(∇u) with sym(∇u) := 1

2

[
∇u+ (∇u)T

]
and skew(∇u) := 1

2

[
∇u− (∇u)T

]
. For simpler

calculations, we define

sym(∇u) :=

(
a b
b c

)
and skew(∇u) :=

(
0 d
−d 0

)
(4.5.27)

with a, b, c, d ∈ R. We compute

(sym(∇u))2 =

(
a b
b c

)
·
(
a b
b c

)
=

(
a2 + b2 ab+ bc
ab+ bc b2 + c2

)
, (4.5.28)

(skew(∇u))2 =

(
0 d
−d 0

)
·
(

0 d
−d 0

)
=

(
−d2 0

0 −d2

)
, (4.5.29)

sym(∇u) · skew(∇u) =

(
a b
b c

)
·
(

0 d
−d 0

)
=

(
−bd ad
−cd bd

)
, (4.5.30)

skew(∇u) · sym(∇u) =

(
0 d
−d 0

)
·
(
a b
b c

)
=

(
bd cd
−ad −bd

)
. (4.5.31)

24For any B0 ∈ Sym+(2) there exists an orthogonal matrix Q ∈ O(2) with B0 = Qdiag(γ1(B0), γ2(B0))QT .
Thus

A(x;∇u,∇u) =− µ

det(F0)

〈
Q(diag(γ1, γ2)− 1)QT , (∇u)(∇u)

〉
+

µ

det(F0)

[〈
∇uQ diag(γ1, γ2)QT ,∇u

〉
+
〈
Qdiag(γ1, γ2)QT (∇u)T ,∇u

〉]
=

µ

det(F0)

[
−〈diag(γ1, γ2)− 1, (∇ũ) (∇ũ)〉+

〈
diag(γ1, γ2), (∇ũ)T (∇ũ)T

〉
+ 〈diag(γ1, γ2), (∇ũ) (∇ũ)〉

]
=A(x;∇ũ,∇ũ)

with ∇ũ := QT∇uQ.
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Therefore,

A(x;∇u,∇u) = A1(x;∇u,∇u) +A2(x;∇u,∇u) (4.5.32)

with

A1(x;∇u,∇u) := − tr
[
σ(F0) · (∇u)T (∇u)T

]

= − tr

[
σ(F0) ·

(
1

2
(∇u)2 +

1

2

(
∇uT

)2 − 1

2
(∇u)2 +

1

2

(
∇uT

)2
)]

= − tr

[
σ(F0) ·

(
1

4

(
(∇u)2 + 2∇u∇uT +

(
∇uT

)2)
+

1

4

(
(∇u)2 − 2∇u (∇u)T +

(
∇uT

)2)
)]

+ tr

[
σ(F0) ·

(
1

4

(
(∇u)2 −

(
∇uT

)2)
+

1

4

(
(∇u)2 −

(
∇uT

)2)
)]

= − tr
[
σ(F0)

(
sym(∇u)2 + skew(∇u)2

)]

+ tr [σ(F0) (sym(∇u) skew(∇u) + skew(∇u) sym(∇u))]

= − µ
√
γ1γ2

(γ1 − 1)
(
a2 + b2

)
− µ
√
γ1γ2

(γ2 − 1)
(
b2 + c2

)

+
µ

√
γ1γ2

(γ1 − 1)d2 +
µ

√
γ1γ2

(γ2 − 1)d2

= − µ
√
γ1γ2

(γ1 − 1)
(
a2 + b2 − d2

)
− µ
√
γ1γ2

(γ2 − 1)
(
b2 + c2 − d2

)
(4.5.33)

and

A2(x;∇u,∇u) :=
µ

det(F0)
· tr
[(
∇uB0 +B0(∇u)T

)
(∇u)T

]
. (4.5.34)

Since

B0(∇u)T (∇u)T = B0

[
sym(∇u)2 + skew(∇u)2

]

−B0 [sym(∇u) skew(∇u) + skew(∇u) sym(∇u)] , (4.5.35)

∇uB0(∇u)T = [sym(∇u) + skew(∇u)]B0

[
(skew(∇u))T + (sym(∇u))T

]

= − sym(∇u)B0 skew(∇u) + sym(∇u)B0 sym(∇u)

− skew(∇u)B0 skew(∇u) + skew(∇u)B0 sym(∇u)

= [sym(∇u)B0 sym(∇u)− skew(∇u)B0 skew(∇u)]

+ [skew(∇u)B0 sym(∇u)− sym(∇u)B0 skew(∇u)] , (4.5.36)

with Definitions (4.5.25) and (4.5.27), we get

B0 · sym(∇u)2 =

(
γ1 0
0 γ2

)
·
(
a b
b c

)
·
(
a b
b c

)

=

(
γ1 0
0 γ2

)
·
(
a2 + b2 ab+ bc
ba+ bc b2 + c2

)

=

(
γ1(a2 + b2) γ1(ab+ bc)
γ2(ba+ bc) γ2(b2 + c2)

)
, (4.5.37)

B0 · skew(∇u)2 =

(
γ1 0
0 γ2

)
·
(

0 d
−d 0

)
·
(

0 d
−d 0

)

=

(
γ1 0
0 γ2

)
·
(
−d2 0

0 −d2

)

=

(
−γ1d

2 0
0 −γ2d

2

)
, (4.5.38)
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sym(∇u)B0 sym(∇u) =

(
a b
b c

)
·
(
γ1 0
0 γ2

)
·
(
a b
b c

)

=

(
aγ1 bγ2

bγ1 cγ2

)
·
(
a b
b c

)

=

(
a2γ1 + b2γ2 abγ1 + bcγ2

abγ1 + bcγ2 b2γ1 + c2γ2

)
, (4.5.39)

skew(∇u)B0 skew(∇u) =

(
0 d
−d 0

)
·
(
γ1 0
0 γ2

)
·
(

0 d
−d 0

)

=

(
0 dγ2

−dγ1 0

)
·
(

0 d
−d 0

)

=

(
−d2γ2 0

0 −d2γ1

)
, (4.5.40)

skew(∇u)B0 sym(∇u) =

(
0 d
−d 0

)
·
(
γ1 0
0 γ2

)
·
(
a b
b c

)

=

(
0 dγ2

−dγ1 0

)
·
(
a b
b c

)

=

(
dbγ2 dcγ2

−adγ1 −dbγ1

)
, (4.5.41)

sym(∇u)B0 skew(∇u) =

(
a b
b c

)
·
(
γ1 0
0 γ2

)
·
(

0 d
−d 0

)

=

(
a b
b c

)
·
(

0 γ1d
−γ2d 0

)

=

(
−bdγ2 adγ1

−cdγ2 bdγ1

)
. (4.5.42)

Hence,

A2(x;∇u,∇u) =
µ

det(F0)

(
a2γ1 + b2γ2 + b2γ1 + c2γ2 + d2γ2 + d2γ1 + dbγ2 − dbγ1 + dbγ2 − bdγ1

)

+
µ

det(F0)

(
γ1(a2 + b2) + γ2(b2 + c2)− γ1d

2 − γ2d
2
)

= 2
µ

det(F0)

[
a2γ1 + b2(γ1 + γ2) + c2γ2 + db(γ2 − γ1)

]
(4.5.43)

and thus,

A(x;∇u,∇u) = XTA(x)X (4.5.44)

with X := (a, c, b, d)T , s1 := µ√
γ1γ2

and

A(x) :=




−s1(γ1 − 1) + 2s1γ1 0 0 0
0 −s1(γ2 − 1) + 2s1γ2 0 0
0 0 2s1 tr(B0)− s1 tr(σ(F0)) s1(γ2 − γ1)
0 0 s1(γ2 − γ1) s1 tr(σ(F0))




= s1 ·




−(γ1 − 1) + 2γ1 0 0 0
0 −(γ2 − 1) + 2γ2 0 0
0 0 2 tr(B0)− tr(σ(F0)) (γ2 − γ1)
0 0 (γ2 − γ1) tr(σ(F0))


 .

(4.5.45)
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The positive semidefiniteness of the matrix A− β 1 implies the coercivity of A,25 because for

X := (a, c, b, d)T ∈ R4 and ∇u =

(
a b+ d

b− d c

)
we get

〈(A− β 1) X,X〉 ≥ 0

⇐⇒ 〈AX,X〉 ≥ β · 〈X,X〉
⇐⇒ 〈AX,X〉 ≥ β · ‖X‖2

⇐⇒ 〈AX,X〉 ≥ β ·
(
a2 + c2 + b2 + d2

)

⇐⇒ A(x;∇u,∇u) ≥ β ·

(
|∂ u1

∂ x1
|2 + |∂ u2

∂ x2
|2 +

1

4

(
∂ u1

∂ x2
+
∂ u2

∂ x1

)2

+
1

4

(
∂ u1

∂ x2
− ∂ u2

∂ x1

)2
)

= β ·
(
|∂ u1

∂ x1
|2 + |∂ u2

∂ x2
|2 +

1

2
|∂ u1

∂ x2
|2 +

1

2
|∂ u2

∂ x1
|2
)

≥ β

2
·
(

2 |∂ u1

∂ x1
|2 + 2 |∂ u2

∂ x2
|2 + |∂ u1

∂ x2
|2 + |∂ u2

∂ x1
|2
)

≥ β

2
· ‖∇u‖2. (4.5.46)

So, in order to determine whether the matrix A(x)−β 1 is positive semidefinite, we fix a constant
k > 0 and take ε := s1. Moreover, we define functions a0 = a0(x) and b0 = b0(x) by

a0 := −2s1

√
det(B0), b0 := 2s1

√
det(B0). (4.5.47)

In addition, we assume det(B0) ≥ k > 0 and get the inequality

b0 − a0 = 4 s1

√
det(B0) = 4 ε

√
det(B0) ≥ 4 ε

√
k. (4.5.48)

Hence, the interval defined by [a0(x), b0(x)] is not empty.

Now we formulate the theorem which finally ensures the coercivity of the bilinear form L [2].

Theorem 4.5.2. Assume det(B0) ≥ k. Let β > 0 and d := supx∈Ω

(
tr(B0)√
det(B0)

)
such that

β d < 2 ε
√
k (4.5.49)

and suppose that s1 = µ
det(F0) satisfies the condition

a0(x) + β d < −2s1 < b0(x)− βd ∀x ∈ Ω . (4.5.50)

Then there exists a constant α0 = α0(s1, β) ≥ 0 such that the matrix A(x) − β 1 is positive
semidefinite in Ω, provided that µ

det(F0) ≥ α0.

25In [2] Liu assumes the coercivity of A(x;∇u,∇u) to be equivalent to the positive semidefiniteness of A(x)−β 1
for all x ∈ Ω. This statement is given closer consideration in the appendix.
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Proof. First, the Hadamard26 inequality implies

2 ·
√

det(B0) = 2 ·
√

det(F0) det(F0)T = 2 ·
√
|det(F0)|2 ≤ 2 ·

2∏

j=1

√
‖F0ej‖2

= 2 ·
2∏

j=1

√√√√
2∑

i=1

|fij |2 = 2 ·
2∏

j=1

√
|f1j |2 + |f2j |2

= 2 ·
√
|f11|2 + |f21|2 ·

√
|f12|2 + |f22|2

≤
(√
|f11|2 + |f21|2

)2
+
(√
|f12|2 + |f22|2

)2

= |f11|2 + |f12|2 + |f21|2 + |f22|2

= 〈F0, F0〉 = ‖F0‖2 = tr(B0) (4.5.51)

where F0ej denotes the column vectors of F0 and fij denote the entries of the matrix F0. So

d = supx∈Ω

(
tr(B0)√
det(B0)

)
≥ 2, and if β satisfies (4.5.49), we get

β < ε
√
k. (4.5.52)

Now we take a look to the nonzero entries of A(x):





A11 =−s1(γ1 − 1) + 2s1γ1,
A22 =−s1(γ2 − 1) + 2s1γ2,
A33 = 2s1 tr(B0)− tr(σ(F0)),
A34 = s1(γ2 − γ1),
A44 = tr(σ(F0)).

A matrix is positive semidefinite if and only if all leading principal minors are bigger than zero
or equal to zero. This statement is equivalent to

min{A11 − β, (A11 − β)(A22 − β), A33 − β, (A33 − β)(A44 − β)−A2
34} ≥ 0. (4.5.53)

Without loss of generality we assume that γ1 ≥ γ2. Then

A11 − β = −s1(γ1 − 1) + 2s1γ1 − β = (1 + γ1)s1 − β. (4.5.54)

So A11 − β ≥ 0 holds if and only if

(1 + γ1)s1 ≥ β . (4.5.55)

The required condition (4.5.50) implies this statement, because

2(1 + γ1)s1 = 2s1 + 2s1γ1 = 2s1 + 2s1

√
γ2

1 ≥ 2s1 + 2s1
√
γ1γ2

= 2s1 + 2s1

√
det(B0) = 2s1 + b0 > βd ≥ 2β.

26Let M ∈ Rn×n and Me1,Me2, ...,Men denote the column vectors of the matrix M . Then | det(M)| ≤∏n
i=1‖Mei‖ and (det(M))2 ≤

∏n
i=1‖Mei‖2, with the Euclidean norm ‖·‖; e.g. M ∈ R2×2, then | det(M)| ≤

‖Me1‖ · ‖Me2‖.
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Moreover,

(A11 − β)(A22 − β) = [−s1(γ1 − 1) + 2s1γ1 − β] [−s1(γ2 − 1) + 2s1γ2 − β]

= s2
1(γ1 − 1)(γ2 − 1)− 2s2

1(γ1 − 1)γ2 + βs1(γ1 − 1)− 2s2
1γ1(γ2 − 1)

+ 4s2
1γ1γ2 − 2s1βγ1 + βs1(γ2 − 1)− 2s1βγ2 + β2

= s2
1(γ2γ1 + γ1 + γ2 + 1) + βs1(−γ1 − γ2 − 2) + β2

=
[
β +

s1

2
(−γ1 − γ2 − 2)

]2
− s2

1

4
(−γ1 − γ2 − 2)2 + s2

1(γ2γ1 + γ1 + γ2 + 1)

>
[
β +

s1

2
(−γ1 − γ2 − 2)

]2
− s2

1

4
(−γ1 − γ2 − 2)2

≥ 0

if and only if

[
β +

s1

2
(−γ1 − γ2 − 2)

]2
≥ s2

1

4
(−γ1 − γ2 − 2)2. (4.5.56)

This inequality is satisfied if and only if

β +
s1

2
(−γ1 − γ2 − 2) ≥ s1

2
(−γ1 − γ2 − 2) (4.5.57)

or

β +
s1

2
(−γ1 − γ2 − 2) ≤ −s1

2
(−γ1 − γ2 − 2). (4.5.58)

Inequalities (4.5.57) and (4.5.58) can be restated equivalently as

β ≥ 0 (4.5.59)

and

β ≤ −s1(−γ1 − γ2 − 2)

⇐⇒ −β ≥ −s1(γ1 + γ2 + 2) (4.5.60)

⇐⇒ −β ≥ −2s1 − s1 tr(B0),

respectively; (4.5.59) is true by assumption and (4.5.60) implies (A11 − β)(A22 − β) ≥ 0 if

−2s1 < −β + s1 tr(B0) . (4.5.61)

Furthermore,

(A33 − β) = 2s1 tr(B0)− tr(σ(F0))− β = 2s1(γ1 + γ2)− s1(γ1 + γ2 − 2)− β
= s1(γ1 + γ2) + 2s1 − β.

Hence, (A33 − β) ≥ 0 if

−2s1 ≤ −β + s1 tr(B0) . (4.5.62)

In addition,

(A44 − β) = tr(σ(F0))− β = s1(γ1 + γ2 − 2)− β = −2s1 + s1 tr(B0)− β ≥ 0

if and only if

−2s1 ≥ β − s1 tr(B0) . (4.5.63)
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Thus, the conditions (4.5.61), (4.5.62) and (4.5.63) can be expressed together by

β − s1 tr(B0) ≤ −2s1 ≤ −β + s1 tr(B0) , (4.5.64)

which is similar to Liu’s condition in [2, eq.(5.13)-(5.14)].
Moreover, the interval

[β − s1 tr(B0),−β + s1 tr(B0)] (4.5.65)

is not empty, because

−β + s1 tr(B0)− β + s1 tr(B0) = −2β + 2s1 tr(B0) ≥ 2 ε tr(B0)− 2β

≥ 2 ε · 2
√
k − 2β = 4 ε

√
k − 2β

> 4 ε
√
k − 2 ε

√
k = 2 ε

√
k

= 0.

Furthermore, for the calculation of (A33−β)(A44−β)−A2
34 we define f1 := s1γ1 and f2 := s1γ2.

Then,

(A33 − β)(A44 − β)−A2
34 = (f1 + f2 + 2s1 − β) (f1 + f2 − 2s1 − β)− (f2 − f1)2

= f2
1 + f1f2 − 2s1f1 − βf1 + f2f1 + f2

2 − 2s1f2 − βf2 + 2s1f1 + 2s1f2

− 4s2
1 − 2s1β − βf1 − βf2 + 2βs1 + β2 − f2

2 + 2f2f1 − f2
1

= 4f1f2 − 2βf1 − 2βf2 − 4s2
1 + β2

= −4s2
1 + 4f1f2 − 2β(f1 + f2) + β2

≥ 0

if and only if

4s2
1 ≤ 4f1f2 − 2β(f1 + f2) + β2

⇐⇒ −2s1 ≤ 2

√
f1f2 −

β

2
(f1 + f2) +

β2

4
∨ −2s1 ≥ −2

√
f1f2 −

β

2
(f1 + f2) +

β2

4
.

(4.5.66)

So for aβ := −2
√
f1f2 − β

2 (f1 + f2) + β2

4 and bβ := 2
√
f1f2 − β

2 (f1 + f2) + β2

4 , we find that

(A33 − β)(A44 − β)−A2
34 ≥ 0 if and only if

aβ ≤ −2s1 ≤ bβ . (4.5.67)

The last step is to show whether the derived conditions are true under the given condition in
(4.5.50) or not. Hence, we have to verify, if





β − s1 tr(B0)≤ a0 + βd,

b0 − βd≤−β + s1 tr(B0),

aβ ≤ a0 + βd,

b0 − βd≤ bβ.

(4.5.68)

If these inequalities apply, then all leading main minors of A− β 1 are bigger than zero or equal
to zero and therefore, there exists a constant α0 which depends on s1 and β, such that A(x)−β 1
is positive semidefinite in Ω.
Due to (4.5.51), we get

β − s1 tr(B0) ≤ β − 2s1

√
det(B0) ≤ dβ − 2s1

√
det(B0) = a0 + dβ (4.5.69)
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and

b0 − βd = 2s1

√
det(B0)− βd ≤ s1 tr(B0)− βd ≤ s1 tr(B0)− 2β ≤ s1 tr(B0)− β. (4.5.70)

Moreover,

aβ = −2

√
s2

1 det(B0)− β

2
s1 tr(B0) +

β2

4
≤ −2

√
s2

1 det(B0)− β

2
s1 tr(B0)

= −2s1

√
det(B0)

√
1− β

2

tr(B0)

s1 det(B0)

(∗)
≤ −2s1

√
det(B0) + βs1

√
det(B0)

tr(B0)

s1 det(B0)

= −2s1

√
det(B0) + β · tr(B0)√

det(B0)
≤ a0 + βd, (4.5.71)

with (∗)
√

1− x ≥ 1− x for all x ∈ [0, 1], and analogously

bβ = 2

√
s2

1 det(B0)− β

2
s1 tr(B0) +

β2

4
≥ 2

√
s2

1 det(B0)− β

2
s1 tr(B0)

= 2s1

√
det(B0)

√
1− β

2

tr(B0)

s1 det(B0)
≥ 2s1

√
det(B0)− βs1

√
det(B0)

tr(B0)

s1 det(B0)

= b0 − β
tr(B0)√
det(B0)

≥ b0 − βd. (4.5.72)

Therefore, the inequalities hold, which concludes the proof. �

So if condition (4.5.50) applies, then A(x) − β 1 is positive semidefinite and this in turn
implies the coercivity of A.
Thus A is coercive and together with (4.5.46) the following considerations apply:

L(u, u) =

∫

Ω
A(x;∇u,∇u) dV ≥ β

2

∫

Ω
‖∇u‖2 dV =

β

2

∫

Ω
‖∇u1‖2R2 + ‖∇u2‖2R2 dV

=
β

2

(
‖∇u1‖2L2 + ‖∇u2‖2L2

)
=
β

2
‖u‖2V . (4.5.73)

In conclusion,

L(u, u) ≥ α ‖u‖2V (4.5.74)

with α := β
2 > 0. Thus the bilinear form L is coercive. Now we want to use the Lemma of Lax-

Milgram to get a unique solution u ∈ V for the boundary value problem in (4.5.6). Therefore,
we have to show that there exists a constant δ > 0 such that |L(u,w)| ≤ δ · ‖u‖V ‖w‖V for all
u, w ∈ V. For B0 ∈ L∞(Ω, Sym+(2)), µ

det(F0) ∈ L∞(Ω) and by means of Cauchy-Schwarz27,

27If v is a vector space with the inner product 〈 . , . 〉V then

|〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉 ∀x, y ∈ V.
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triangle and Hölder28 inequalities, we calculate

|L(u,w)| = |
∫

Ω

µ

det(F0)
tr
[
(∇u)T (∇w)T +∇uB0 (∇w)T

]
dV |

= |
∫

Ω

µ

det(F0)

〈
(∇u)T +∇uB0,∇w

〉
dV |

≤
∫

Ω
| µ

det(F0)
||
〈
(∇u)T +∇uB0,∇w

〉
|dV

≤
∫

Ω
| µ

det(F0)
|‖(∇u)T +∇uB0‖ · ‖∇w‖ dV

≤
∫

Ω
| µ

det(F0)
| (‖∇u‖+ ‖∇uB0‖) · ‖∇w‖dV

≤ c1

∫

Ω
(‖∇u‖+ ‖∇u‖‖B0‖) · ‖∇w‖ dV

= c1

∫

Ω
(1 + ‖B0‖) ‖∇u‖‖∇w‖ dV

≤ c2

∫

Ω
‖∇u‖‖∇w‖ dV

≤ c2

(∫

Ω
‖∇u‖2 dV

) 1
2

·
(∫

Ω
‖∇w‖2 dV

) 1
2

= c2

(∫

Ω
‖∇u1‖2 + ‖∇u2‖2 dV

) 1
2

·
(∫

Ω
‖∇w1‖2 + ‖∇w2‖2 dV

) 1
2

= c2 (‖∇u1‖L2 + ‖∇u2‖L2)
1
2 · (‖∇w1‖L2 + ‖∇w2‖L2)

1
2

= c2 ‖u‖V · ‖w‖V (4.5.75)

with constants c1, c2 > 0. In conclusion,

|L(u,w)| ≤ δ · ‖u‖V · ‖w‖V (4.5.76)

with δ := c2 > 0. Thus, together with the Lemma of Lax-Milgram29 we get a unique solution
u ∈ V for the boundary value problem





−Div
[
σ(F0) + µ

det(F0)

(
HB0 +B0H

T
)
− σ(F0) ·HT

]
= 0 on Ω,[

σ(F0) + µ
det(F0)

(
HB0 +B0H

T
)
− σ(F0) ·HT

]
· ~nk = f on Γ1

〈u, ~nk〉 = 0 on Γ2

u = 0 on Γ3,

(4.5.77)

stated in (4.5.6).
Liu’s argument for the existence and uniqueness of a solution of this linearized boundary value
problem seems to be conclusive at first glance, but at this point we have to take a closer look
at the condition

a0(x) + β d < −2s1 < b0(x)− βd ∀x ∈ Ω

28Let 1 ≤ p ≤ ∞ with 1
p

+ 1
q

= 1 and let f ∈ Lp(Ω), g ∈ Lq(Ω). Then fg ∈ L1(Ω) and

‖fg‖L1 ≤ ‖f‖Lp ‖g‖Lq .

29See Section 2.3.2.
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in (4.5.50). If B0 is constant, i.e. the eigenvalues γ1 and γ2 do not depend on x ∈ Ω, then the
above condition is equivalent to

−2s1

√
det(B0) + β tr(B0)√

det(B0)
< −2s1 < 2s1

√
det(B0)− β tr(B0)√

det(B0)

⇐⇒ −2 µ
det(F0)

√
det(B0) + β γ1+γ2√

γ1γ2
< −2 µ

det(F0) < 2 µ
det(F0)

√
det(B0)− β γ1+γ2√

γ1γ2

⇐⇒ −2µ+ β γ1+γ2√
γ1γ2

< −2 µ
det(F0) < 2µ− β γ1+γ2√

γ1γ2

⇐⇒ −2µ+ β γ1+γ2√
γ1γ2

< −2 µ√
γ1γ2

< 2µ− β γ1+γ2√
γ1γ2

,

i.e.

β (γ1 + γ2) < −2µ+ 2µ
√
γ1γ2

⇐⇒ β <
2µ(
√
γ1γ2−1)

γ1+γ2

(4.5.78)

and

β (γ1 + γ2) < 2µ
√
γ1γ2 + 2µ

⇐⇒ β <
2µ(
√
γ1γ2+1)

γ1+γ2
.

(4.5.79)

Let B0 := λ · 1, λ > 0. Then the above conditions are in turn equivalent to

β <
2µ (λ− 1)

2λ
= µ

(
1− 1

λ

)
(4.5.80)

and

β <
2µ (λ+ 1)

2λ
= µ

(
1 +

1

λ

)
. (4.5.81)

Thus the first condition only applies for λ > 1. Otherwise, if λ ≤ 1 then β is strictly negative.
This would be a contradiction to the assumption β > 0, which means that Liu excludes both
compression and the identity. However, homogeneous compressional states as well as the identity
play an important role, for example, in the engineering sciences.
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5 Deficiencies of Liu’s argumentation

Now we want to show explicitly that Liu’s pointwise considerations are not sufficient. For this
we focus on the Saint-Venant-Kirchhoff type energy, which is given by

Ŵ (F ) := ‖F TF − 1‖2. (5.0.1)

With the chain-rule, and for an arbitrary direction H ∈ R3×3, we get

DF Ŵ (F ).[H] = 2 ·
〈
F TF − 1, F TH +HTF

〉
. (5.0.2)

Hence

D2
F Ŵ (F ).[H,H] = 2 ·

〈
F TH +HTF, F TH +HTF

〉
+ 4 ·

〈
F TF − 1, HTH

〉

= 2 ·
〈
2 · sym(F TH), 2 · sym(F TH)

〉
+ 4 ·

〈
F TF − 1, HTH

〉

= 8 · ‖sym(F TH)‖2 + 4 ·
〈
F TF − 1, HTH

〉
. (5.0.3)

First of all, we use Liu’s approach to show the coercivity for the given energy function Ŵ . We
have seen that the assumptions in Liu’s theorem 4.5.2 exclude compression and the identity, so
we assume F = λ · 1 with λ > 1. Thus, for Q ∈ O(3) we obtain

D2
F Ŵ (F ).[H,H] ≥ 4 ·

〈
FF T − 1, HTH

〉
= 4 ·

〈
QT diag

(
FF T − 1

)
Q,HTH

〉

= 4 ·
〈
diag

(
FF T − 1

)
Q,QHTH

〉
= 4 ·

〈
diag

(
FF T − 1

)
QHT , QHT

〉

≥ 4 · λmin

(
FF T − 1

)
‖QH‖2 = 4 · λmin

(
FF T − 1

)
‖H‖2

= 4 ·
(
λ2 − 1

)
‖H‖2. (5.0.4)

Consequently,

L(u, u) =

∫

Ω
D2
F Ŵ (F )[∇u,∇u] dx ≥ 4 ·

(
λ2 − 1

)
‖∇u‖2L2

= c · ‖∇u‖2L2 (5.0.5)

with c = 4 ·
(
λ2 − 1

)
> 0.

But if we assume 0 < λ ≤ 1, then Liu’s argumentation does not provide coercivity. In this case,
we need Korn’s inequality in an expanded version. First we take a look at the part

8 · ‖sym(F TH)‖2 = 8 · ‖1

2

(
F TH +HTF

)
‖2 = 2 · ‖F TH +HTF‖2

= 2 ·
(
‖F TH‖2 + 2 ·

〈
F TH,HTF

〉
+ ‖HTF‖2

)

= 2 ·
(
2 · ‖HTF‖2 + 2 ·

〈
F TH,HTF

〉)

= 4 · ‖HTF‖2 + 4 · tr
((
HTF

)2)
. (5.0.6)

For A ∈ R3×3, and with Adj(A) := Cof(A)T , the Caley-Hamilton theorem yields30

A3 − tr(A) ·A2 + tr (Adj(A)) ·A− det(A) · 1 = 0. (5.0.7)

This in turn is equivalent to

A2 − tr(A) ·A+ tr (Adj(A)) · 1− det(A) ·A−1 = 0. (5.0.8)

Moreover, by applying the trace operator, this equation implies

tr
(
A2
)
− tr(A)2 + 2 · tr (Adj(A)) = 0. (5.0.9)

30For additional steps, see the Appendix.
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With this in mind we get

4 · ‖HTF‖2 + 4 · tr
((
HTF

)2)
= 4 · ‖HTF‖2 + 4 ·

[
tr
(
HTF

)2 − 2 · tr
(
Adj

(
HTF

))]

= 4 · ‖HTF‖2 + 4 · tr
(
HTF

)2 − 8 · tr
(
Adj

(
HTF

))

≥ 4 · ‖HTF‖2 − 8 · tr
(
Adj

(
HTF

))
. (5.0.10)

So with integration,

∫

Ω
8 · tr

(
Adj

(
HTF

))
dx = 8 ·

∫

Ω

〈
Adj

(
HTF

)
,1
〉

dx

= 8 ·
∫

Ω

〈
det
(
HT
)

det(F )H−TF−1,1
〉

dx

= 8 ·
∫

Ω

〈
Adj(H), det(F )F−1

〉
dx

= 8 · det(F )

∫

Ω

〈
Adj(H)T , F−T

〉
dx. (5.0.11)

Furthermore, F = ∇ϕ = λ · 1 is invertible and ∇ψ = F−1 = 1
λ · 1 = (∇ψ)T is a gradient, too.

Moreover, we assume u ∈ C∞0 . Thus, together with the Piola identity, equation (5.0.11) reduces
to

8 · det(F )

∫

Ω

〈
Adj(H)T , F−T

〉
dx = 8 · det(F )

∫

Ω

〈
Div

(
Adj(H)T

)
, ψ
〉

dx

= 8 · det(F )

∫

Ω
〈Div (Cof(H)) , ψ〉 dx

= 0. (5.0.12)

Hence

8 · ‖sym(F TH)‖2 ≥ 4 · ‖HTF‖2 ≥ 4 · λmin(FF T ) · ‖H‖2 = 4 · λ2‖H‖2. (5.0.13)

In conclusion,

L(u, u) ≥ 4 · λ2‖∇u‖2L2 + 4 ·
∫

Ω

[〈
F TF, (∇u)T∇u

〉
− 〈∇u,∇u〉

]
dx

≥ 4 · λ2‖∇u‖2L2 + 4 ·
∫

Ω

(
γmin(F TF )− 1

)
‖∇u‖2 dx

= 4 · λ2‖∇u‖2L2 + 4 ·
(
λ2 − 1

)
‖∇u‖2L2

= 4
(
2λ2 − 1

)
‖∇u‖2L2

= c+ · ‖∇u‖2L2 (5.0.14)

with c+ = 4
(
2λ2 − 1

)
> 0. Therefore, with the same further considerations as in Section 4.5.1,

there exists a unique solution for the boundary value problem in (4.5.15) for the Saint-Venant-
Kirchhoff energy and for the case F = λ · 1.
At this point, it should be noted that the constant c+ is positive only if λ > 1√

2
. This is due to

the fact that this model is generally not suitable for compression.
Thus Liu’s approach is not generally applicable, but with the help of Korn’s inequality we still
get the uniqueness of the solution u for the boundary value problem for all λ > 1√

2
.
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6 Ellipticity conditions and convexity

For energy functions Ŵ defined in (2.2.11), there exist different notions of ellipticity and convex-
ity conditions. They are important for the existence of a solution of the variational problem in
(2.2.15). For convexity, we normally concentrate on polyconvexity, quasiconvexity and rank-one
convexity, which are defined as follows.

Definition 6.0.1. Ŵ is polyconvex if there exists a convex function P : R3×3 × R3×3 × R→ R
such that Ŵ (F ) = P (F,Cof(F ),det(F )).

Definition 6.0.2. Ŵ is quasiconvex if for all Ω ⊂ R3, F ∈ R3×3 and v ∈ C∞0 (Ω) the following
inequality holds:

Ŵ (F ) · |Ω| =
∫

Ω
Ŵ (F ) dx ≤

∫

Ω
Ŵ (F +∇v(x)) dx. (6.0.1)

Definition 6.0.3. Ŵ is rank-one convex if the function f : R→ R with f(t) := Ŵ (F + t · (ξ ⊗ η))
is convex for all F ∈ R3×3 with ξ, η ∈ R3.

Furthermore, there is a connection between these properties:

convexity =⇒ polyconvexity =⇒ quasiconvexity =⇒ rank-one convexity,

see [3]. Dacorogna shows in [3] that the reverse implications are false31. Furthermore, rank-one
convexity is equivalent to Legendre-Hadamard ellipticity.

Definition 6.0.4. Ŵ is (Legendre-Hadamard) elliptic if there exists a positive constant c+ ∈ R
such that

D2 Ŵ (F ).[ξ ⊗ η, ξ ⊗ η] ≥ c+‖ξ‖2‖η‖2 (6.0.2)

for all F ∈ R3×3 and ξ, η ∈ R3.32

Moreover, Dacorogna gives existence theorems for quasi- and polyconvex functions.
With all this in mind, we notice that if Ŵ is not rank-one convex or elliptic, it is also not qua-
siconvex and not polyconvex. Consequently, we know nothing about existence of a solution. So
rank-one convexity is a necessary criterion in order to apply classical methodes for minimization
of the energy functional in (2.2.15) or, like it is said in [16]:

“[...] it is just what is needed for a good existence and uniqueness theory for linear
elastostatics and elastodynamics.”

Thus, in the following we focus on (Legendre-Hadamard) ellipticity.

6.1 Ellipticity conditions for linear problems

Now we want to investigate if the energy function

Ŵ (F ) = µ

[
1

2
‖F‖2 − log(det(F ))

]

used in section 4.5.1 fulfills the condition of (Legendre-Hadamard) ellipticity. For this, we will
refer to previous results from Sections 4.2 and 4.3.

31At this point we have to mention that the connection rank-one convex < quasikonvex is only shown for n ≥ 3,
see [3].

32The operator ⊗ defines the tensor product: Let ξ, η ∈ R3, then ξ ⊗ η ∈ R3×3 and ξ ⊗ η = ξ · ηT . For the
tensor product’s properties see [14].
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ϕ

Ω Ω′

ϕ̃

ϕ′

Ω′′

Figure 17: Reminder: Relationships between the deformations ϕ, ϕ′, ϕ̃ and the configurations
Ω (reference configuration), Ω′ (intermediate configuration), Ω′′ (current configuration).

We start with considerations on the intermediate configuration Ω′. First we have to figure
out the weak form of the linearized equations of equilibrium

0 = Divx′
[
σ
(
∇ϕ(ϕ−1(x′))

)
·
[(

1 + tr(H(x′))
)
· 1−H(x′)T

]

+Dσ
(
∇ϕ(ϕ−1(x′))

)
.
[
H(x′) · ∇ϕ(ϕ−1(x′))

] ]
, (6.1.1)

stated in (4.2.4). For v′ ∈ C∞0 (Ω′) with F0 = ∇ϕ and H = ∇u we get

0 = −
∫

Ω′

〈
Divx′

[
σ(F0) ·

[
(1 + tr(H)) · 1−HT

]
+Dσ(F0). [HF0]

]
, v′
〉

dx′

P.I.
=

∫

Ω′

〈
σ(F0) ·

[
(1 + tr(H)) · 1−HT

]
+Dσ(F0). [HF0] ,∇v′

〉
dx′

=

∫

Ω′

〈
σ(F0) ·

[
(1 + tr(∇u)) · 1− (∇u)T

]
+Dσ(F0).[∇u · F0]

︸ ︷︷ ︸
=:C(F0).∇u

,∇v′
〉
dx′. (6.1.2)

So we obtain a bilinear form A : C∞(Ω′)× C∞(Ω′)→ R for u ∈ C∞(Ω′) and v′ ∈ C∞0 (Ω′) with

A(u, v′) =

∫

Ω′

〈
C(F0).∇u,∇v′

〉
dx′ = 0. (6.1.3)

To determine whether Ŵ satisfies the ellipticity condition

〈C(F0).H,H〉 ≥ c · ‖H‖2 (6.1.4)

regarding the intermediate configuration for ∇u = H := ξ ⊗ η with ξ, η ∈ R3 and a positive
constant c > 0, we have to compute C(F0).H. For this we need the linearized equation of

equilibrium in the intermediate configuration with respect to the energy function Ŵ . It is
stated in (4.5.5) as

0 = Div

[
σ (F0) +

µ

det(F0)

(
HB0 +B0H

T
)
− σ (F0)HT

]

= Div

[
µ

det(F0)

(
HB0 +B0H

T
)
− σ (F0)HT

]
,
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where the last step applies because we assume F0 to be the gradient of an equilibrium solution,
see Section 4.1 . Hence, with equation (4.5.2) we have to estimate

〈
µ

det(F0)

(
HB0 +B0H

T
)
− σ(F0)HT , H

〉

=
µ

det(F0)

〈
HB0 +B0H

T − (B0 − 1)HT , H
〉

=
µ

det(F0)

〈
HB0 +HT , H

〉
(6.1.5)

with H = ξ ⊗ η, ξ, η ∈ R3. Together with the requirement det(F0) > 0 and γmin(B0) the lowest
eigenvalue of B0, we get33

µ

det(F0)

〈
(ξ ⊗ η)B0 + (ξ ⊗ η)T , ξ ⊗ η

〉

=
µ

det(F0)

[
〈(ξ ⊗ η)B0 , ξ ⊗ η〉+

〈
(ξ ⊗ η)T , ξ ⊗ η

〉]

=
µ

det(F0)

[
‖ξ‖2 〈B0 η , η〉+ 〈η , ξ〉2

]

=≥ µ

det(F0)

[
‖ξ‖2 〈B0 η , η〉

]

≥ µ

det(F0)

[
‖ξ‖2 γmin(B0) ‖η‖2

]

= c+‖ξ‖2 ‖η‖2 (6.1.6)

with a positive constant c+ = µ
det(F0) · γmin(B0) ∈ R.

So the energy function Ŵ satisfies the ellipticity condition with respect to the linearization on
the intermediate configuration as well.
Now we try to do the same calculations on the linearized equation of equilibrium regarding the
reference configuration

0 = Divx

[[
σ (∇ϕ(x)) ·

[
(1 + tr(H(ϕ(x)))) · 1−H(ϕ(x))T

]

+Dσ (∇ϕ(x)) . [H(ϕ(x)) · ∇ϕ(x)]
]
· Cof(∇ϕ(x))

]
, (6.1.7)

stated in (4.3.5). The weak form of this linearized equation for v ∈ C∞0 (Ω) with F0 = ∇ϕ and
H = ∇u is given by

0 = −
∫

Ω

〈
Divx

[[
σ (F0) ·

[
(1 + tr(H)) · 1−HT

]
+Dσ (F0) . [HF0]

]
· Cof(F0)

]
, v
〉

dx

P.I.
=

∫

Ω

〈[
σ (F0) ·

[
(1 + tr(H)) · 1−HT

]
+Dσ (F0) . [HF0]

]
· Cof(F0),∇v

〉
dx

=

∫

Ω

〈[
σ(F0)

[
(1 + tr(∇u)) · 1− (∇u)T

]
+Dσ(F0).[∇u · F0]

]
· Cof(F0),∇v

〉
dx. (6.1.8)

At this point, we observe that we cannot proceed as we did before, because u is a mapping on
Ω′ and v is a mapping on Ω. Instead, in order to establish a variational problem on Ω′, consider
the function ṽ : Ω′ → R3 with ṽ(ϕ(x)) := v(x) for any given v ∈ C∞0 (Ω). Then

∇v(x) = ∇[ṽ(ϕ(x))] = ∇ṽ(ϕ(x)) · ∇ϕ(x) = ∇ṽ(ϕ(x))F0 ,

33For B0 and (ξ ⊗ ξ) ∈ R3×3 the following equation holds:

〈B0ξ, ξ〉 ≥ γmin(B0) · ‖ξ‖2,

see [14, cor. 12].
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thus we obtain the bilinear form

(u, ṽ) 7→
∫

Ω

〈[
σ(F0)

[
(1 + tr(∇u)) · 1− (∇u)T

]
+Dσ(F0).[∇u · F0]

]
· Cof(F0),∇ṽ · F0

〉
dx

and thus, for H = ∇u = ∇ṽ, we obtain the quadratic form given by the expression
∫

Ω

〈[
σ(F0)

[
(1 + tr(H)) · 1−HT

]
+Dσ(F0).[HF0]

]
· Cof(F0), HF0

〉
dx . (6.1.9)

Therefore, in order to determine whether Ŵ satisfies the ellipticity condition regarding the
reference configuration, we have to find a lower bound for (6.1.9). For this, we need the linearized

equation of equilibrium in the reference configuration regarding the energy function Ŵ , which
is given by

0 = Div

[(
σ (F0) +

µ

det(F0)

(
HB0 +B0H

T
)
− σ (F0)HT

)
· Cof(F0)

]

= Div

[(
µ

det(F0)

(
HB0 +B0H

T
)
− σ (F0)HT

)
· Cof(F0)

]
. (6.1.10)

Hence, we have to find an estimate for the inner product
〈[

µ

det(F0)

(
HB0 +B0H

T
)
− σ(F0)HT

]
· Cof(F0) , HF0

〉

=
µ

det(F0)

〈[
HB0 +B0H

T − (B0 − 1)HT
]
· Cof(F0), HF0

〉

=
µ

det(F0)

〈[
HB0 +HT

]
· det(F0) · F−T0 , HF0

〉

= µ
〈
HF0F

T
0 F
−T
0 +HTF−T0 , HF0

〉

= µ
〈
HF0 +HTF−T0 , HF0

〉
(6.1.11)

for HF0 := ξ ⊗ η with ξ, η ∈ R3. Due to H̃ := HF0 ⇐⇒ H = H̃F−1
0 , we get

µ
〈
HF0 +HTF−T0 , HF0

〉
= µ

[
〈ξ ⊗ η, ξ ⊗ η〉+

〈
HT , H

〉]

= µ
[
〈ξ ⊗ η, ξ ⊗ η〉+

〈
F−T0 (ξ ⊗ η)T , (ξ ⊗ η)F−1

0

〉]

= µ · ‖ξ‖2 · ‖η‖2 + µ ·
〈(
F−T0 η

)
⊗ ξ, ξ ⊗

(
F−T0 η

)〉

= µ · ‖ξ‖2 · ‖η‖2 + µ ·
〈
F−T0 η, ξ

〉2

≥ µ · ‖ξ‖2 · ‖η‖2

= c̃+ · ‖ξ‖2 · ‖η‖2 (6.1.12)

with a positive constant c̃+ = µ ∈ R.

Now we want to compare this result with the classical concept of ellipticity. First we have
to linearize the classical Piola-Kirchhoff stress tensor. Then we take a look at its equation of
equilibrium and especially to the weak form of the equation like we have done before.
For the equation of equilibrium concerning the linearization, we find

Div

[
S1(F0 +

˜̃
H)

]
= 0 ⇐⇒ Div

[
S1(F0) +DF0S1(F0).

[
H̃
]

+O
(
‖H̃‖2

)]
= 0

=⇒ Div
[
DF0S1(F0).[H̃]

]
= 0. (6.1.13)
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Thus with partial integration and v′ ∈ C∞0 (Ω′) we get

0 = −
∫

Ω

〈
Div

[
DF0S1(F0).[H̃]

]
, v
〉

dx
P.I.
=

∫

Ω

〈
DF0S1(F0).[H̃],∇v

〉
dx. (6.1.14)

Now we have to calculate the first Piola-Kirchhoff stress tensor with respect to the given energy
function Ŵ :

S1(F0) = DF0Ŵ (F0) = µ · F0 − µ ·
1

det(F0)
· Cof(F0) = µ

[
F0 − F−T0

]
. (6.1.15)

Hence

S1(F0 + H̃) = µ

[
F0 + H̃ −

(
F0 + H̃

)−T]

= µ · F0 + µ · H̃ − µ · F−T0 + µ · F−T0 H̃TF−T0 +O
(
‖H̃‖2

)

= S1(F0) + µ
[
H̃ + F−T0 H̃TF−T0

]
+O

(
‖H̃‖2

)
. (6.1.16)

Consequently,

DF0S1(F0).[H̃] = µ
[
H̃ + F−T0 H̃TF−T0

]
. (6.1.17)

Therefore, we have to estimate

〈
DF0S1(F0).[H̃], H̃

〉
(6.1.18)

for H̃ := ξ ⊗ η. At this point we notice that we simply have to repeat the same estimates as in
(6.1.12), since in direction H̃ = HF0 we get

〈
DF0S1(F0).[H̃], H̃

〉
= µ

〈
H̃ + F−T0 H̃TF−T0 , H̃

〉
= µ

〈
HF0 + F−T0 F T0 H

TF−T0 , HF0

〉

= µ
〈
HF0 +HTF−T0 , HF0

〉
.

That is just what we expected from equation (4.3.8). Thus, together with (6.1.12) we obtain

〈DFS1(F ).[ξ ⊗ η], ξ ⊗ η〉 ≥ c̃+ · ‖ξ‖2 · ‖η‖2

with a positive constant c̃+ = µ ∈ R, as well.

Remark 6.1.1. If we assume the deformation to be purely volumetric, i.e. B0 = λ·1 ∈ Sym+(3)
with λ ∈ R+, the constant c+ in (6.1.6) reduces to

c+ =
µ

det(F0)
· γmin(B0) =

µλ√
det(B0)

=
µλ√
λ3

=
µ√
λ
. (6.1.19)

Furthermore, in the two dimensional case we get

c+ =

√
γmin(B0)

γmax(B0)
· µ =

√
λ

λ
· µ = µ. (6.1.20)

So in both (6.1.6) and (6.1.19) we obtain the same positive constant c̃+ = c+ = µ.



Outlook 55

7 Outlook

We demonstrated that Liu did not find a new stability criterion regarding linearization in [10],
so it does not matter whether we use the linearized equation of equilibrium in the reference or in
the intermediate configuration. And indeed, all linearized equations in whatever configuration
are equivalent. Moreover, he only considers the 2-dimensional case for application, and even
there still rules out cases like uniform compression and the identity [2]. As mentioned before,
the identity in particular is an important case for linearization. Moreover, Liu does not even
clarify that he ignores theses cases.
It is also important to note that Liu does not emphasize clearly that he means different constants
when he discusses the equivalence of coercivity and positive semidefiniteness in Section 4.5.1 in
the given context, see the Appendix. Furthermore, for his pointwise considerations and with
respect to his exclusion of compression and identity he does not need Korn’s inequality, but as
we have shown we cannot generally neglect it.
In summery, there are many additional things which should be investigated in the future. What
about the 3-dimensional case? Do Liu’s considerations also apply there? And what would
happen if we do not look at a volumetric inflation with F = λ · 1? Are Liu’s Theorem 4.5.2
and his conclusions still valid? Finally, are we able to apply his considerations to other energy
functions?
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A Appendix

A.1 Coercivity and positive semidefiniteness

In [2], Liu defines the coercivity of A for an arbitrary constant β > 0 with A(x;∇u,∇u) ≥
β · ‖∇u‖2 and asserts that this in turn is equivalent to the positive semidefiniteness of A− β 1
for all x ∈ Ω. At this point, it is not clear whether he means the same constant β > 0 or another
arbitrary constant β̃ > 0. Assuming he means the same constant β, his assertion does not hold
in general, as we will show in the following.

Let γ1 = γ2 = 2, so that B0 =

(
2 0
0 2

)
. In addition, choose µ =

√
2 and X =




0
0
0
1


. Then

∇u =

(
0 1
−1 0

)
. Thus, we get ‖X‖2 = 1 and ‖∇u‖2 = 2.

Before we continue with the counterexample, we take a closer look at the constant β. We know
that β is bounded below by zero (β > 0). Now we would also like to indicate an upper bound
such that A− β 1 is semipositive definite.
For γ1 = γ2 = 2 we calculate

A− β 1 =




3 s1 − β 0 0 0
0 2 s1 − β 0 0
0 0 8 s1 − 2 s2

1 − β 0
0 0 0 2 s2

1 − β




=




3√
2

0 0 0

0 3√
2

0 0

0 0 4
√

2− 1− β 0
0 0 0 1− β


 . (A.1.1)

Now the eigenvalues have to be bigger or equal than zero. Hence, the following inequalities have
to apply:

I 3√
2
− β ≥ 0 ⇐⇒ β ≤ 3√

2

II 4
√

2− 1− β ≥ 0 ⇐⇒ β ≤ 4
√

2− 1
III 1− β ≥ 0 ⇐⇒ β ≤ 1.

(A.1.2)

Thus β is bounded above and we can choose β := 1 > 0. So for β = 1, A − β 1 is positive
semidefinite, i.e. XT (A− β 1)X ≥ 0. Hence,

A(x;∇u,∇u) = XTAX = 1 < 2 = 1 · ‖∇u‖2 = β · ‖∇u‖2,

which contradicts the claim that A(x;∇u,∇u) ≥ β · ‖∇u‖2 for the same constant β > 0.
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A.2 Caley-Hamilton

The Caley-Hamilton theorem tells us that each square matrix is zero of its characteristic polynom

[18]. So for A :=




a11 a12 a13

a21 a22 a23

a31 a32 a33


 ∈ R3×3 and λ ∈ R, we get

0 = det(A− λ1) = det




a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ




= (a11 − λ)(a22 − λ)(a33 − λ) + a12a23a31 + a13a21a32 − a31(a22 − λ)a13 − a32a23(a11 − λ)

− (a33 − λ)a21a12

= (a11a22 − a11λ− a22λ+ λ2)(a33 − λ) + a12a23a31 + a13a21a32 − a31a22a13 + a31a13λ

− a32a23a11 + a32a23λ− a33a21a12 + a21a12λ

= a11a22a33 − a11a22λ− a11a33λ+ a11λ
2 − a22a33λ+ a22λ

2 + a33λ
2 − λ3 + a12a23a31

+ a13a21a32 − a31a22a13 + a31a13λ− a32a23a11 + a32a23λ− a33a21a12 + a21a12λ

= −λ3 + (a11 + a22 + a33)λ2 − (a11a22 + a11a33 + a22a33 − a31a13 − a32a23 − a21a12)λ

+ a11a22a33 + a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12

= −λ3 + tr(A)λ2 − tr(Cof(A))λ+ det(A) · 1
= −λ3 + tr(A)λ2 − tr(Adj(A))λ+ det(A) · 1.

Thus

A3 − tr(A) ·A2 + tr(Adj(A)) ·A− det(A) · 1 = 0.
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