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10. Übung zur Vorlesung
„Mathematisches Modellieren“

(Abgabe: Freitag, den 22.06.2012, bis 10.15 Uhr in die dafür vorgesehenen Kästen)

Hinweis: Die ersten drei Aufgaben diese Blatts beziehen sich nicht auf den aktuellen Vorlesungs-
stoff, sondern sind Aufgaben zur Wiederholung und Vertiefung.

Aufgabe 1: In einem Gefäß wird eine bestimmte Krebsart gezüchtet, die sich von Bakterien
ernährt. Zur Fütterung wird pro Sekunde eine gewisse Menge a > 0 an Bakterien in das Gefäß
gegeben. Die Krebse fressen die Bakterien mit einer Rate, die proportional zum Quadrat der
momentan vorhandenen Bakterienanzahl x(t) ist.

a) Modellieren Sie die Entwicklung der Bakterienanzahl x(t) mit Hilfe einer Differentialglei-
chung. 1

b) Bestimmen Sie die allgemeine Lösung der aufgestellten DGl. 1

c) Bestimmen Sie das Langzeitverhalten limt→∞ x(t) der Bakterien. 1

Aufgabe 2: Sie kennen das Phänomen, dass eine Kette, die zu weit von einem Tisch herun-
terhängt anfängt zu rutschen und mit wachsender Geschwindigkeit vom Tisch herunterrutscht.
Dieses Herunterrutschen soll modelliert werden. Wir treffen dazu folgende Annahmen:
Die Kette hat die Länge L > 0. Die Masse der Kette verteilt sich gleichmäßig über die gesamte
Kette, dabei gibt ρ > 0 die Masse der Kette pro Längeneinheit an.
Auf die Kette wirken zwei Kräfte: Die Gewichtskraft des herunter hängenden Teils der Kette
zieht die Kette in Richtung Tischkante und die Reibungskraft des auf dem Tisch liegenden Teils
der Kette zieht die Kette in die andere Richtung.
Die Gewichtskraft wird modelliert durch FG = Mg, wobei M die Masse des Teil der Kette ist,
das schon vom Tisch herunterhängt. Mit g bezeichnen wir die Erdbeschleunigung.
Die Reibungskraft soll mit dem Modell der Gleitreibung modelliert werden, d.h. FR = −µRM̄g,
dabei ist µR der Gleitreibungskoeffizient, der nur von den Materialeigenschaften des Tischs und
der Kette abhängt und M̄ die Masse des Teils der Kette, der noch auf dem Tisch liegt. Das
Vorzeichen berücksichtigt die Richtung der Kraft.
Diese Modellierung lässt sich anwenden, wenn sich die Kette bewegt, bzw. sich gerade in Bewe-
gung setzt.

a) Modellieren Sie ausgehend vom 2. Newtonschen Axiom F = ma diesen Sachverhalt mit
Hilfe einer Differentialgleichung zweiter Ordnung. Erläutern Sie die Wahl ihres Koordina-
tensystems mit Hilfe einer Zeichnung. 2



b) Lösen Sie die entstandene Differentialgleichung. 1

Aufgabe 3: Gegeben sei eine Differentialgleichung der Form

y′ = f(at+ by + c) , a, b, c ∈ R mit b 6= 0 .

a) Zeigen Sie, dass die Funktion z(t) = at+by(t)+c eine Differentialgleichung mit getrennten
Variablen erfüllt. 2

b) Lösen Sie mit Hilfe von Teilaufgabe a) die Differentialgleichungen

i) y′ = (t+ y)2 , 1

ii) y′ = (t− y)2 in dem Streifen −1 < t− z < 1. Skizzieren Sie den angegebenen Bereich. 1

Aufgabe 4: (Satz von Picard-Lindelöf)

a) Betrachten Sie das AWP {
y′ = t · y
y(0) = 1 .

Wir hatten im Beweis zum Satz von Picard-Lindelöf gesehen; sind die notwendigen Bedin-
gungen des Satzes erfüllt, konvergiert jede Funkton ϕ in einem Rechteck um t0, y0 gegen
die Lösung y des AWP, die dann lokal eindeutig ist.

i) Lösen Sie das AWP.

ii) Argumentieren Sie dann mit dem Satz, für welche t die Lösung y(t) eindeutig ist.

iii) Dann starten Sie mit der Funtion y0(t) = 1 und bilden Sie diese mit der Kontraktion Φ
(wie in der Vorlesung definiert) auf die Funktion y1 ab. Iterieren Sie dieses Vorgehen,
um y2 und y3 zu erhalten. Sie erhalten eine Approximation der exakten Lösung.
Vergleichen Sie Approximation und Lösung. 2

b) Betrachten Sie das AWP {
y′ = sin

(√
3t− t2 − 2

)
· y2

y(32) = 1
4 .

Für welche b (Bezeichner wie im Beweis des Satzes) erhalten wir Rechtecke [1, 2] × [y0 −
b, y0 + b], sodass a = α gilt? Auf welchem Intervall ist dann die Lösung des AWP nach
einmaliger Argumentation mittels des Banachschen Fixpunktsatzes eindeutig? Existiert die
Lösung auf ganz [1, 2] und ist dort eindeutig? 2
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