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(Abgabe: Freitag, den 22.06.2012, bis 10.15 Uhr in die dafiir vorgesehenen Késten)

Hinweis: Die ersten drei Aufgaben diese Blatts beziehen sich nicht auf den aktuellen Vorlesungs-
stoff, sondern sind Aufgaben zur Wiederholung und Vertiefung.

Aufgabe 1: In einem Gefif wird eine bestimmte Krebsart geziichtet, die sich von Bakterien
erndhrt. Zur Fiitterung wird pro Sekunde eine gewisse Menge a > 0 an Bakterien in das Geféfs
gegeben. Die Krebse fressen die Bakterien mit einer Rate, die proportional zum Quadrat der
momentan vorhandenen Bakterienanzahl x(t) ist.

a) Modellieren Sie die Entwicklung der Bakterienanzahl z(¢) mit Hilfe einer Differentialglei-
chung.

b) Bestimmen Sie die allgemeine Losung der aufgestellten DGI.

c) Bestimmen Sie das Langzeitverhalten lim; o, x(f) der Bakterien.

Aufgabe 2: Sie kennen das Phénomen, dass eine Kette, die zu weit von einem Tisch herun-
terhdngt anfingt zu rutschen und mit wachsender Geschwindigkeit vom Tisch herunterrutscht.
Dieses Herunterrutschen soll modelliert werden. Wir treffen dazu folgende Annahmen:

Die Kette hat die Lange L > 0. Die Masse der Kette verteilt sich gleichméfig iiber die gesamte
Kette, dabei gibt p > 0 die Masse der Kette pro Langeneinheit an.

Auf die Kette wirken zwei Krafte: Die Gewichtskraft des herunter hangenden Teils der Kette
zieht die Kette in Richtung Tischkante und die Reibungskraft des auf dem Tisch liegenden Teils
der Kette zieht die Kette in die andere Richtung.

Die Gewichtskraft wird modelliert durch Fg = Mg, wobei M die Masse des Teil der Kette ist,
das schon vom Tisch herunterhéngt. Mit g bezeichnen wir die Erdbeschleunigung.

Die Reibungskraft soll mit dem Modell der Gleitreibung modelliert werden, d.h. Fp = —upMg,
dabei ist pp der Gleitreibungskoeffizient, der nur von den Materialeigenschaften des Tischs und
der Kette abhiingt und M die Masse des Teils der Kette, der noch auf dem Tisch liegt. Das
Vorzeichen beriicksichtigt die Richtung der Kraft.

Diese Modellierung léasst sich anwenden, wenn sich die Kette bewegt, bzw. sich gerade in Bewe-
gung setzt.

a) Modellieren Sie ausgehend vom 2. Newtonschen Axiom F = ma diesen Sachverhalt mit
Hilfe einer Differentialgleichung zweiter Ordnung. Erldutern Sie die Wahl ihres Koordina-
tensystems mit Hilfe einer Zeichnung.



b) Losen Sie die entstandene Differentialgleichung.

Aufgabe 3: Gegeben sei eine Differentialgleichung der Form
y = flat+by+c), ab,ceR mith#0.

a) Zeigen Sie, dass die Funktion z(t) = at+ by(t) + ¢ eine Differentialgleichung mit getrennten
Variablen erfiillt.

b) Losen Sie mit Hilfe von Teilaufgabe a) die Differentialgleichungen

) (t+y)?,

i
ii) (t —y)? in dem Streifen —1 < t — 2z < 1. Skizzieren Sie den angegebenen Bereich.

y/
yl

Aufgabe 4: (Satz von Picard-Lindel6f)

a) Betrachten Sie das AWP

y' =ty
y(0) =1.
Wir hatten im Beweis zum Satz von Picard-Lindel6f gesehen; sind die notwendigen Bedin-
gungen des Satzes erfiillt, konvergiert jede Funkton ¢ in einem Rechteck um tg, yo gegen
die Losung y des AWP, die dann lokal eindeutig ist.
i) Losen Sie das AWP.
ii) Argumentieren Sie dann mit dem Satz, fiir welche ¢ die Losung y(t) eindeutig ist.

iii) Dann starten Sie mit der Funtion y°(¢) = 1 und bilden Sie diese mit der Kontraktion ®
(wie in der Vorlesung definiert) auf die Funktion y' ab. Iterieren Sie dieses Vorgehen,
um y? und > zu erhalten. Sie erhalten eine Approximation der exakten Lésung.
Vergleichen Sie Approximation und Losung.

b) Betrachten Sie das AWP

{y’ = sin (\/m) 2
y(3) =1

Fiir welche b (Bezeichner wie im Beweis des Satzes) erhalten wir Rechtecke [1,2] x [yo —
b,yo + b], sodass a = « gilt? Auf welchem Intervall ist dann die Losung des AWP nach
einmaliger Argumentation mittels des Banachschen Fixpunktsatzes eindeutig? Existiert die
Losung auf ganz [1,2] und ist dort eindeutig?



