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THE COMPRESSIBILITY OF SOLIDS

UNDER EXTREME PRESSURES
FRANCIS D. MURNAGHAN
The John Hopkins University

INTRODUCTION

We shall attempt to show in the present paper that a
careful and exact consideration of the energy principle
suffices to account, to within the 1limits of experimental
accuracy, for the observed compressibilities of snlids even
though the pressures to which the solids have been sub-
Jjected are so great (e.g. 50,000 atmospheres) that the
solid in question has been reduced to approximately one-
half 1its original size. The problem of finite, 1.e. non-
infinltesimal, deformations has been studied over and
over again, and we shall attempt tc make clear at just
what point our theory departs from these past (and present)
studies and to what 1t owes, in our opinion, 1ts success
when subjected to the test of actual experiment.

THE DEFORMATION MATRICES M AND N

Let us denote by a=(§) a point of our solid which is

deformed to the point x=(§) ; we write these vectors a and

X as matrices of one column rather than as matrices of one
row, since we are thereby enabled to employ the powerful
abbreviations of matrix algebra. The coordinates of the
point X will be, in general, quite complicated functions
of the polnt a but their differentials will be relatively
simple functions (in fact, linear, homogeneous functions)
of the differentials of the coordinates of the point a.
This fact finds its expression in the formula

" dx=Pda

where P is the Jacobian matrix %%%?%ﬁ% . From this formula

we read off at once the effect of the deformation upon the
element of arc length. Denoting the transpose of a matrix
(1.e. the matrix obtalined by interchanging the rows and
columns of the matrix) by an attached prime, we have

dsi=da’da  ds'=dx’dx =da’P’Pda
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so that
ds*-dsy =da’(P’P - E)da = dx’(E-Q'Q)dx

where £ denotes the unit matrix and Q denotes the recipro-
cal of the matrix P :

QP=E=PQ da=Qdx

We say, therefore, that the matrix M= PP suffices (insofar
as measurements of lengths are concerned) to describe the
deformation, this description being in terms of the initial
position a; whilst the matrix N=QQ describes the same
deformation in terms of the final position x. It is im-
portent to observe that the reciprocal of M, i.e.QQ’,
differs from N=Q'Q merely in the order in which the fac-
tors are written. Hence M and N are similar to one
another: )

PM'P™'=PQQQ=QQ =N

Let us denote the characteristic numbers of M and N by

(M Mz M3) and (n;,n,,n,), respectively, and the invariants
of M and N by (M;M,.M;) and (N;3N25N5) , respectively. It
follows at once from the relations

M|=m‘fm2*m3 Mz=mzm3+m,m,+m|mz M3=m,mzm3
Ni=ntn,tny Nz=nznstnyn, + m,nz  Ny=n;nzny
_ -1 . - ~! _ -1

n; =m Ng = My N3y= my

that

N=M, /Ms Nz = M,/M; Ns= | /M,

M|=N2/N3 Mz'—'Nu/Ns Ms=1/Nj

THE SYMMETRIZED SPACE-VARIATION MATRIX D

In order to express the principle of conservation of
energy we adopt the dynamic viewpoint (as opposed to the
static viewpoint which Interests itself only in the initial
and final positions of the body) in accordance with which x
is a function not only of a but of an accessory parameter
(which might well be, for example, the time). If we have
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any function f of %X, we denote by §f the variation of f
(1.e. the partial differential %gdﬁ » where the differen-

tiation is performed under the assumption that a 1is kept
constant), and observe that differentiations with respect
to ¥4 and a are commutative whilst those with respect to f
and X are not (because 4 and a are independent variables
wvhilst 4 and X are not). Since P=9X/aq ,

5P=(82%)=(2 5x)=(Z ox)p
Hence §P' = P'(%5X)", so that
5M = P’sP+8P'P = 2P’ DP

where D 1s the symmetric matrix

-7 & ox)s (o

It 1s in terms of this matrix, rather than in terms of §M,
that the principle of conservation of energy finds, most
conveniently, 1ts exact (and not merely spproximate ex-
pression. We term D the symmetrized space variation of the
virtual displacement vector and note that

dM=2P’DP  2D=Q’SMQ

THE VIRTUAL WORK OF ALL THE FORCES ACTING ON THE. BODY

The forces acting on the elastic body are, in general,
of two types:

(a) Body or mass forces. Examples of these are
the weight of the body and, if the medium
i1s not in equilibrium, the forces of inertia.
We shall denote by F the vector which measures
these body forces per unit mass; i.e. if dV
is an element of volume of the medium, the
resultant force on this element is @FdV
where  1s the density of the medium.

(b) Surface forces. These are forces (such as
a uniform hydrostatic pressure) applied to
the surface of the elastic body. We shall
denote by f the vector which measures these
surface forces per unit area; 1.e. if 4S5 1is
an element of area of the surface, the re-
sultant force on this element of area is fdS,
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~ In a virtual displacement of the elastic body the
virtual work of all the forces, both body and surface,
which act upon 1t 1is

J(gF8x)dv + [(£8x) s

If T 1s the stress matrix and v is the unit normal drawn
outwards from the surface we have f=Tv , and our surface

integral frrVSX)JS may be replaced by the equivalent
r rf, ..
volume integral  [dw(T8:)dv = [{(diwTsx)+(T2 ax]}av .

Here divT 1s the vector whose first component 1is

% Y z .
%{L?'%§%+-%£L , and [T 5~] denotes the trace, or sum

of the diagonal elements, of the matrix T'%23*5. Hence

the virtual work of all the forces acting on the body ap-
pears as the volume integral

J{toF+ dwmrse[TL 5x]}av

We assume that this virtual work is zero if the body moves
as a rigid whole (which is merely another way of saying
that the equilibrium of an elastic body will not be dis-
turbed if the body Is imagined rigidified). On considering

the virtual translations (for which the matrix 5%5% is

zero) we obtain the basic equations of motion (it being
remembered that F includes the forces of inertis):

pr divT =0

On considering the virtual rotations for which-gESx: is
/
skew-symmetric (i.e.(g%sx)-+(§%3x)==0 ), we find that

the stress matrix T must be symmetric (i.e. T=T'), and
then ths expression for the virtual work of all the forces
acting on the medium takes the simple form:

Virtual work = [(TDldv 20 = (2 6x)+(2 ox)

It 1s precisely here that we diverge from the classical or
infinitesimal theory; in that theory it is assumed that the

Virtual work = -%jTTSM]dv

80 that the approximation used in the infinitesimal theory
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consists in replacing D=é—_Q' SMQ by 28M , 1.e. in replacing
Q, where 1t appears in the formula for D, by the unit
matrix £ .

THE ENERGY OF DEFORMATION OF THE BODY

We assume that the work done by the forces acting on
the body 1s stored up (as elastic energy), and we denote
by ¢ the density of elastic energy per unit mass; thus the

elastic energy 1s furnished by the volume integral f{”‘f‘dv

In a virtual displacement the variation of PdV is zero (by
the principle of mass conservation), and so the variation

of the elastic energy is f?S‘{’dV . On equating this to
the virtual work we obtain the basic rela.tipn

08¢ =[TD]=-4([TG'6MQ] =+ [QTQ"5M]

since the trace:of the product of two matrices 1s indepen-
dent of the order in which they arec taken. On the assump-
tion that ¢ 1s completely determired by the matrix M we

have 3‘{’=[§-;% $M]  where %‘5 1s the matrix of derivatives of

% with respect to the elements of M (it being understood
that in forming these partial derivatives no account is
taken of the fact that M i1s symmetric, and that ¢ 1is so

expressed as a function of M thatg% s symmetric). On

taking into account the fact that §M is an arbitrary
(symmetric) matrix we obtain the basic equation

99 _ | , 5D o
7 QTQ T 29P6MP

@
e

P

THE FUNDAMENTAL EQUATION CONNECTING
STRESS AND STRAIN IN AN ISOTROPIC BODY

We now come to the essential remark which we regard
as distinctive of the theory of this paper. The basic
equation just written, '

09 o
T=29P3;§1P

may be put in a practicelly usable form when the elastic
body 1is isotropic; the Importance of this remark is at once
evident when we point out that the matrix P is completely
unknown. The elastic body is said to be isotropic if ¢ is
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unaffected when the mass element PdV 1s subjected to an
arbitrary rotation before the deformation takes place; in
mathematical terms ¢ must be unaffected when a 1s replaced
by Oa and X by Ox where 0 is an arbitrary proper orthogonal
matrix. The effect of this replacement is to replace P by
0P0’ and hence M=P'P by OMO’ Thus, for an 1sotropic body,
¢ 1is such a special function of‘ M that 1t is completely de- .
termined by the characteristic numbers (m,smz2,M3) of M (or,
what 1s the same thing, by the invariants (M;s Mz;Ms) of M;
for 0 may be so chosen, since M is symmetric, that OMO’ is
a dlagonal matrix with m,, m; , and m3; as its dlagonal ele-
ments. This implies, as we have seen above, that ¢ 1is a
function of the invariants N,, N , N3 of N, and it 1s only
wvhen we regard ¢ as a function of N, rather than as a func-
tion of M, that our fundamental equation (which connects
the stress T with the strain) takes a usable form. To
obtain this form we observe that the invariants M;, M, , M;
of M are, respectively, the sums of the one-rowed, two-
rowed, and three-rowed principal (i.e. diagonal) minors of
M. Hence

M: _a_MZ.= - M" -
oM "B gm TMETM Gy =MiM
and, simiiarly,
oN, _ ONy _ - 9N _ -
an & N TNE-N = NeN
Since M= m: s M= NN—' sy Ms= N , and since N satisfies its own

characteristic equation (i.e. since N’>-NN?+N,N-NE =0),
it follows that

M _ 2 M E -NN"') M=__IL\J;N-|

dN aN N

Since PP'=N~' , PMP’=PP'PP’= N2 | g0 that

W

M, M,
PoM P'=N"=~N

ST

LT e L T I AN |V
PP =MN'-N N)(N,N N3N%)= N,(N NE)=-N3N

p IM; o
0N

2E

P’=M,PQQP'= MsE."'"E”" %

N
Hence, since ¢ is a function of M,, My, Ms,

90 = 2L
PaMP N3N
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- 99

This 1s the fundamental equation of the theory. It 1is usual
to write N=E-2¢ and to term € the strain or deformation
matrix. 1In this notation our basic equation takes the form

T=p(E-20)2L

The approximation furnished by the classical theory 1s ob-
tained by setting f=% (1.e. by ignoring the change in
density of the body) and by replacing E-2¢ byE. When we
recall that. the high pressures realizable at present suf-
fice to double ?, -1t is clear how poor the approximation
given by the classical theory must be. The general state-
-ment of Hooke's Law, as given by the classical theory, 1is

0
T= P"?z—

l.e. the stress is the gradient of the elastic energy (per
unlt volume rather than per unit mass) relative to the
strain. This must, in the exact theory, be replaced by
our equation

T-p(E-2¢)5¢ = -2pnSL

It 1s interesting to observe that if we introduce the
matrix R defined by

N - e-ZR
we have

ay
T=96—R

In other words, if allowance is made for the change in
density, the statement of Hooke's Law which is ggvenffn
the classical theory becomes an exact statement (and not
merely an approximailon) if we replace the strain matrix
€ by R where

3
R= —%log(E-Ze)=e* ez+4T" R

In this connection a remark concerning Biot's' theory of
finite strain may be made. The essential feature of this
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theory is the introduction of the positive symmetric matrix
J . whose square lsM:

JE=M=PP

It 1s, however, not convenient to write the exact equations
in terms of J; we must, rather, introduce the positive square
root K of N°!'

K:=N"=ppP’

Then %‘%=—2K"§% so that Ka—(}%=—2Ng—% . Hence
T= oK%

or, equivalently,
9,,"—‘}’;=%K'T

Since {o/P=det P we have £/ =det K , since (det k)*=(det K%)=
det PP’ = (det P)? . Hence _

@%% =(detK)K™'T

If we write K= E+é¢ and use the approximations det (E+¢)= |+ [e]
K'=E-€ , we obtain the (approximatire) result

Pog‘z =(1t(e])T-€T

given by Biot. The identification of J and K made by Biot
is legitimate £s an approximation, since P is of the form
P=E+a where « 1s infinitesimal, so that

p’paE*d*o{’+u,o( pp’=Efo(fo('+o(o('
Hence i1f we neglect the difference between «’o and «x’ R

P'P=PP/ , forecing J=K . It is worthy of note that the
exact equation

- _a_‘£=_9_9__ 29
T=PK3K "Gtk oK

has such a relatively simple form.

ASSUMPTION CONCERNING THE ELASTIC ENERGY
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No further progress can be made untll something fur-
ther 1s known as to the structure of P,¢ as a function of
the 1nvariants N;, N, , N3 of N, For this we shall have to
awalt further progress in quantum theory, but it is sur-
prising that the nalve hypotheses of the classical theory
suffice to explalin the experimental results already secured
in the case where the applied force i1s a uniform hydro-
statlc pressure. In order to keep our notation as close
as possible to that of the classical theory we set

N=E-2e

80 that our fundamental equation takes the form

T-p(E'-Ze)g—t
On denoting the invariants of the deformation matrix ¢ by
I, I , Is we observe that these are infinitesimals of the
filrst, second, and third orders, respectively, i1f € 1is an
infinitesimal matrix. We regard ¢ as expanded in a
power series in I, , I, , Iy and keep only terms of order
not higher than the second. If the unstrained position
1s one of zero stress, ¢ cannot contain terms 'of the
first order, and since %¢ 1s indeterminate to the extent
of an additive constant, it may be assuned to be given by
the formula

(P‘A%& I.z-szz

and since

S =detQ- (detN)Z

our equation for T becomes

T ={det(E -2€)f? (E-2€)(ALE + 2pue)

UNIFORM HYDROSTATIC PRESSURE

Let € be a scalar matrix, so that T is also a scalar
matrlix, and writs

e=-fE T--ﬁE
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so that  1s the uniform hydrostatic pressure to which the
body 1s subjected. Our formula becomes

) =(|+2f)i'(§)\+2p)f

so that 1t involves but one empirical constant 3A+2u ,
Despite this lack of flexibility it suffices to account,

to within the limits of experimental accuracy, for the com-
pressibility of a whole series of solids under pressures
ranging from 0 to 50,000 atm. For details of this com-
parison of theory with experiment we refer to papers by
Birch?, Bridgman’, and the writer®. The quantity f 1s de-
termined by the formula

<

2 s =(+2f) f='g[(l’gf—lJ

where Yo 1s the initial volume of the solid and V is the
volume of the solid when it is subjected to the pressure .

In order to facilitate the application of our formula
we have prepared the following table furnishing f and

fog { (1+2F)7% 2f} 1in terms of aV= (Vo- V)/Vo for values of
AV from 0.01 to 0.51 at intervals of 0.01.

TABLE I

AV f logl(l'rZF)iZF} av - f tog{(lfzf);ﬂ} AV f log[{HzF)%Z#}

0.01 |0.00335 | 7.83332 || 0.18 | @.07075
.02 | ,00680 | 8,14816 .19 | .o1540

.29446 || 0.35 | 0.16635 | 9.83337
.33090 36| 17325 | 9.86272
.36670 37| .18035 | 9.89157
.4o156 .38 .18765 | 9.920k0
.05 | .o1740 | 8.57870 .22 | .09010 .b3555 39 ] 19515 | 9.94913

9
9
" .03 | .01025 | B.33380 .20 | .08020 | 9
9
9
.06 | .02185 | 8.68693 .23 i .09515 | 9.4686Y .ho | .20285 | 9.97796
9
9
9
9
9
9

.0h | ,01380 | 8.47046 | .21 | .08510

.07 | .02480 | 8.74800 .24 | .10040 .50146 . .21080 . 00682

.08 | .02860 | 8.81775 .25 | 10570 .53330 b2 | .21890 .03556
.09 .o3;h5 8.88n52 261 L1115 .5648Y A3 22730 +C6h51
.10 | .03640 | B8.93841 271 11675 .59609 ik | ,23595 .09353
.62661 U5 1 L24L8s .12265
.12 | .oblkus | g9.0h142 .29 | .12825 .65699 .46 | .25400 .15188
13 | .0ol865 | 9.08891 .30 .13%20 | 9.68698 A7 L263h .18125
14 | L0%290 | 9.13369 .31 L1035 | 9.7168% 8| .27320 .21083
15 | 05720 | 9.17603 .32 .14660 | 9.74636 g | ,283%0 24066
16 | 06165 | 9.21716 .33 1 .15300 | 9.77560 .50 | .29370 .27065

7 | L06615 | 9.25646 34 .15960 | 9.80484 51| .304l5 .30087

W1 .obokc | 8.99176 .28 | .122k0
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As an example of the use of this table, let us con-
sider the data on the compression of NaCl at room tempera-
ture over a range of 5000 to 50,000 atm. In order to gilve
our formula the severest possible test, we adjvst our
single constant so that our formula gives the correct value
0.0192 for AY at the lowest pressure (5000 atm.) for which
AV 1s recorded; 1.e. we use our formula to extrapolate over
the range 5000 to 50,000 atm., taking from experiment only
the measurement at 5000 atm. To make our adjustment from
the table we interpolate between 0.01 and 0.02 and find for

k9{0f2¥)722F} the value 8.12297. On subtracting this
from fog 5000 we obtain 5.57600 as the logarithm of the
constant hik+2ﬁd/é . Then, to obtaln from the table the
velue of AV for 10,000 atm. we subtract 5.57600 from

log 10,000, obtaining 8.42400, so that aV lies between
0.0% and 0.04; by interpolation we find AV = 0.0366. The
experimentally measured value is 0.03%65. The following
gives the result of the comparison of theory with experi-
ment over the entire range:

4 AV (calculated) | AV (observed)
10,000 0.0366 0.0365
15,000 .0520 - .0523
20,000 . 0662 . 0664
25,000 .0806 .0798
30,000 . «0935 .0919
35,000 .1056 .1029
40,000 .1159 1130
45,000 .1275 1223
50,000 1376 .1309

The agreement between theory and experiment must be regarded
a8 extraordinarily good. At the highest pressure recorded
(50,000 atm.) the calculated value 18 1n excess of the ob-
served value by 5 percent. '

In concluding this section we refer to the fact that
Bridgman gives (Ref. 3, p. 46) data on the compressibility
of rubber for which our formula falls to account. We think
that this failure may be attrlibuted to the porous nature of
the material. For any such porous or spongy material the
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compressibility will be much greater at the lower pressures.
The deviations from the results given by our formula could
be partly accounted for if we knew what percentage of the
initial volume was air; or, vice versa, the observed de-
viations could be used to yield information on this point.
From the results given by Bridgman 1t 1s indicated by the
following (rough) argument that about 7 percent of the
initial volume of the rubber specimen was alr. If we de-
note the volumes of air and rubber by subscripts | and 2,
respectively, it follows from the relation AY = |- V/V, that

(VohaV, + (Voo AV = V,aV

If we regard (V/Vo), as negligible at pressures of 5000 atm.
and up, we have AV, =] , so that

‘('\‘/QI‘AV2=AV_'(‘\\§:2L

Vo

If we write (Vo), /Vo = 7 percent, (Vo)o /Vo = 93 percent,

and the values for AV are to be obtained from the values of
AV given by Bridgman by subtracting 0.07 and multiplying the
result by 100/93. The values so obtailned follow the pattern
of the data on metals and can be approximated fairly closely
by our formula. When we pass to the data at -78.8°, the
estimate of 7 percent air (by volume) would have to be re-
duced to about 2 percent in order that the theory should,
similarly, account for the experimental results.

HOLLOW CIRCULAR CYLINDER UNDER INTERNAL PRESSURE

We consider a hollow circular cylinder of internal and
external radii n and r, , respectively, and so long that
the end effects mey be neglected. The internal surface
r=r; 1s subjected to a uniform hydrostatic pressure %,
vhilst the external surface r=rz is free from pressurse.
We seek.the displacement u (necessarily radial, by symmetry)
of any point of the cylinder. On denoting the initial and
final values of r by a and r, respectively, we have

r=a+u

vhere u is a function of r alone. Since da=(i-uw)dr | ye
have

(05"~ (dsolf} ={u'- F (w7} @ 5 (2= at)(a

- o -
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so that the strain matrix (which may be here regarded as a
two-rowed matrix) 1s diagonal, its dilagonal elements belng

R o_u _ ) (uy
€Er= U z(u) EO"- 2(\:)

Hence the matrix N is diagonal, its dlagonal elements beilng
r=_,z 0= _y_é
Ny =(1-u") Ng =(1- )
It follows that

-g: =( f-u')(l— -u*)

r

and that

2= (1-u P-4 a2 g W Al - (4]

1= (=4 - 2P v zufi - 5]

In the plane-polar coordinates here in use the equation
div T=0 takes the form*

ad—r(r'T: )=T¢

Writing, for the sake of brevity, A+2M =2« and A=23 , we
have

2
rTe=(l -u’)’(l- %){ 2(rud) + 2pu-at(ru?) - p -:_-‘—}
so that

L eTr)=(-u P 1- L 2alra) e ﬁu'-«('u*)"ﬁ(%z)l}

i (T KX () {Zo((ru')+25u—u(ru'2)—@-‘:—2}

On equating this expression to the one given for T: , we
obtain the differential equation which u must satisfy.

We obtain the equation of the classical theory by treating
u/r and W as infinitesimals and by retaining only terms
of the lowest (i.e. the first) order. This equation is

2oifre)r 2B = 2Bu’t 2

*Cf., for instance, Ames and Murnaghan5, p. 59, formula

(16.6). :
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i.e.

(ru’)’= %

so that u=Ar+B/fr , where A and B are constan’_cs of inte-
gration which must be.determined so that T = -p when r=r
and T,=0 when r=r, . Since

Tr=2(wu’+p2) = 2(«+@)A-2(«'@)%
we find

A= prf = for} B= priry — pf‘. o
2(ct+B)rz-r’) — 2(Atpr-r) 20-B)rE )~ 2ul-rd)

We observe that the infinitesimal u/r‘ is the sum of A and
B/r? and that A:B/r = ui(A+u).

Returning now to our exact equa.tibn we retain terms of
the second order. We find

(I - Ju." %){Z o(ru) +2Bu’- O((ru'z)'— ﬁ(—‘:‘f)’} {(: ) +3u”} {Zd(ru’)i 2B u}

- (1w~ 3 {2l 28— o 2 -plu ]

or, equivalently,

Zo({(ru')'~ i‘r—J - (3w %){ 2ufrul)'+ Zﬁu'} - [ (4)s ;u"} { 2ocfrul) ¢ Zﬁu} ~ofru”®Y
ol oot fecs 2o ofefop-

To obtain the second approximation we substitute the first
approximation u=Ar+8/r 1in the second order terms. After
some reduction we find

u{(ru')'“ %}—" (0( ﬁ)‘
or, equivalently,

2 . 2
(r‘u')'— _l_r.l: = _2_97(5_3%) - M)._&_

COAr2M 4

and it 1s at once seen that

__{at5u) B
v 2(7\*2#)j
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is a particular solution of this linearized equation. Hence
the second approximation to u is

_ B (r+5u) B°
u—Ar+—r‘ - Z(TZMU% r’

In order to obtain a concrete 1dea of the direction and
magnitude of the correction to the classical theory which
is furnished by our theory, let us consider an iron tube
which 1s subjected to so great an internal pressure that
the internal radius would undergo (according to the classical
theory) an increase of 20 percent. In other words, u/a, is,
to a first approximation, 20 percent so that u/r 1s, to a
first approximation 16 percent. This 1s composed of the
two parts A and B/r,2 ; an average value of u:A for iron 1s
0.75, so that A:B/r? = 3:7. Hence A: B/r?=3r%:7rf.
Putting this equal to 1/3, roughly (so that r,°:r’ = 9:7),
the term B/r? takes care of 75 percent of the relative
increase of the internal radius, so that B/hz = 12 per-

cent. Thus our theory predicts a relative 1increase of the
internal radius which is less than that predicted by the
classical theory by approximately 9 percent (12 percent of
75 percent). The pressure Po 1n question 1s approximately
16 M /300; M is approximately 8.10° atm., so that $o 1is
around 40,000 to ﬁs,ooo atm. ,

CONCLUSION

We have presented in the present paper arguments in
support of the theslis that the simple principle of con-
servation of energy is adequate to explain compressibility
phenomena and this without altering the expression for the
elastic energy which is familiar in the classlical theory.
We have pointed out that the main defect of the classlcal
theory has been its neglect of the varlation in density of
the compressed body. From the mathematical point of view
our theory i1s immensely more difficult than the classical
theory for problems other than those dealing with hydro-
static pressure, for the stress is nct a linear function
of the strain and the principle of superposition is not
valid. However, we may express the hope that some of the
simpler problems may yet be solved.
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